W26 HTM T = il 2 e Vol. 26 No. 7
20034 7 H CHINESE JOURNAL OF COMPUTERS July 2003

ETRAXNEERSE B EB G X KA ERS

W, s VY ~ =+ N 7 2 . . . 2
AFKR" ZHET EEL” EXF CHUNG Kelvin” YIU Siu Ming”
DR R HNLR S SR B R 2501000
DFWRFIUTENBFEERRRAER &b

OE RN SRR B R B AR T SEHL B % . CAD/CAM., E LHL SE R ML 38 N A A)
N L AZSCEE T AN R T 2 T A A WU 1 55— HP-jump. HP-jump #2352 T — /A~ A 2000 R 45 £
DU RS T 4005 W R R AR L [RS8 R IR SR T AR YN o 2 T A 43) R L
) FH Ty 22 T AR 0 2 TR TR SR A RSP T SO0 BT T SO SRS S ER T 2 1 T 1 O A, [IE R TR A s)
AHOGME X S0 T S AT, Z S0 IR JE 45 T HP-jump 5 GJK.I- COLLIDE 53 (f L.

KR LR TEREHLETE 2 R U S, A R A
FEZESES: TP18

Detecting Collision of Polytopes Using a Heuristic Search
for Separating Vectors

LI Xue-Qing” MENG Xiang-Xu” WANG]J YV
WANG Wen-Ping” CHUNG Kelvin® YIU Siu Ming?

D (College of Computer Science and Technology, Shandong University, Jinan 250100)
D (Department of Compute Science and In formation Systems, The University of Hong Kong, Hong Kong)

Abstract The collision detection problem is to determine whether two moving objects collide or
not at any moment. It is fundamental to computer simulation of a physical environment, and has
applications in computer graphics, CAD/CAM, virtual reality, and robotics. This paper proposes
a new method, called HS-jump, for collision detection for polytopes. HS-jump combines an effi-
cient scheme to report collision for two colliding polytopes and a fast heuristic strategy to search
for a separating vector of two separated polytopes. A separating vector is the normal vector of a
separating plane of two disjoint polytopes. Suppose an ordered pair (p,q) is a supporting vertex
pair of two polytopes P and Q with respect to a vector S, if it satisfies the separating condition
S+ (q—p)>0, then P and Q do not collide and § is called a separating vector. The algorithm
firstly sets a nonzero vector as the candidate separating vector § and computes the supporting ver-
tex pair (p,q). If the separating condition is satisfied, then P and Q are disjoint and the algo-
rithm terminates. Otherwise the new candidate separating vector S is obtained using the heuristic
formula §,,,=S8,—2(S, * r)r,, where r,=(q,—p,)/|(g;—p,)|. This step is repeated until the
algorithm finds the vector § which satisfies the separating condition or reports that P and Q col-
lide by noting that the spherical convex polygon formed from the supporting vertex pairs is emp-

ty. To speed up the implementation of the algorithm, the hierarchical representation of a polyto-

RS T3 :2001-11-06 5 18 ORI W) H 1. 2002-02-07. A VR A 3 18 K H SR B 2% 5L 4 (69873028) FH i 45 27 A AR 55 41 0 2% BHIE 22 Jih v
. FEER LY L1964 R L B BRSSO TS LA T EHLIE T R AHLAE B E-mail: liyou@jn-public. sd. cninfo. net.
BB 5 .1962 L HER A 0 3 A SR O T RN R RS, R B 1937 R B R S, R
WA oF S LT VT SEALISTE 2. EXF, 55,1963 4R A 1 -k, B0 , 32 AT ST v 5L L UF SEHL K E 2. CHUNG Kelvin, 95,
1970 54, Wi, 3 ST Ok Rl 5. YIU Siu Ming, 55,1968 4E 7L, 1+, 32 BHF 504080 0 50 v5.

838 7 "

#l

&4 it 2003 4F

pe is used to compute the supporting vertex pair, and a balanced binary tree is used to store the

vertices of the spherical convex polygon, and between-frame coherence is exploited . Due to the

particular nature of the search scheme used, HS-jump becomes more efficient when the convex

polyhedra are more spherically shaped. Hence, in the case of applying HS-jump to convex poly-

hedra with a large number of vertices, HS-jump delivers the maximum efficiency if the objects are

on average not very elongated.

Keywords

1 Introduction

The collision detection problem is to deter-
mine whether two moving objects collide or not at
any moment. It is often sufficient, as a typical and
efficient approach in practice, to consider whether
the two polytopes intersect in any of a sequence of
discrete time frames. This technique is applied es-
pecially when the motion path of an object is not
prespecified but is defined interactively, such as in
virtual reality applications, as opposed to motion
planning in robotics. Such a treatment has two im-
plications: (1) Collision occurring between two
consecutive frames may be missed; normally, the
chance of such possible errors is reduced by sam-
pling with a smaller time interval to get more
frames; (2) Efficient collision detection can be a-
chieved by exploiting the fact that the position and
orientation of moving objects under consideration
change little between consecutive time frames,
which is called between-frame coherence.

Collision detection algorithms that exploit be-
tween-frame coherence are more efficient than re-
peated applications of a conventional polytope in-
To

one may

tersection algorithm in consecutive frames.
make use of between-frame coherence,
compute a witness, such as a separating plane or a
pair of closest points, whose existence confirms
the separation (or non-collision status) of two
polytopes in the current frame. Because of be-
tween-frame coherence, the witness from the cur-
rent frame can be used in the next time frame to ei-
ther facilitate the computation of a new witness or
test quickly if the two polytopes in updated posi-
tions are still separated.

