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Genetic Algorithm-Based Design for DNA Sequences Sets

ZHANG Qiang WANG Bin ZHANG Rui XU Chun-Xia

(Key Labortory of Advanced Design and Intelligent Computing (Dalian University) of Ministry of Education, Dalian, Liaoning 116622)

Abstract  Both the quality and the quantity of DNA coding sequences immediately affect the reli-
ability and the scale of DNA computing, and how to find more and better DNA sequences which
are used in practical applications is the key problems in DNA computing. This paper firstly intro-
duces the significance of DNA coding and DNA sequences sets for DNA computing, and then
gives the definitions of the Hamming distance and reverse Hamming distance constraints. The re-
search of DNA sequences sets has important effect on the reliability and the scale of DNA compu-
ting, so we use genetic algorithm and dynamic genetic algorithm were used to design the largest
DNA sequence sets which satisfy Hamming distance and reverse Hamming distance combinatorial
constraints. Comparing the results which are obtained by the two algorithms, it can be proven
that the dynamic genetic algorithm is markedly better than genetic algorithm. At the same time,
by comparing the obtained experimental results with the previous works, the obtained results im-
prove the upper bounds of DNA coding, and further shorten the value range of DNA coding
bounds. Furthermore, the results provide a guide for the research of theoretical bounds in DNA

coding and the bounds of 4-ary in coding theory.
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1 Introduction

DNA computing is a new method that uses bi-
ological molecule DNA as computing medium and
biochemical reaction as computing tools. In 1994,
Dr Adleman released “Molecular Computation of
Solutions to Combinatorial Problems” in Science,
which indicates DNA computing comes into being
[1]. The DNA molecule has a high parallelism,
and a great of storage capacity as a carrier of infor-
mation. At the same time, the resource of DNA
molecule is very rich. Along with the development
of biologic technology. the DNA computing will
solve more and more complex problems, especially
NP problems. Finally, it may produce a new DNA
computer which could bring the flying development
of mathematics, computer science and other sub-
jects.

At present, DNA computing has obtained a
lot of progress in many fields, such as coding prob-
lem, realizing way, DNA computing model and
arithmetic operation system" %",

Although the research of DNA computing has
obtained a lot of enormous progress in many areas,
there are a number of problems which are not
solved, such as coding problem, biologic technolo-
gy problem and so on. The urgence to solve these
problems is that how to combine the recognition of
information specific in DNA computing with varied
kind of biochemical reaction factors and build a
method of standard coding. So finding a strong ro-
bustness coding set to express information is the
most important problem. At present, the coding
problem has been investigated by more and more
researchers. However, there is no best method to
solve the coding problem. In the DNA coding con-
strains, the mostcommon constrains are distance

The

distance constrains commonly includes Hamming

constrains and thermodynamics constrains.

distance (HD), reverse Hamming distance (RH),
reverse-complement Hamming distance(RC)and so
on. The thermodynamics constrains commonly in-
cludes GC content, free energy AG, melting tem-
perature Ty and so on.

The main problem of designing DNA se-
quences sets is to research the bounds of DNA cod-
ing. The bounds include two main methods: one is
theoretical derivation. It can obtain the tectonic
method of DNA sequences which satisfy the con-
straints and the approximate upper or lower
bounds, such as [18-20]. The other is to use the

intelligent algorithm to search the DNA sequences

sets which satisfy the constraints and obtain the
DNA

search algorithms

sets, such as stochastic local

[21-22]

sequences
, hybrid randomized neigh-
borhoods improve stochastic local search™!, Dy-

2 and so on.

namic Neighborhood Searches

In the theoretical derivation, the main idea is
to apply the research results of 2-component code
and g-component code to the DNA coding and im-
prove them'®, such as Sphere-Packing bound,
Singleton upper bounds, Gilbert-Varshamov lower
bounds, Plotkin lower bounds and so on. There
are some introductions in the [ 18] and [19], and
some corresponding derivation. Applying these re-
sults, they reduce the range of sets value. In[19],
the authors deeply researched the theoretical
bounds which satisfy the HD. In [18], the authors
deeply researched the theoretical bounds which re-
spectively satisfy the HD, HD and RC, HD and
HR, and gave the relation of them. In [25], the
authors researched the GC content and RC and GC
content constraints. In [26 ], the authors used the
method which combines linear construction with
stochastic local search algorithm. They improved
the some lower bounds which satisfy the GC con-
tent and RC and GC content constraints.

