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Abstract

SHENG Victor S.

The authors briefly review the theory of cost-sensitive learning, and the existing cost-

sensitive learning algorithms. The authors categorize cost-sensitive learning algorithms into direct
cost-sensitive learning and cost-sensitive meta-learning, which converts cost-insensitive classifiers
The authors also propose a simple yet general and effective meta-learning

method called Empirical Threshold Adjusting (ETA for short).

formance of various cost-sensitive meta-learning algorithms including ETA. ETA almost always

Into cost-sensitive ones.

The authors evaluate the per-

produces the lowest misclassification cost, and is least sensitive to the misclassification cost ratio.

Other useful conclusions on cost-sensitive meta-learning methods are drawn.

This is an improved and expanded version of the paper

by Victor S. Sheng and Charles X. Ling, published in AAAI 2006.
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Keywords

1 Introduction

Classification is the most important task in in-
ductive learning and machine learning. A classifier
can be trained from a set of training examples with
class labels, and can be used to predict the class la-
bels of new examples. The class label is usually

discrete and finite. Many effective classification al-
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cost-sensitive learning; meta-learning; Empirical Threshold Adjusting (ETA)

gorithms have been developed, such as Naive
Bayes, decision trees, neural networks, and so on.
However, most original classification algorithms
The percentage
They ig-

nore the difference between types of misclassifica-

pursue to minimize the error rate:
of the incorrect prediction of class labels.
tion errors. In particular, they implicitly assume
that all misclassification errors cost equally.
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In many real-world applications, this assump- MetaCost-* ;
tion is not true. The differences between different CostSensitiveClassifier(CSC in short)!**;
misclassification errors can be quite large. For ex- Cost-sensitive Naive Bayes? ;
ample, in medical diagnosis of a certain cancer, if ETA (proposed in this paper) ;
the cancer is regarded as the positive class, and Sampling

non-cancer (healthy) as negative, then missing a
cancer (the patient is actually positive but is classi-
fied as negative; thus it is also called "false
negative") is much more serious (thus expensive)
than the false-positive error. The patient could
lose his/her life because of the delay in the correct
diagnosis and treatment. Similarly, if carrying a
bomb is positive, then it is much more expensive
to miss a terrorist who carries a bomb to a flight
than searching an innocent person.

Cost-sensitive learning takes costs, such as
the misclassification cost, into consideration. It is
one of the most active and important research areas
in machine learning, and it plays an important role
in real-world data mining applications. Turney"’
provides a comprehensive survey of a large variety
of different types of costs in data mining and ma-
chine learning, including misclassification costs,
data acquisition cost (instance costs and attribute
costs), active learning costs, computation cost,
human-computer interaction cost, and so on. The
misclassification cost is singled out as the most im-
portant cost, and it has also been mostly studied in
recent years, e. g. those presented by Domingos* ,
Elkan"*, Zadrozny and Elkan"*!, Zadrozny et al. P!,
Ting'™, Drummond and Holte!™®,
Ling et al. """, Chai et al. "'*.

Broadly speaking, cost-sensitive learning can

Turney™ ,

be categorized into two categories. The first one is
to design classifiers that are cost-sensitive in them-
selves. We call them the direct method. Examples
of direct cost-sensitive learning are ICET!™ and
cost-sensitive decision treet’”*!, The other category
is to design a "wrapper" that converts any existing
cost-insensitive (or cost-blind) classifiers into cost-
sensitive ones. The wrapper method is also called
cost-sensitive meta-learning method, and it can be
further categorized into thresholding and sam-
pling. Here is a hierarchy of the cost-sensitive
learning and some typical previous methods:
Cost-sensitive learning
Direct methods
ICETM
Cost-sensitive decision trees!”s111

Meta-learning
Thresholding

Costing™™ ;
Weighting"®’.

This paper will focus on cost-sensitive meta-
learning that considers the misclassification cost
only.

In the rest of the paper, we will first discuss
the general theory of cost-sensitive learning in Sec-
tion 2. Then, we will provide an overview of pre-
vious work on cost-sensitive learning in Section 3,
focusing on cost-sensitive meta-learning. In section
4, we propose a simple and effective new method
called empirical threshold adjusting (called ETA
here). The comparisons and evaluations of various
cost-sensitive meta-learning methods (including
ETA) are presented in section 5.