Another feature of collision detection algo-
rithms is the type of output information. Some ap-
plications require only collision status of boolean
type, i. e., separated or colliding. But it is often
useful to return a separating plane or even a pair of
closest features of two separated polytopes.

We will describe a new collision detection al-

computational geometry; computer graphics; virtual reality; collision detection

gorithm, called HS-jump, for 3D polytopes. HS-
jump uses a fast heuristic to compute a separating
plane of two separated polytopes, and formula that
yields a separating vector for two separated sphere
is extended into an iterative heuristic searching
scheme for a separating vector of two general con-
vex polyhedra. Colliding polytopes are detected ef-
ficiently by maintaining a spherical convex polygon
to yield balanced time performance for both cases
of separated and colliding polytopes. A pair of clo-
sest features can also be computed with little extra
computation within the framework of HS-jump.
Furthermore, unlike some existing methods, the
termination conditions of HS-jump are established
rigorously.

2 Review of Related Works

There are many techniques proposed in the lit-

eratures to solve the problem of collision detection:

(1]

spatial decomposition'"’, bounding volume!®, the

four-dimensional
[5.6]

space-time bounds™,

[4]

geome-
try'*', and image-based algorithms
Using the techniques of computational geome-
try to study collision detection is also an important
approach. One method is to utilize Voronoi dia-
grams'* to keep track of the closest features be-
tween pairs of objects. The popular system, I-
COLLIDE™, uses spatial and temporal coherence
in addition to a “sweep-and-prune” technique to re-
duce the pairs of objects that need to be considered
for collision. Another method is to solve the colli-
sion detection by computing the intersection or the
minimum distance. Using hierarchical representa-
tion, an O(log”n) algorithm is given in Dobkin’s
paper™® for the polytopes collision detection prob-
lem, where n is the number of vertices. Good the-

oretical and practical approaches based on the line-
10.11]

ar programming problem are also known'
Minkowski

techniques are used in paper [12] to compute the

difference and convex optimization

distance between convex protopes by finding the
closest points. In Gilbort’s paper®, Stephen Ca-

7 A RN T e s AR)) 2 T A A 839

meron modified the algorithm of Gilbert, and
showed that his algorithm has O(1) time cost un-
der the reasonable assumptions.

Most of these methods are efficient in the case
of non-collision, but not very efficient in the case
of collision. Furthermore the termination condi-
tions of these methods are not established rigor-
ously. In paper [14], a method, called Q-Collide,
based on separating vectors is proposed for colli-
sion detection of polytopes. In this paper we im-
prove the original method in paper [14] by estab-
lishing rigorous termination conditions, providing
a deeper theoretical analysis, and presenting a
more complete experimental results. A new colli-
sion detection system, called HS-jump, has been
built on these new developments.

3 The basic idea

A polytope is the intersection of a collection of
(closed) half spaces in E®, the 3D Euclidean
space. We assume throughout in this paper that
the polytopes considered have a finite number of
vertices and are bounded. Let P be a bounded
polytope in E*. V(P) denote the set of vertices of
P, and (x ¢+ y) denote the inner product of 3D vec-
tors x and y. Given a vector S#0, a vertex p €
V(P) is called a supporting vertex of P with re-
spect to S if § « p=max{S * x|xEV(P)}; Such a
supporting vertex p may not be unique for a given
polytope P and vector S.

Given a vector §%0 and two polytopes P and
Q. let p be a supporting vertex of P with respect
to S and q a supporting vertex of Q with respect to
—S. The ordered pair (p,q) is called a supporting
vertex pair of P and Q with respect to S. The pair
(p,q) may not be unique for a given vector S and
polytopes P and Q. See Figure 1.

supporting vertex p

supporting vertex ¢ .
supporting vertex vector

Fig.1 The supporting vertex pair

The vector g— p is called a supporting vertex

vector of P and Q with respect to S.

The polytopes P and Q are said to be disjoint,
or separated, or non-colliding if P(1 Q= . For two
disjoint polytopes P and Q, there exists a plane L such
that P and Q are on the opposite sides of L and P\ L
= and Q(L=. See Figure 2.

separating vector

separating plane L
Fig.2 P and Q are disjoint

The plane L is called a separating plane of P
and Q. A separating vector of P and Q is defined to
be a normal vector S of L that points from the side
of P to the side of Q, i.e., § + (y—x)>0 for any x
€ P and any yEQ.

Theorem 1. A vector S is a separating vector
of polytopes P and Q if and only if S+ (¢—p) >0,
where (p,q) are a supporting vertex pair of P and
Q with respect to S.

Proof.
ting vector of polytopes P and Q. By the definition of
S, for any x&€ P and y€ Q, we have S + (y—x)>0.
Since p&€ P and & Q, we have § + (q— p)>0.

Now we have § + ¢=>S ¢+ p, since p and q are

Firstly, we suppose that S is a separa-

the supporting vertices of P and Q with respect to
S, by the definition of a supporting vertex, we
have S+ p=>S + x,Vx&P, —S+q=>—S-y.Vy
€Q, then S+ y>S+qg>S -+ p>S -+ x, at last we
have S « (y—x)>0,¥Vx&EPand YyEQ, i.e., Sis
a separating vector of the polytopes P and Q. This
completes the proof. O

Theorem 1 states a property of the separating
vector that suggests solving the collision detection
problem by searching for a separating vector,
which, if exists, can be found by checking the con-
dition § « (q— p)>0. HS-jump is based on this i-
dea and performs iterations to resolve the collision
detection problem between two polytopes P and Q
in a given frame. Within a finite number of steps,
HS-jump can either find a separating vector, so de-
claring P and Q to be separated, or find P and Q to
be colliding via an analysis of the supporting vertex

840 i "

#l

&4 it 2003 4F

pairs produced in all preceding iterations.