In the research of intelligent algorithm, the
main idea is to use intelligent algorithm to search
DNA sequences which satisfy constraints. In the
single constraint, this method usually is used to
improve the lower bounds. In the combinatorial
constraints, this method can improve the upper
and lower bounds. Because the theoretical research
is hard to find the relation between the combinato-
rial constraints, such as the relation between GC
content and other distance constraints. In [21],
the author used the stochastic local search algo-
rithm to improve the lower bounds which satisfy
the HD and RC combinatorial constraints. The re-
sults were compared with the theoretical value. At
the same time, they also improved the bounds
which satisfy the HD and RC constraints and ob-
tain the approximate bounds which satisfy the RC
and GC content constraints. In [ 23], the authors
improved the stochastic local search algorithm and
the results which are from the [21]. In [24], the
authors used the dynamic neighborhood search to
improve the lower bounds which satisfy the RC and
GC content constraints,

In this paper, we mainly research the design
of DNA sequences sets which satisfy combinatorial
constraints. We firstly use the genetic algorithm to
obtain a great deal of sets which satisfy the combi-
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natorial constraints. then, we use the dynamic ge-
netic algorithm to obtain a great deal of sets which
satisfy the combinatorial constraints. Comparing
with the results which are from the genetic algo-
rithm, the results which are from dynamic genetic
algorithm is better than them and proof that the
dynamic genetic algorithm is better than genetic al-
gorithm in the designing DNA sequences sets.

2 Constraints 2" %

Garzon firstly proposed the definition of cod-
ing problem in DNA computing. The definition is
as follow: in the alphabet 3= {A,G,C, T}, it ex-
ists a set S with the length of n. The size of S,
| S| =4". A subset of S,CZS and let x;, x; any
two codes in the C satisfy

t(x;,x;) >k (D
where £ is positive integer, t is the criterion of es-
timating the quality of coding, such as Hamming
distance, shift distance and so on. Obviously, the
main index is the quantity and the quality of coding
in the problem of coding. The larger quantity of
coding is, the larger application scale of solving
problem is; on the other hand, the better quality
of coding is, the more reliability of DNA compu-
ting is. However, the quantity is in contradiction
with the quality of coding in the practical problems.
The better quality of coding is, the more number of
constraints, and then it must lead to decrease the
number of DNA sequences which satisfy constraints.
In this paper, we use Hamming distance, reverse
Hamming distance and reverse complement Ham-
ming distance under the Hamming criterion and GC
content constraints. n is the length of DNA se-
quences, d is the Hamming distance, reverse Ham-
ming distance and reverse complement Hamming dis-
tance. The follows are their definitions.

2.1 Hamming Distance Constraint

Hamming constraint: the Hamming distance
between x; and x; should not be less than certain
parameter d, i.e. H(x;.x;)=d.

Friwming () = _min {H(zoa) ) (2)
Where fumming (1) indii:laxtlgsj t1he Hamming evalua-
tion function of the ith individual in evolutionary
population. In this paper, we let A (n,d) denote
the maximum size of a Hamming distance code,
with parameters n,d defined as for codes.
2.2 Reverse Hamming Constraint

Reverse Hamming constraint; the Hamming
distance between x; and xf should not be less than
a certain parameter d. i.e. H (x;.a28)=>=d. xf de-
notes the reverse of x;.