2  Theory of Cost-Sensitive Learning

In this section, we summarize the theory of
The theory describes
how the misclassification cost plays its essential

cost-sensitive learning-**.

role in various cost-sensitive learning algorithms.
Without loss of generality, we assume binary
classification (i. e. , positive and negative class) in
this paper. In cost-sensitive learning, the costs of
false positive (actual negative but predicted as pos-
itive; denoted as FP), false negative (FN), true
positive (TP) and true negative (TN) can be given
In the ta-
ble, we also use the notation C(7,;) to represent

in a cost matrix, as shown in Table 1.

the misclassification cost of classifying an instance
from its actual class j into the predicted class i.
(We use 1 for positive, and O for negative). These
misclassification cost values can be given by do-
main experts, or learned via other approaches. In
cost-sensitive learning, it is usually assume that
such a cost matrix is given and known. For multi-
ple classes, the cost matrix can be easily extended
by adding more rows and more columns.

Table 1 An example of cost matrix for binary classification

Actual positive
C(0,1), or FN
C(1,1), or TP

Actual negative
C(0,0), or TP
C(1,0), or FP

Predict negative
Predict positive

Note that C(i,7) (TP and TN) is usually re-
garded as the "benefit" (i. e., negated cost) when
In addition,
cost-sensitive learning is often used to deal with

an instance is predicted correctly.
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datasets with very imbalanced class distribu-

[15) - Usually (and without loss of generali-

tion
ty), the minority or rare class is regarded as the
positive class, and it is often more expensive to
misclassify an actual positive example into nega-
tive, than an actual negative example into positive.
That is, the value of FN or C(0,1) is usually larger
than that of FP or C(1,0). This is true for the
cancer example mentioned earlier (cancer patients
are usually rare in the population, but predicting
an actual cancer patient as negative is usually very
costly) and the bomb example (terrorists are
rare).

Given the cost matrix, an example should be
classified into the class that has the minimum ex-
pected cost. This is the minimum expected cost
principlel’™. The expected cost R(i|x) of classif-
ying an instance x into class i (by a classifier) can

be expressed as:
RG|o)=> PG la)CGd) (D

where P(j|x) is the p;obability estimation of clas-
sifying an instance into class j. That is, the classi-
fier will classify an instance x into positive class if
and only if:

POl2)C,0+P|a)C,1H<

P0|2)C(0,0)+P(1|2)C(0,1).

This is equivalent to:

PO 2)(C(1,0)—C(0,0))<

P(1|x2)(CO,1)—C1,1)).

Thus, the decision (of classifying an example
into positive) will not be changed if a constant is
added into a column of the original cost matrix.
Thus, the original cost matrix can always be con-
verted to a simpler one by subtracting C(0,0) from
the first column, and C(1,1) from the second col-
umn. After such conversion, the simpler cost
matrix is shown in Table 2. Thus, any given cost-
matrix can be converted to one with C(0,0)=
C(1,1)=0%. In the rest of the paper, we will as-
sume that C(0,0) =C(1,1)=0. Under this as-
sumption, the classifier will classify an instance x
into positive class if and only if:

PO[x)C(1,0)<<P(1]2)C(0, D).

Table 2 A simpler cost matrix with an equivalent
optimal classification

True positive
Predict negative 0 C,DH—C, 1D
C(1,0)—C(0,0) 0

True negative

Predict positive

As P(0O|xz)=1—P(1]|x), we can obtain a
threshold p* for the classifier to classify an in-

stance x into positive if P(1|x)>p", where

. cUa,o
P =0 FC.1)