Briefly, HS-jump performs for each frame an
iteration consisting of the following two major
steps, until a definite collision status is deter-
mined. Suppose that the present frame is the i-th
iteration.

(1) Generate a new candidate separating vec-
tor §;, and its corresponding pair of supporting
vertices p; € V(P) and q, € V(Q) (The rules of gen-
erating candidate separating vectors will be intro-
duced in Section 4 and Section 6). If S, is a separa-
ting vector, i.e., §; * (q;,—p;) >0, declare that P
and Q do not collide in the present frame; other-
wise, go to step (2).

(2) Use all the pairs of vertices (p;,q;,), j=
0,1,++,7, that have been produced so far, to check
if P and Q collide(This checking will be explained
in Section 5). The outcome can be collision or un-
determined. If it is collision, declare collision be-
tween P and Q for the present frame; otherwise,
set i :=i+1 and go to (1).

In the first step above, HS-jump attempts to
detect the separation of two polytopes. The poly-
topes are declared to be separated if the current
candidate separating vector can be confirmed to be
a separating vector; so the outcome is either sepa-
ration or undetermined. In Section 4 we will pres-
ent a fast heuristic that is used in step 1 to generate
new candidate separating vectors.

It is clearly not possible to find any separating
vectors if the input polytopes intersect. Hence,
with no prior knowledge about the collision status
of the two input polytopes, we need an efficient
check in step (2) to detect the collision of two col-
liding polytopes; the outcome is either collision or
undetermined. This scheme will be presented in
Section 5. When undetermined status is reached in
both step 1 and step 2, HS-jump enters the next
iteration.

Overall, there are four important issues re-
garding the correctness and efficiency of HS-jump:

(1) generation of new candidate separating
vectors;

(2) efficient computation of supporting vertex
pairs with respect to a given candidate separating
vector;

(3) confirming collision by analyzing support-
ing vertex pairs;

(4) establishing correct termination condi-
tions.

These issues will be discussed in Section 6 and

Section 8.

4 Detecting separation

In this section we will introduce the scheme of
generating candidate separating vectors in HS-
jump. Suppose that two polytopes P and Q are giv-
en. Let S, be an initial candidate separating vector.
Let (p;.q;) be a supporting vertex pair of P and Q
with respect to the candidate separating vector S; in
the i-th iteration. Assume that S, (g, — p;) <0
(for otherwise we can declare P and Q to be sepa-
rated and terminate HS-jump for the present
frame). Denote r;=(q,—p,)/|(q:—p;) | ; here we
may assume q; — p; 7 0 (otherwise, we will know
that p, € PN Q= , i.e., P and Q collide). The
vector r; is called a unit supporting vertex vector of
P and Q with respect to S,;.

Finding quickly a separating vector for two
separated polytopes is key to identifying their sepa-
ration. There are two rules that are used in HS-
jump to generate new candidate separating vectors.
Suppose that a candidate separating vector S ; has
been found not to be a separating vector, then the
first rule of generating the new candidate separa-
ting vector S+, in the next frame is by the formula

Sii=8—2(S;*ror; @b
For the sake of avoiding infinite looping of HS-
jump, we will introduce later in Section 6 the sec-
ond rule of generating a new candidate separating
vector. In the rest of this section, we will present
some properties of formula (1) for its justification.
Let Ps and Q4 be two disjoint

spheres in E*. Let §, be a nonzero vector which is

Theorem 2.

not a separating vector of Py and Q. The vector S
| derived from S, through formula (1) is a separa-
ting vector of Py and Qjs.

Proof. Consider the sphere M=Qs@ (— Py)
={y—x|xEPs,yEQs}, i. e., the Minkowski sum
of Qsand — Py. It is clear that, for any vector S, S
is a separating vector of Pg and Qg if and only if §
is a separating vector of M and R=0, where O=
(0,0,0) is the origin; furthermore, the supporting
vertex vector of Py and Qg with respect to S is e-
qual to the supporting vertex vector of R and M
with respect to S. Hence, we just need to prove
the conclusion of the theorem by considering R and
M in place of Pg and Q.

Since Pg and Qg are separated, R and M are al-
so separated. Therefore, the origin O is not con-
tained in the sphere M. Let m, be the supporting
vertex vector of R and M with respect to §,. Then

7 A RN T e s AR)) 2 T A A 841

m, can be regarded as a point on the boundary of
M. Let L be the line passing through the origin O
and m,. Let m, and m, be the two intersections of
L and M. Since S, is not a separating vector of R
and M, m, is between m, and O on line L. Figure 3
shows the sectional view of sphere M on the plane
determined by the origin O, m,. and vector S,.