Soene () = min {H (o2 } (3)
Let Af (n,d) dengté the maximum size of a
reverse Hamming distance code, with parameters
n,d defined as for codes.
2.3 Fitness Function
The optimization problem is defined by the
problem of maximum value and we use average
weight to deal with the function of evaluation of

each constraint.

fj 6 {fHamming (Z> ’ f‘Rcvcrsc comple (l) }

m

fG) = Dlwf; (D) €Y

j=1
where w; is the weight o]f the each constraint, m is
the number of constraints. In this paper, w;, =1
and m=2, when the constraints are Hamming dis-
tance and reverse Hamming distance combinatorial
constraints. w; =1 and m=2, when the constraint
is Hamming distance, reverse Hamming distance,

reverse-complement Hamming distance.
3 Algorithm Design

In this paper, we use the genetic algorithm
and dynamic genetic algorithm to design DNA se-
quences sets which satisfy combinatorial con-
straints. Genetic Algorithm (GA) is stochastic
search algorithm based on nature selection and ge-
netic mechanism. GA could solve a number of
problems, because the process of nature evolution
is a process of learning and optimizing. The main
idea of this algorithm is that: the process of nature
evolution(from simple to complex, from low class
to upper class)is natural and parallel; the intention
is to adapt to environment. The biological popula-
tions began to evolve by survival of the fittest and
genetic variation. The evolution of biology is car-
ried out by propagate, mutation, competition and
selection.

The genetic algorithm simulates the structure
of survival of the fittest and the theory of genetic
mutation. It keeps the structure in the iterative
process, when it finds the better structure. As a
stochastic optimized and search algorithm, genetic
algorithm has a lot of advantages. as follows: it is
not a blindfold search and exhaustive algorithm, it
is an algorithm which is based on objective func-
tion; it only needs to use the objective information
and do not need the gradient, continuity, convexi-
ty and so on. So it could be used to optimize the
large scale, highly nonlinear discontinuity and
peaky functions and the function of non-analytic
expression and has very strongly generality; the
operational object of genetic algorithm is a group
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object, not a single object. It has many search traj-
ectories, so it has implicit parallelism.
3.1 Genetic Operators

In genetic algorithm, it includes three opera-
tors: selection operator, crossover operator and
mutation operator.

(1) Selection operator

The selection strategy plays a very important
role on the ability of algorithm. Generally, the se-
lection strategy not only affects the ability of algo-
rithm, but also the results. The selection strategy
usually uses [itness-proportion strategy, namely
roulette wheel selection. In the strategy, every in-
dividual is proportional to its fitness. The size of
the population is n, the fitness of individual 7 is f;,
then the probability is P,;.
/i

2.0

1
P,; reflects proportion of individual fitness of

P.\»i =

in the whole population fitness. Based on the size
of individual fitness, the larger fitness, the larger
P,;.

ual becomes the larger.

So the selective and genetic change of individ-

(2) Crossover operator

In the genetic algorithm, it is very important
for the algorithm. On the one hand, it keeps the
good characteristic of original population to some
extent. On the other hand, it makes the algorithm
to search new population and the new population
have diversity. Crossover operator usually uses
One-point Crossover, Two-points Crossover, Uni-
form Crossover and so on. In this paper, we use
One-point Crossover, namely simple Crossover.
Its operations are as follows: stochastically setting
a crossover point in the single population; when
doing crossover, exchanging the pre and post parts
of this point and generate two new populations.
When the length of population is n, there maybe
n—1 crossover points.

(3) Mutation operator

The main content of mutation operator is to
vary value in some sits of one population. General-
ly, the main processes of mutation operator are as
follows:

(1) Stochastically deciding the sit of population
in the whole populations.

(i) Using P,, to set the mutation operator.

In the genetic algorithm, crossover operator is
the main operator because of its Global searching
ability. The mutation operator is the assistant op-
erator because of its local searching ability. Genet-

ic algorithm has Global and local searching ability
by these two operators combining or competing
each other. The combining is that when the evolu-
tion traps in a searching hyperplane and can not
cast off by crossover operator, using the mutation
operator can help it cast off; The competing is that
when the crossover operator has obtained the ex-
pected populations, the mutation operator maybe
destroy these populations. Using the mutation op-
erator could make genetic algorithm have local
searching ability and diversity populations.
3.2 Designing DNA Sequences Sets Based on

Genetic Algorithm

The main idea of genetic algorithm is that;
firstly stochastically generating new DNA se-
quences, controlling the aspect of evolution by
controlling the fitness and selecting DNA se-
quences which satisfy HD and RH combinatorial
constraints; then using the genetic operators to
generate new DNA sequences which satisfy HD
and RH combinatorial constraints; finally obtai-
ning the DNA sequences sets. Fig. 1 is the flow-
chart of algorithm.