Thus, if a cost-insensitive classifier can pro-

(2)

duce a posterior probability estimation p(1|x) for
test examples x, we can make it cost-sensitive by
simply choosing the classification threshold accord-
ing to (2), and classify any example to be positive
whenever P(1|x)=p". This is what several cost-
sensitive meta-learning algorithms, such as Rela-
beling, are based on (see later for details).
However, some cost-insensitive classifiers,
such as C4.5, may not be able to produce accurate
probability estimation; they are designed to predict
the class correctly (In a sense, they have a default,
fixed threshold of 0.5). In the Literature [ 3], El-
kan shows that we can "rebalance" the original
training examples by sampling such that the classi-
fiers with the 0.5 threshold is equivalent to the
classifiers with the p* threshold as in (2), in order
to achieve cost-sensitivity. The rebalance is done
as follows. If we keep all positive examples (as
they are assumed as the rare class), then the num-
ber of negative examples should be multiplied by
C(1,0)/C(0,1)= FP/FN. Note that as usually
FP<FN, the multiple is less than 1. This is thus
often called "under-sampling the majority class".
This is also equivalent to "proportional sampling",
where positive and negative examples are sampled
by the ratio of;
|S(1)|FN: |S(0)|FP (3
where S(1) and S(0) are the sets of original posi-
tive and negative examples. This is what most
sampling meta-learning methods, such as Cos-
ting'™' , are based on (see later for details).
Almost all previous meta-learning approaches
are either based on (2) or (3) for the thresholding-
and sampling-based meta-learning methods respec-

tively.
3 Review of Previous Work

As mentioned in the Introduction, many cost-
sensitive learning can be categorized into two cate-
gories. One is direct cost-sensitive learning, and
the other is cost-sensitive meta-learning. In this
section, we will review typical cost-sensitive learn-

ing algorithms, focusing on meta cost-sensitive

@ Here we assume that the misclassification cost is the same
for all examples. This property is stronger than the one
discussed in the Elkan’ papert?,
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learning.
3.1 Direct Cost-Sensitive Learning

The main idea of building a direct cost-sensi-
tive learning algorithm is to directly introduce and
utilize misclassification costs into the learning algo-
rithms. There are several previous works on direct
cost-sensitive learning algorithms, such as ICET"
and cost-sensitive decision trees™!,

ICET incorporates misclassification costs in
the fitness function of genetic algorithms. On the
other hand, called
CSTree here, uses the misclassification costs di-

rectly in its tree building process. Instead of mini-

cost-sensitive decision tree,

mizing entropy in attribute selection as in C4. 517,
CSTree selects the best attribute by the expected
total cost reduction. That is, an attribute is select-
ed as a root of the (sub) tree if it minimizes the to-
tal misclassification cost.

Note that as both ICET and CSTree directly
take costs into model building, they can also take
easily attribute costs (and perhaps other costs) di-
rectly into consideration, while meta cost-sensitive
learning algorithms generally cannot.

Drummond and Holte!™ investigates the cost-
sensitivity of the four commonly used attribute se-
lection criteria of decision tree learning: accuracy,
Gini, entropy, and DKM. They claim that the
sensitivity of cost is highest with the accuracy, fol-
lowed by Gini, entropy, and DKM.

3.2 Cost-Sensitive Meta-Learning

Cost-sensitive meta-learning converts existing
cost-insensitive classifiers into cost-sensitive ones
without modifying them. Thus, it can be regarded
as a middleware component that pre-processes the
training data, or post-processes the output, from
the cost-insensitive learning algorithms.

Cost-sensitive meta-learning can be further
classified into two main categories: thresholding
and sampling, based on (2) and (3) respectively,
as discussed in the theory of cost-sensitive learning
(Section 2).

Thresholding uses (2) as a threshold to classi-
fy examples into positive or negative if the cost-in-
sensitive classifiers can produce probability estima-
tions. MetaCost? is a thresholding method. It
first uses bagging on decision trees to obtain accu-
rate probability estimations of training examples,
relabels the classes of training examples according
to (2), and then uses the relabeled training in-
stances to build a cost-insensitive classifier. CSCH?*

also uses (2) to predict the class of test instances.

More specifically, CSC uses a cost-insensitive algo-
rithm to obtain the probability estimations P(j|x)
of each test instance®. Then it uses (2) to predict
the class label of the test examples. Cost-sensitive

[2] yses (2) to classify test examples

Naive Bayes
based on the posterior probability produced by the
Naive Bayes.