Fig.3 The proof of the theorem 2

Let C denote the center of the sphere M.
Without loss of generality, we may assume §,=C
—m,, since a common scaling factor to §; and S,
in formula (1) is immaterial. Now the unit sup-
porting vertex vector with respect to S, is r,=m,/
|m,|. Since (m,+m,)/2=(C« r,)r,, it follows
that m=2(C « r,)r, —m,. Thus, according to
formula (1),

S,1=8,—2(8, s ryr,

= C_mo_Z[(C_mo) * ro]ro

=C— [Z(C s ryry *mo:l

=C—m,.
Therefore, the supporting vertex vector with re-
spect to the next candidate separating vector §, =
C—m, is the normal vector of the tangent plane of
M at m,, and this tangent plane is clearly a separa-
ting plane of R and M. Hence S, is a separating
vector of R and M, and, according to the argument
at the beginning of the proof, S, is also a separa-
ting vector of Py and Q s. This completes the
proof. O

Theorem 2 asserts that HS-jump uses at most
two iterations to produce a separating vector of two
disjoint spheres. In addition, a result to be proved
in Theorem 4 will show that, using formula (1),
HS-jump also reports collision within two itera-
tions for two colliding spheres. These properties
provide useful insights into the behavior of the can-
didate separating vectors produced by formula (1),
though they relate only to the theoretically inter-
esting case of HS-jump being applied to spheres.
As a matter of fact, one may regard formula (1) as

a heuristic scheme that possesses the above proper-
ties, and expect naturally this scheme to perform
efficiently when the input polytopes are nearly
sphere-shaped. However, in order to devise a col-
lision detection algorithm for general polytopes,
we need study, theoretically or experimentally, if
the merits of formula (1) are preserved in the gen-
eral setting. For example, the next theorem states
the convergence behavior of the S, produced by for-
mula (1) for two separated polytopes.

Let Pg and Qg be two separated
polytopes. Let § be an arbitrary separating vector
of Pg and Qg then the angle between S and the S,
produced by formula (1) decreases monotonically

Theorem 3.

as 7 increase(see paper[147]).

Although Theorem 3 indicates that the vector
S, generated by formula (1) gets closer and closer
to an arbitrary but fixed separating vector of two
separated polytopes, there is no guarantee that the
S produced by formula (1) alone will lead to ter-
mination of HS-jump in a finite number of steps.
We will address this issue in Section 6 by introdu-

cing an auxiliary rule of obtaining §,., from S ;.

5 Detecting collision

When two polytopes intersect, the attempt to
search for a separating vector will eventually fail.
To avoid spending much time searching for a sepa-
rating vector in this case, we will discuss in this
section the scheme used in HS-jump to detect the
intersection between the polytopes.

Recall that P Q= & if and only if the zero
vector 0€QP(—P)={y—x|xEP,yeQ}, i e.,
the zero vector is contained in the Minkowski sum
of Q and (—P). On the other hand, the support-
ing vertex pair (p;,q;) gives the vector q;— p; €Q
@®(—P). Denote r,=(q;, —p.)/| (q,—p;)|. as-
suming q; — p; 0. In each iteration of HS-jump,
we test if the zero vector is contained by the convex
hull CH, of all the vectors r;,j=0,1,--+,7, i. e., all
the unit supporting vertex vectors that have been pro-
duced so far. Since CH, is a subset of QP (—P),if it
is found that 0& CH;, HS-jump can declare that P and
Q collide; otherwise, HS-jump will continue to search
for a separating vector.

Now the question is how to test efficiently if 0
€ CH;. We will show that it takes at most O(logi)
time to test if 0& CH, by checking if there exists an
open hemisphere of §* that contains the set of
points r;, j=0,1,2++,7, on §°, the unit sphere

centered at the origin; an open hemisphere of §* is

842 7 "

#l

[

+E

the intersection of §° and the open half space de-
fined by a plane passing through the origin.

Let the r;, j=0,1,2-,7, be identified with
points on the unit sphere §¢. Clearly, 0 € CH, if and
only if there does not exist an open hemisphere of §*
The open hemisphere deter-
mined by a vector r is defined by HS(r) ={x|x€ §*,
x+r>0}. Then all these r;,j=0,1,2--

contained in an open hemisphere of § if and only if

hHS(r]) # (. Evidently,
j=0

that contains all the r;.

.1, can be

hHS(rJ) forms a
j=0

spherical convex polygon if DOHS(r,»)ig. Hence,

with a new r,., being generated at iteration i +1,
we just need update the spherical convex polygon

i i+1 i+1
NHS(r;) to obtain (NHS(r,), since NHS(r;) =
7=0 =0 =0

NHS(r) N HS(r).

There is a planar analogue of the above prob-
lem, that is, the problem of computing dynamical-
ly Cor on-line) the intersection of a set of half

Based on the same idea as used in paper
i+1

[15], and using a balanced binary tree, ﬂHS(r,)

planes.

can be computed from ﬂHS(r) in O(logi) time.

j=0
Let L(r) denote the plane with the normal vector r

and passing through the origin, i.e., {x|x « r=

0}. When a new hemisphere HS(r;;,) is added,the
i+1

basic operation to form [1HS(r;) is to find the in-
=0

-
tersection points of the plane L (r.,) with the

boundary of hHS(rj). There are,in general,either
j=0

none or two such intersection points. When L (r;;)

and (NHS(r;) intersect in two points,the sides of
j=0

ﬂHS(r) need to be updated to obtain ﬂHS(r

j=0
when they do not have any 1nter<ect10n pomt%, ei-

ther ﬂHS(r)= ﬂHS(r) or ﬂHS(r

the latter case 1nd1cat1ng that the two polytopes P

=0, Wlth

and Q intersect. All these cases are illustrated in
Figure 4. We end this section with one more prop-
erty of the candidate separating vector S; produced
by formula (1).