‘ Initialize randomly populations

4>< Calculate the value of fitness ‘

‘ Generate new populations ‘

Output results

Fig. 1

Flowchart of algorithm

The steps of genetic algorithm are as follows:

Step 1. Set parameter, and initialize popula-
tion randomly.

Step 2. Calculate the fitness value of every in-
dividual in the populations and selecting the DNA
sequences which satisfy the combinatorial con-
straints.

Step 3. Generate next population by select,
crossover and mutate. If the generation is less than
3000, go to step2; if not then go to step4.

Step 4. end and output results.

3.3 Dynamic Genetic Algorithm

The dynamic genetic algorithm is to improve
the genetic algorithm. To obtain the more DNA
sequences which satisfy the constraints., we control
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the evolution by controlling the fitness. The im-
proved areas are as follows:

(1) When calculating the value of fitness, we
use the dynamic manner to evolve the populations.

(2) In the selection process, we use best-
saved strategy.

(3) In the mutation process, we adjust the prob-
ability of mutate operator with dynamic method.

The main process is that: Generating DNA se-
quences by the dynamic genetic algorithm, and
controlling the direction of evolution by controlling
the value of fitness function, and selecting the se-
quences which satisfy the Hamming distance, re-
verse complement Hamming distance constraints
from these sequences, and then generating new
DNA sequences by select, crossover and mutate
operator, last obtaining the DNA sequence sets.
Fig. 2 is the flowchart of algorithm.

| Initialize randomly populations I<

v

—| Calculate the value of fitness

If the maximal
fitness-the minimal
fitness <<0.7

Execute select, crossover and mutate

If the fitness equal
to maximum

Probability of mutation| |
is 0.03

If the fitness smaller
than meanf

Probability of mutation | |
is 0.08

If the fitness larger
than meanminf

»| Probability of mutation | |
is 0.43

<

Generate new populations [

Evolution
complete

Output results

Fig. 2 The flowchart of algorithm

The steps of solving the sequence design by
Dynamic Genetic algorithm are as follows:

Step 1. Set parameter, and initialize popula-
tion randomly. 1.

Step 2. Calculate the fitness value of every in-
dividual in the populations. If the maximal fit-
ness—the minimal fitness <{0. 7, go to Step 1. 1.

Step 3. Generate next population by select,
crossover and mutate. In the selection process, if
one of fitness is the maximal value, then save this
population to the next generation (namely best-
saved strategy). In the mutation process, the
mean{ denotes the average fitness of populations.
The meanminf denotes the average of the meanf
and minimum fitness. If one of fitness is larger
than meanf, its probability of mutation is 0. 03.
And if it is smaller than meanf, but the fitness is
larger than meanminf, its probability of mutation
is 0. 05. Else, its probability of mutation is 0. 4. If
the generation is less than 500, go to Step 2; if not
then go to Step 4. 1.

Step 4. End and output results.

4 Computational Experiments

The parameters of GA used in our example
are: the size of population is 40. The probability of
crossover is 0. 7. The probability of mutate which
is initialized is 0. 03. The generation is 3000. The
parameters of dynamic GA used in our example
are: the size of population is 40. The probability of
crossover is 0. 7. The probability of mutate which
is initialized is 0. 03. The generation is 500. Table
1 which is obtained by GA is the bounds of DNA
sequence sets that satisfy the Hamming and re-
verse Hamming constraints as a function of word
length n and distance d. We do five experiments
for every value and use the maximum. Table 2
which is obtained by dynamic GA is the bounds of
DNA sequence sets that satisfy the Hamming and
reverse Hamming constraints as a function of word
length n and distance d. The value is the minimum
generation of one experiment in the bracket. We
do five experiments for every value.