On the other hand, sampling f{irst modifies the
class distribution of training data according to (3),
and then applies cost-insensitive classifiers on the
sampled data directly. There is no need for the
classifiers to produce probability estimations, as
long as it can classify positive or negative examples
accurately, Zadronzny et al, ! show that propor-
tional sampling with replacement produces duplica-
ted cases in the training, which in turn produces
overfitting in model building. However, it is un-
clear if proper overfitting avoidance (without
overlapping between the training and pruning sets)

Instead, Zad-

ronzny et al. I propose to use "rejection sampling"

would work well (future work).
to avoid duplication. More specifically, each in-
stance in the original training set is drawn once,
and accepted into the sample with the accepting
probability C(j,2)/Z, where C(j,7) is the misclas-
sification cost of class 7, and Z is an arbitrary con-
stant such that Z>max C(j,7). When Z=max C(j,
i), this is equivalent to keeping all examples of the
rare class, and sampling the majority class without
replacement according to C(1,0)/C(0,1) —In ac-
cordance with (3). With a larger Z, the sample S’
produced by rejection sampling can become much
smaller than the original training set S (i.e. | S| <<
|S|). Thus, the learning models built on the re-
duced sample S” can be unstable. To reduce insta-

[820) after rejection sam-

bility"> apply bagging
pling. The resulting method is called Costing.
Weighting™ can also be viewed as a sampling
method. It assigns a normalized weight to each in-
stance according to the misclassification costs spec-
ified in (3). That is, examples of the rare class
(which carries a higher misclassification cost) are
assigned proportionally high weights. Examples
with high weights can be viewed as example dupli-
cation — Thus sampling. Weighting then induces
the

weights directly into C4. 5, as C4. 5 can take exam-

cost-sensitivity by integrating instances’

ple weights directly in the entropy calculation. It

@ CSC is a meta-learning method and can be applied on any
classifiers.
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works whenever the original cost-insensitive classi-
fiers can accept example weights directly®. In ad-
dition, Weighting does not rely on bagging as Cos-
ting does, as it "utilizes" all examples in the train-
ing set.

As we have seen, all previous thresholding -
based meta-learning methods replies on accurate
probability estimations of p(1|x) for the test ex-
ample x. To achieve this, Zadrozny and Elkan""
propose several methods to improve the accuracy of
probability estimations. Still, as the true probabil-
ities of the training examples are usually not given,
accurate estimation of such probabilities remains
elusive.

In the next section, we will propose a new and
effective Empirical Threshold Adjusting method
(called ETA) that does not require accurate esti-
mation of probabilities — An accurate ranking is
sufficient. It searches the best threshold for the
minimal cost based on the training data. Our ex-
perimental results in Section 5 show that ETA out-
performs most other previous meta-learning meth-
ods on the UCI datasets.

4 Empirical Threshold Adjusting (ETA)

The empirical threshold adjust (ETA) method
proposed in this section is a novel thresholding
method. It does not require classifiers to produce
accurate probability estimation, as long as the
ranking is accurate. ETA simply uses cross-valida-
tion to search the best probability from the training
instances as the threshold, and uses the searched
threshold to predict the class label of test in-
stances.

Here is how ETA works in detail. Given a

Total cost
Total cost

T
0 threshold

(a)

threshold 1 0

threshold T, the total misclassification cost for a
set of instances can be calculated, and it (M) is a
function of the threshold (T); that is, M, =
f(T). The curve of this function can be obtained
after computing misclassification costs for each
possible threshold. In reality, we only need to cal-
culate misclassification costs for each possible
probability estimates on the training instances.
With this curve, ETA can simply choose the best
threshold that minimizes the total misclassification
cost, with the following two improvements on tie
breaking and overfitting avoidance, to be discussed
below.

There are in general three types of curves for
the function M= f(T), as shown in Fig. 1. Fig. 1
(a) shows a curve of the total misclassification cost
with one global minimum. This is the ideal case.
However, in practice, there may exist local mini-
ma in the curve Mc= f(T) as shown in Fig. 1(b)
and Fig. 1(c). Fig.1(b) shows a case with multi-
ple local minima but one of them is smaller than all
others. In both cases ((a) and (b)) it is straight-
forward for ETA to select the threshold with the
minimal total cost. Fig.1(c) shows a case with
two or more local minima with the same value. We
have designed a heuristic to resolve the tie: We se-
lect the local minimum with hills that are less steep
on average; in another word, we select the local
minimum whose "valley" has a wider span. The
rationale behind this heuristic for the tie breaking
is that we prefer a local minimum that is less sensi-
tive to small changes in the threshold selection.
For the case shown in Fig. 1(¢), the span of the
right "valley" is greater than the one of the left.
Thus, T, is chosen as the best threshold.