Theorem 4. Let P, and Q, be two intersecting
spheres in E°, including the case of one sphere
Let S, be an arbitrary initial
Let S, be the next

candidate separating vector generated from S, using

containing the other.
candidate separating vector.
formula (1). Let r, and r, be the unit supporting

vectors with respect to §, and S, ,respectively, then

HS(r,)
Fig. 4 Computing the spherical convex polygon

ro=—r ,and consequently, HS(r,) (VHS(r;) = .
Proof.
that used in the proof of Theorem 2, i.e., transla-

We will use the similar argument to

ting the problem regarding Pg and Qg to the prob-
lem regarding the single point set R =0 and the
Minkowski sum M=Q P (— Py).

difference now is that, since Pg and Qg are not sep-

However, the

arated, the origin O is contained within sphere M,
i.e., Ois between m, and m, on line L, using the
same notation introduced in the proof of Theorem
2. See Figure 5 for a 2D sectional illustration on
the plane determined by O, m,, and vector S,.

Fig.5 The proof of the Theorem 4

=C—m, and
that the supporting vertex vector of R and M with

Again, it is easy to show that §,

respect to S, is m,. and r, =

Hence, ro=m,/ ‘ m,

m,/|m,|. Since the origin O is collinear with and
between m, and m,, r,=—r,. This completes the
proof. O

Theorem 4 states that if, theoretically, HS-
jump is applied to two intersecting spheres, then
HS-jump can detect within two steps that Pg and
Qs intersect. Hence, we expect that HS-jump is
also capable of detecting efficiently the collision be-
tween two intersecting polytopes if the polytopes
are nearly sphere-shaped (referring to Theorem

2).

for using formula (1) for computing new candidate

This property furnishes another justification

separating vectors in HS-jump.

6 Termination conditions

It is important to ensure that any collision de-

7 14 AR

BT e 3UAR R 23 1 10 (9 o1 2 i A Rl AR A 843

tection algorithm terminates and reports the cor-
rect collision status within a finite number of
steps. In this section we will discuss the termina-
tion conditions of HS-jump.

Suppose that HS-jump is applied to detecting
collision of two polytopes P and Q. A supporting
vertex pair with a candidate separating vector S; is
generated in each iteration by HS-jump. One way
to prevent HS-jump from falling into an infinite
loop is to ensure that the number of times any sup-
porting vertex pair occurs is bounded by a constant
With this in

mind, in the following we will introduce an auxilia-

depending on the size of the input.

ry rule of choosing a new candidate separating vec-
tor to guarantee that HS-jump terminates within
2X |[V(P)| X |V(Q) | iterations.

A supporting vertex pair may appear in two
consecutive iterations or reappear after more than
one iteration. In the former case we have the fol-
lowing result.

Theorem 5. Suppose that § ;. is obtained
Let (p;,q;) and (p,y;,
q.+,) be the supporting vertex pairs with respect to

from S, using formula (1).

candidate separating vectors S, and S ,;,, respec-
tively. Suppose S, + (g, — p;)<<0 and (p;,q;,) =
(pi+1+qi+1). Then S, » (g1 — piv1) >0, i.e., P
and Q do not collide, see paper [14]. Theorem 5
asserts that if the same supporting vertex pair ap-
pears in two consecutive steps, HS-jump will report
that P and Q are separated. However, in the case
where a supporting vertex pair reappear after more
than one iteration, the following auxiliary (sec-
ond) rule for choosing a new candidate separating
vector will be applied. Suppose that S, in the i+
1-th iteration is derived from formula (1) and the
corresponding supporting vertex pair (piii, qii1)
has appeared in the j-th iteration with 0 <C;<Ti.
—pi+1)<<0. Then S,., will be
discarded and the pair (g, ,p,+,) will not be used

Suppose ;11 * (gi,

to update the spherical polygon h HS(r;). Fur-
j=0

thermore, instead of applying again formula (1),
the candidate separating vector S;;, will be regen-

erated by being set to a point w; in ﬂHS(r»). Note

that in the case ﬂHS(r) is not empty, otherwise

HS-jump would have reported collision between P
and Q. The new supporting vertex pair (p,—1,q;+;)
resulting from the S ,.,using the above auxiliary
rule has the favorite property that either (1) (p,i1,
q;+1) has not appeared in any preceding iteration j,

]<l; or (2) S;.l . (p1'¢17q;>1)>09 1. €. HS-

jump can report that P and Q are separated. To see

this, assuming that (p,y,.q:+1)=(p,.q;) for some

jgi, then
S (qﬁ —pir) = w; (g —p;) >0,
since w; € ﬂHS(r,»),where ri=_0—p)/| (q—
j=0

p)l.

To summarize, the candidate separating vec-
tors in HS-jump are generated with either of the
pi)<<
0 in the i-th iteration. If the pair (p;,q;) has not

two rules as follows. Suppose that S; * (q;—

appeared in any preceding iteration, then S i, is
computed using formula (1); otherwise, § .., is

chosen to be any point in the spherical convex poly-

gon [VHS(r;). According to the preceding discus-

j=0
sion, with this way of choosing the candidate sepa-

rating vectors, whenever a supporting vertex pair
is found to have appeared, if it is the immediately
preceding one, separation is reported (referring to
Theorem 5), otherwise, the supporting vertex pair
to be generated in the next iteration is guaranteed
Thus, in

the worst case, at least one new supporting vertex

to be a new one (by the auxiliary rule).

pair is generated for every two consecutive itera-
tions. Since the total number of vertex pairs is
bounded by |V(P)| X |V(Q)|. the total number
of iterations HS-jump performs for each frame is at
most 2X |V(P) | X |V(Q)|. In general, we found
that when the |V(P)| and |V(Q)| are each not
over 4000, the number of the iteration is not over
40. When all the vertex pairs (p,q), where peV
(P) and ¢ €V (Q), have been exhausted by HS-
jump as supporting vertex pairs (and CH,; is still
non-empty), HS-jump will declare that P and Q

are separated.