It is noted that because of continuously in-
creasing n the value of A® (n,d) rapidly increase.
So the computational complexity rapidly increases.
Table 3 is the best previously known bounds of
DNA sequence sets that satisfy the Hamming and
reverse Hamming constraints as a function of word
length 7 and distance d%.
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Table 1  Results of A{ (n.d)by GA will largely increase. It must be noticed that
n d=2 d=3 d=4 d=5 d=6 d=7 d=8 though there have been a lot of researchs on the
4 2 6 2 - - - - DNA computing since the DNA computing genera-
° Lok s T T ting, the theoreti h is deficient iall
6 9o " L 3 5 i i ing, the theoretic research is deficient, especially
7 945 141 28 7 3 0 B, the research on 4 component code, namely the
8 1495 410 66 18 6 2 bounds of DNA sequences sets which satisfy the
Table 2 Results of A% (n.d) by Dynamic GA combinatorial constraints. For this reason, we
M d=2 =3 d—4 d=5 d—6 d—7 d—=8§ need to do a great of deeply research on the desig-
1 321(1857)  61(2) 211 - - - - ning DNA sequences sets which satisfy the combi-
5 941(358) 201(158) 41(D) 0 - - - natorial constraints.
6 3161(29) 49!1(122) 14!1(357) 4!1(1) 21 (D) - - .
7 11091019) 1471C8) 351(486) 91256) 31(1) 0 To the best of our knowledge, there is no re
8 35011(4) 4531(10) 951(1060) 231(63) 81(8) 21(1) 21(1) sult on the theoretic accurate value of DNA se-

Table 3 The Best Previously Known Results of A* (n,d)"*

n d=2 d=3 d=14 d=5 d=6 d=7d=38
1 32 2—8 2 - - - -
5 120—128 4—26 2—8 0 - - -
6 512 12—107 4—107 2—5 2 - -
7 2016—21 33—372 8§—372 2—34 2—4 0 -
8 213 160—1310 128—1310 4—118 2—118 2—3 2

In the Table 1, entries in bold face match or

There

do not exist values in the blank which have ‘-7,

exceed the previously known lower bounds.

The others are lower the previously known lower
bounds. In the Table 2, entries in bold face match
or exceed the previously known lower bounds.
There match or exceed the values of Table 1 in the
blank which have “!”.

According to Table 1, we can obtain conclu-
sions that the GA can be used to design DNA se-
which

straints and obtain better results.

combinatorial
At the same

quences sets satisfy con-
time, comparing with Table 2, we can see that the
dynamic GA is better than the GA for the desig-
ning DNA sequences sets which satisfy combinato-
rial constraints. So far, there are no accurate val-
ues about A®(n.d), so the results of A®(n,d) ob-
taind here improve the lower bounds of DNA cod-
ing, and further shorten the value range of DNA
coding bounds. Furthermore, the results provide
important referenced values for the research of the-
oretical bounds in DNA coding and the bounds of

4-ary in coding theory.
5 Conclusion

In this paper, we use the genetic algorithm
and dynamic genetic algorithm to design the DNA
sequences sets which satisfy the HD and RH com-
It

shown that the dynamic genetic algorithm is better

binatorial constraints, namely A® (n, d). is
than the genetic algorithm. When #n is increasing,
if we increasing the number of population, the
number of generations maybe increase. However,

the computational complexity and computing time

quences sets which satisfy the combinatorial con-
straints. So the DNA sequences sets which we ob-
tain will provide important referenced values for
the bound of A®(n,d) and help to obtain the accu-
rate value. Furthermore, the results provide im-
portant referenced values for the research of theo-
retical bounds in DNA coding and the bounds of 4-
ary in coding theory.

Moreover, there is no structure method which
satisfies the combinatorial constraints in the theo-
retic research on the designing DNA sequences
sets, so it is very hard to apply them to DNA com-
puting. According to our algorithm, we can obtain
the DNA sequences which satisfy the combinatorial
constraints and use them into DNA computing to
decrease the he emergence of false negative and
false positive, and improve the efficiency and relia-
bility of DNA computing. At the same time, using
these results can decrease the redundancy of DNA
data storage.

There are many problems which need to be
improved, such as the time complexity of algo-
rithm, the stability of algorithm and so on. For
these reasons, we will further improve our algo-

At

the same time, we will study the theoretic bounds

rithm and increase more practical constraints.

of DNA sequences sets which satisfy combinatorial
constraints.
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