Total cost

Ny == - - -

threshold
()

Fig. 1 Typical curves for the total misclassification cost

Another improvement is overfitting avoid-
ance. Overfitting can occur when the probability
estimations are obtained directly from learning and
predicting the training instances. To reduce over-
fitting, ETA searches for the best probability as
threshold from the validation sets. More specifical-

ly., an m -fold cross-validation is applied on the

training set, and the classifier predicts the proba-
bility estimates on the validation sets. After cross-
validation, the probability estimate of each training
instance is obtained (as it was in the validation
set). ETA then simply searches and finds the best

@ Thus, we can say that Weighting is a semi meta-learning
method.
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threshold that yields the minimum total misclassi-
fication cost on the training set (with the tie break-
ing heuristic described earlier), and use it for clas-
sifying the test instances, after a classifier is built

on all training set.
5 Experiments and Evaluation

We conduct a number of experiments under
different settings of misclassification costs to com-
pare the performance of the various cost-sensitive
meta-learning approaches including MetaCost,
CSC, Weighting, Costing, and ETA. We choose
11 real-world datasets and 1 artificial dataset
(Monks-Problems-3), listed in Table 3, from the
210 These data-
sets are chosen because they are binary classes,

UCI Machine Learning Repository
have at least some discrete attributes, and have a
good number of instances.

Table 3 Twelve Datasets used in the experiments, where
Monks-P3 represents the dataset Monks-Problems-3

No. of No. of Class dist.
Attributes Instances (N/P)
Breast-cancer 10 286 201/85
Breast-w 10 699 458/241
Car 7 1728 1210/518
Credit-g 21 1000 700/300
Diabetes 9 768 500/268
Hepatitis 20 155 32/123
Kr-vs-kp 37 3196 1669/1527
Monks-P3 554 266/288
Sick 30 3772 3541/231
Spect 23 267 55/212
Spectf 45 349 95/254
Tic-tac-toe 10 958 332/626

5.1 Comparing Meta-Learning Methods
We choose C4. 57 as the base learning algo-
rithm used in meta-learning methods. We first con-
duct experiments to compare the performance of
ETA with existing meta-learning cost-sensitive
methods: MetaCost, Costing, CSC and Weighting.

We implement ETA and Costing in the popular
machine learning toolbox WEKAM* . As MetaCost,
CSC and Weighting are already implemented in WE-
KA, we directly use these implementations in our
experiments.,

As bagging'® has already been applied in Meta-
Cost and Costing, and it is shown to reliably im-

prove classification results!?1?1 We also apply

bagging to ETA, CSC and Weighting,.

As misclassification costs are not available for
the datasets in the UCI Machine Learning Reposito-
ry, we reasonably assign their values to be the num-
ber of instances of the opposite class. This way, the

rare class is more expensive if you predict it incor-
rectly. Later we will set misclassification costs to be
independent of the number of instances.

The experimental results, shown in Fig. 3, are
presented in terms of the average total cost via 10
runs over ten-fold cross-validation applied to all the
methods. Note that ETA has an internal cross-vali-
dation (i. e. , the m-fold cross validation described in
Section 4), which is only used to search the proper
threshold from the training set in ETA. Fig. 2
shows the experiment process for ETA.

1. Apply 10-fold cross-validation. That is. sample 90 % data for
training, and the rest (none-overlapping) is for testing.
a. Apply 10-fold cross-validation on the training data to find
the proper threshold.
i. Apply the base learner on the internal training set.
ii. Predict probability estimates on the validation set.
b. Find the best threshold based on the predicted probabilities.
c. Classify the instances in the test set with the threshold ob-
tained in stepl.a.
2. Obtain the average total cost.