7 Complete algorithm

In the preceding sections we have explained
the mechanisms to detecting separation and colli-
sion by HS-jump, as well as the means to ensure
HS-jump to terminate with a correct report of col-
lision status in a finite number of steps. Now we
are in a position to present the complete algorithm.
Let P and Q be
two bounded polytopes each with a finite number
of vertices. Let V(P) and V(Q) denote the sets of

The following

Assumptions and notations:

vertices of P and Q, respectively.
algorithm describes how HS-jump performs colli-
sion detection for one time frame with two (sta-
tionary) polytopes, P and Q. When applying HS-
jump to moving polytopes in a sequence of time

844 7 "

#l

&4 it 2003 4F

frames, between-frame coherence can be exploited
to speed up computation; this will be elaborated in
section 8. 4.

HS-jump: Algorithm for Collision Detection of

Polytopes

(1) Set a nonzero vector S,. Set SCP, =8*. Compute
the supporting vertex pair(p, .q,) with respect to S,. Set it-
eration index ¢ :=0.

(2) If S, « (q¢;— p;) >0, report that P and Q are sepa-
rated, and stop for the current frame (see Section 4) ; other-

wise, continue to step (3).
(3) Add the hemisphere HS(r;) to compute the upda-

ted spherical polygon SCP; = hOHS(rj) (see Section 5).
Here r,= (g, — p,)/ | (¢ —p,) |. 1f SCP, = & . report that
P and Q collide, and stop for the current frame (see section
5); otherwise, continue to step (4).

(4) Compute S;+, by formula (1) (see Section 4).

(5) Computing the supporting vertex pair (pii1sqii1)
with respect to S;4;.

(6) If (piy1,qi+1) has not appeared in a preceding iter-
ation, set i :=:+1 and go to (2); otherwise go to (7).

(7)) I (piv1+qi1)=(p:+q.) » report separation (Theo-
rem 5); otherwise, set §,;;,; to be a point in the spherical

convex polygon SCP,= hHS(r,) (the auxiliary rule in Sec-
j=0
tion 6). Go to step (5).

8 Efficient implementation

In this section we will discuss the efficient im-
plementation of HS-jump. The emphasis is put on
the following key tasks:

(1) Given a candidate separating vector S,, com-
pute the supporting vertex pair (p;,q;) (step 1).

(2) Check if the supporting vertex pair (p,,
q;) has appeared in a preceding iteration (step 3).

(3) Given a new added vector r, compute the

i1
updated spherical polygon SCP,, =) HS(r;).
=0
(4) Use between-frame coherence for speedup.
8.1 Searching for supporting vertex pairs
We use the hierarchical representation of poly-
tope to compute the supporting vertex pair. A hi-

5] 6f polytope P with ver-

erarchical representation
tex set V(P) is defined as a sequence of polytopes
hier(P)={P,,P,,++,P,}, h=0og(|V(P)]|),
such that

(1) P,=P and P, is a tetrahedron;

(2) P,.,CP;, for 0<i<hj; and

(3) V(P4)H)CV(P,), for 0<<i<h; and
the vertices in V(P;) —V(P,+,) form an independ-
ent set in P;(0<;<<{h).

Figure 6 shows the hierarchical representation
of a polytope. The space for storing all hierarchical
polytope is OC|V(P)|) and the time for creating

the hierarchical polytope is OC|V(P) |).

P,

0
Fig. 6 A hierarchical representation of polygon

Let p; be the supporting vertex of the polytope
P.. We first find the supporting vertex p, of P, by
comparing its three or four vertices. Then we find
the supporting vertex p,—, of P,_, by comparing
the adjacent vertices of p, in P,—; (note that p, is
also a vertex of P,_,). The correctness of this search is
proved in paper [15]. Continuing this search through
the hierarchy, finally we obtain the supporting ver-
tex p, of P,.i. e.,a supporting vertex p of P. Simi-
lar to this, we may find the supporting vertex ¢ of
Q. using O(log(V(P)+1og(V(Q)) time.

8.2 Checking the re-appearance of a supporting
vertex pair

We assign to each supporting vertex pair (p;,
¢;) a unique index n=1: X N+ j, here N is the
number of vertices of the polytope P. The indices
of all supporting vertex pairs produced are stored
in a balanced binary tree using each index as a key
value. So we can query whether a supporting ver-
tex pair has appeared before by search the binary
tree using O(logk) time, where £ is the number of
the supporting vertex pairs that have been pro-
duced.

8.3 Updating spherical polygon S,

We use a balanced binary tree to store the ver-
tices of the spherical convex polygon SCP;. Clear-
ly, a primitive operation (i. e., querying, modif-
ying, insertion and deletion of a node) in a bal-
anced tree takes O(logk) time, here £ is the num-
ber of the vertices of SCP;; thus #<i. For each
newly generated candidate separating vector rii;,
if the open-hemisphere HS(r,.,) does not intersect
SCP;, we can declare that the polytopes collide
since SCP,,, would be empty; otherwise, the two
intersection points of SCP; and the boundary of
HS(r;+,), which is a great circle, can be found in
O (logk) time, and updating SCP; into SCP,,
therefore also takes O(logk) time.

Note that the rearrangement of the balanced tree
might take more than O (logk) time in a particular
step, but the average time (or amortized time) spent
on this task in each iteration is also O(logk).

7 A RN T e s AR)) 2 T A A 845

8.4 Use of between-frame coherence for speedup

At the current frame, if two polytopes are dis-
joint, we have a separating vector S and the associ-
ated supporting vertex pair (p,q). At the next
frame, we may use S as the initial candidate sepa-
rating vector when we search for a separating vec-
tor of the polytope at the new positions. To get the
supporting vertex pair, we can start from p and g
separately, and get the supporting vertex of P and
Q by local and hierarchical searching. We first
search the supporting vertex by local search on P,
(P). If we cannot get the supporting vertex, local
searching is performed on P, at the corresponding
vertex; if the supporting vertex on P, still cannot
be found P, will be searched, etc. At last we may
enter P,, where the supporting vertex can be ob-
tained quickly because there are very few vertices
to be searched. Once a supporting vertex is found
on P,, where #<<n, we can obtain the supporting
vertex of P by hierarchical searching. The sup-
porting vertex of Q can be found similarly and the
new supporting vertex pair is formed. Since the
position and orientation of the moving objects un-
der consideration change little between adjacent
time frames, the new supporting vertex pairs are
obtained by local search on few hierarchical polyto-
pes. So using between-frame coherence, we can
speed up the implement of the algorithm. If the
polytopes P and Q collide at the current time
frame, since we have recorded all processed §; and
(p;»q;), the new supporting vertex pair (p,,q;)
with respect to S; can be found quickly. With the
same reasoning, the spherical cap determined by
these (p;,q;) is almost empty, and HS-jump re-
ports that P and Q is collision.

9 Experiments

In this section we present some experimental
results of using HS-jump to detect collision of two
ellipsoids. The program is implemented in C+-+
and run on a PC with Pentium II 233MHz CPU.
We compare our algorithm with two commonly
used collision detection algorithm: GJK™*! and I-
COLLIDEM,

ported from the UNIX versions available from their

The codes of these algorithms are

authors’ websites.

Performance evaluation and comparison of col-
lision detection algorithms are somewhat compli-
cated because the performance depends on the
shape, size, relative distance and orientation of an

object, as well as whether an object is moving in

which case different ways of exploiting between-
frame coherence can make a difference. In addi-
tion, the efficiency of a particular algorithm de-
pends on the level of code optimization. For all
these reasons there is so far no standard bench-
mark for evaluating a collision detection algorithm.
Hence, in our experiments, we assume that the
shape of a convex polyhedron is approximated by
an ellipsoid, i. e., the polyhedron is obtained as a
convex hull of some sampled points of an ellipsoid.
However, we allow the input objects to have dif-
ferent relative positions and orientations. We first
study the algorithms using two static objects. We
use two objects of the same ellipsoidal shape, same
size, and same number of vertices. The distance d
between the two objects ranges from — 40 to 40,
with increment of 0. 2, where if d<C0, it is the dis-
tance that one object must be moved in one direc-
tion so that the two objects become disjoint.

For any fixed distance, one object is fixed and
the other assumes 500 randomly generated orienta-
tions; thus 500 pairs of objects are generated for
each fixed distance. Each collision detection algo-
rithm is then run 500 times for each pair of objects
with different orientations to get the average time
of the collision detection method for a fixed dis-
tance.

Figure 7 shows the comparison of three meth-
ods: HS-jump, GJK and I-COLLIDE. In this
case, the number of vertices of an object is 200,
and the size of the ellipsoid along three principle
axes are a =200, b=180, ¢=180. The curves in
Figure 7 show the time of the three algorithms
with respect to distance. The middle curve (marked
1) is for HS-jump, the tint one (marked 2) for
GJK., and the top one (marked 3) for FCOLLIDE.

ATime

(3)
D)

O S
T T T T T T T T

—40 40

T ¢}

» Distance

Fig.7 N=200, a: b=10:9

Figure 8 and 9 show the comparison of three

846 7 "

#l

&4 it 2003 4F

methods using ellipsoids of the same size but with
a varying number of vertices. The number of verti-
ces of an object in Figure 8 is 1000, and the num-
ber of vertices of an object in Figure 9 is 2000, and
the three principle axes of the ellipsoid from which
the objects in Figures 8 and 9 are derived are a =
200, b=180, ¢=180.

Time

(3) E

(e, 1. 2
LK e et aiabusiat NSRS » Distance
—40 40
Fig.8 N=1000, a: 6=10:9
A Time
M (3
LNy N Y
| Wt ,..'f."\v:_ﬁ‘h
(H—] (2)
T i e e e .
s : i pemcapreen 3 Distance
—40

Fig.9 N=2000, a: 6=10:9

Figure 10 and 11 show the comparison of the
three methods using ellipsoids with the same num-
The

number of vertices of each object is 2000. In Figure

ber of the vertices but of different shapes.

A Time
- b 3
“
R o] '.-:,M'_,‘,,“,u,.ﬂ(,-,““’
D) 2
[Painp B ppuasiog il Ll .
T T T T T : t T Distance
—40 40

Fig. 10 N=1000, a: b=10:5

10, the three principle axes of the ellipsoid from
which the object is derived are a =200, H=100, ¢
=100. In Figure 11 the three principle axes of the
ellipsoid from which the object is derived are a =
200, b=20, ¢=20.

A Time

(3)
e \,«W"‘" W KL - ,-;*n{.,\.-
a)WL /(2)
I—l.n—-‘—lrwwlmm.»\lwvw WW > Distancc
—40 40

Fig. 11 N=1000, a: b=10:1

From Figure 7 to Figure 11, we can see that I-
COLLIDE is slower than the other two in both ca-
I-COL-

LIDE runs much more slowly in the case of colli-

ses of disjoint and collision. Moreover,
sion than the case of non-collision. The reason is
probably that I-COLLIDE needs to solve a linear
programming problem when two polytopes collide,
thus taking longer time. We see that (1) HS-jump
is faster than GJK when two polytopes are dis-
joint; (2) the running times of the two algorithms
are almost the same when the two polytopes have
little intersection; (3) GJK gets faster when the
objects intersect more deeply. On the other hand,
GJK and I-COLLIDE can determine the shortest
distance of two disjoint objects, but HS-jump only
reports that two objects are disjoint. However, we
can also compute the shortest distance quickly with
the help of the information obtained by HS-jump.
Although we have not experienced any problem
with the proper termination of GJK, we note that
the termination condition of the GJK method has
not been established, while we have proven the
termination condition of HS-jump.

We see from Figure 7 to Figure 9 that the col-
lision detection time of GJK increases quickly when
the number of vertices of an object increases, but
the time of HS-jump increases relatively slowly.
There is a limitation revealed in Figure 8 through
figure 11, that is, HS-jump takes longer time to
run when the objects get thinner and longer; this is
explained by that the heuristic search strategy is
based on the optimal case of two spherical objects.

7 A RN T e s AR)) 2 T A A 847

Howerer the shape of an object has little effect on

the GJK method.

10 Conclusions

We have presented an efficient exact collision
detection algorithm for polytopes (convex polyhe-
dra).

The algorithm is based on a simple heuristic
technique to quickly locate a separating plane be-
tween polytopes if they do not collide, or other-
wise, to report collision quickly by updating a
spherical convex polygon. Experiments show that
our algorithm is fast and simple to implement, es-
pecially when the two polytopes are disjoint or
nearly spherical. The algorithm gains further
speedup by taking advantage of geometric and tem-
poral coherence in a dynamic environment. Fur-
thermore, unlike most other existing collision de-
tection methods for polytopes, the termination
condition of HS-jump has been rigorously estab-
lished. One drawback of HS-jump is that it takes
longer time to report collision for objects that are
thin and long. We expect to expend HS-jump to
deal with convex bodies bounded by curved sur-

faces.

References

1 Moore M, Wilhelms J. Collision detection and response for
computer animation. In: Proceedings of Computer Graphics
(SIGGRAPH’88), Atlanta, Georgia, 1988. 289~298

2 Gottschalk S, Lin M C, Manocha D. OBBTree: A hierarchical
structure for rapid interference detection. In: Proceedings of
Computer Graphics (SIGGRAPH’96), New Orleans, Louisi-
ana, 1996.171~180

3 Klosowski J, Held M, Mitchell] S B, Sowizral H, Zikan K.

Efficient collision detection using bounding volume hierarchies

LI Xue-Qing, born in 1964, Ph.
D. , associate professor. His research
interests include computational geometry
compute graphics, computer-human in-

teraction,

MENG Xiang-Xu, born in 1962, Ph. D. , professor. His

research interests include compute graphics, virtual reality.

of k-dops. In: Proceedings of Siggraph’96, 1996. 151

4 Cameron S. Collision detection by four-dimensional intersection
testing. IEEE Transactions on Robotics and Automation,
1990,6(3):291~302

George Baciu, Wong S-K. Rendering in object interference de-

o

tection on conventional graphics workstations. In: Proceedings
of Pacific Graphics, Seoul, Korea, 1997. 51~58

6 Myszkowski K, Myszkowski O G, Okunev T L Kunuii. Fast
collision detection between complex solids using rasterizing
graphics hardware. The Visual Computer, 1995,11(9): 497~
511

7 Cohen J D, Cohen M C, Lin D, Manocha M K Ponamgi. I-
COLLIDE: An interactive detection system for large-scale envi-
ronments. In: Proceedings of ACM Interactive 3D Graphics
Conference, Monterey, California, 1995. 189~196

8 Lin M, Manocha D. Fast interference detection between geo-
metric models. The Visual Computer, 1995,11(10): 542—561

9 Dobkin D P, Kirkpatrick D G. Determining the separation of

preprocessed polyhedra A unified approach. In: Proceed-
ings of the 17th International Colloquium, Automata lLang.
Program., 1990, 400~413

10 Megiddo N. Linear-time algorithms for linear programming in
R® and related problems. SIAM Journal of Computing, 1983,
12(4) . 759—766

11 Seidel R. Linear programming and convex hulls made easy. In:
Proceedings of the 6th Annel ACM Conference on Computa-
tional Geometry, Berkeley, California, 1990. 211—215

12 Gilbert E G, Johnson D W, Keerthi S S. A fast procedure for
computing the distance between objects in three-dimensions
space. IEEE Transactions on Robotics and Automation, 1988,
RA-4:193—203

13 Stephen Cameron. A comparison of two fast Algorithms for
computing the distance between convex polyhedra. IEEE
Transactions on Robotics and Automation, 1997,13(6): 915—
920

14 Kelvin Chung, Wenping Wang. Quick collision detection of
polytopes in virtual environments. In: Proceedings of ACM
Symposium on Virtual Reality Software and Technology,
Hongkong, 1996. 125—131

15 Joseph o’ Rourke. Computational Geometry in C. Cambriged:
Cambriged University Press, 1993. 253—265

WANG C Y, male, born in 1937, professor. His re-
search interests include computational geometry, compute
graphics.

WANG Wen-Ping, born in 1963. Ph. D. , associate pro-
fessor. His research interests include computational geome-
try compute graphics.

CHUNG Kelvin, born in 1970, master. His research in-
terests include collision detection.

YIU Siu Ming, born in 1968, Ph. D.. His research in-

terests include algorithm,