Fig. 2 The experiment process of ETA

In Fig. 3, the vertical axis represents the total
misclassification cost, and the horizontal axis re-
presents the number of iterations in bagging. We

summarize the experimental results in Table 4.

Table 4 Summary of the experimental results (An entry

w/t/l means that the approach at the corresponding row
wins in w datasets, ties in ¢ datasets, and loses in / datasets,
compared to the approach at the corresponding column®)

MetaCost CSC Weighting Costing
CSC 7/1/4
Weighting 9/0/3 10/1/1
Costing 10/1/1 7/3/2 7/1/4
ETA 9/1/2 9/1/2 6/1/5 5/2/5

We can draw the following interesting conclu-
sion from the results shown in Fig. 3 and Table 4.
First of all, MetaCost almost performs worse than
other meta-learning algorithms. MetaCost may
overfit the model as it uses the same learning algo-
rithm to build the model as the one to relabel the
training instances. Bagging improves its perform-
ance in all datasets tested, particularly in first 10
iterations. But the improvements are not as signifi-
cant as Bagging applied in other algorithms, partic-
ularly after 10 iterations. Second, CSC performs
better than MetaCost in seven out of twelve data-

@  As there are four points in each curve, we define that curve
A wins curve B if A has more than three points, including
three points, lower than their corresponding points in B.
We also define that A ties with B if A has two points lower
and the other two points higher than their corresponding
points in B. For the rest cases, curve A loses to curve B.
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sets. In other datasets, it is similar or worse.
Third, overall, Weighting performs much better
than MetaCost and CSC. Weighting performs
worse than MetaCost only in three datasets (Car,
Kr-vs-kp, and Monks-Problems-3). In others, it
outperforms MetaCost significantly. Comparing
with CSC, Weighting performs better in ten out of
In the other datasets, it is the
Fourth,
ETA is competitive with Costing. Both outper-
form MetaCost, CSC and Weighting. Costing out-

performs MetaCost on ten out of twelve datasets,

twelve datasets.
same (Breast-w) or worse (Kr-vs-kp).

and outperforms CSC and Weighting on seven out
ETA outperforms MetaCost

and CSC on nine out of twelve datasets respective-

of twelve datasets.

ly, and outperforms Weighting on six datasets. In
the others, it is similar or worse. Similar to Meta-
Cost, Bagging improves the performance of ETA,
but not significantly. Without bagging (i.e., the
number of iteration is 1), ETA performs the best
in nine out of twelve datasets. In all, we can con-
clude that ETA and Costing are the best, followed
by Weighting, followed by CSC.

14500 14000 70000
‘ 13000 65000
14000F = - 60000
2 g 12000 S 55000
=< 13500} = 11000 = 50000
= 3 = 45000
& 13000 \.\‘_,,. & 10000 & 40000
9000 35000
12500 :
1 10 100 1000 8000 1 10 100 1000 30000 1 10 100 1000
Number of iterations (Breast-cancer ) Number of iterations (Breast-w ) Number of iterations (Car)
15600 2900
= 2700
15100F
- %82000 5 2500
3 14600 < 77000 5 2800
E 14100 E E 2100
L 1900
13600 72000 1700
13100 10 100 1000 67000 10 100 1000 15007 10 100 1000
Number of iterations (Credit-g) Number of iterations (Diabetes ) Number of iterations (Hepatitis )
39000 1850 100000
37000 90000
% 35000 % 1800 % 80000
~ 33000 = = 70000
< 31000 g <
27000 50000
25000 10 100 1000 17007 10 100 1000 400007 10 100 1000
Number of iterations (Kr-vs-kp) Number of iterations (Monks-Problems-3) Number of iterations (Sick )
87000
7100 11500 77000 -\-‘.\_
6900 N 10500 < 67000
3 6700 g 9500 £ 57000
3 6500 3 8500 :3 47000
S 6300 S 7500 & 37000
6100 6500 27000
5900 3E
’ 1 10 100 1000 3500 1 10 100 1000 17000 1 10 100 1000

Number of iterations (Spect)

Number of iterations (Spectf )

Number of iterations (tic-lac-toe)

’ —a— MetaCost ~ —— CSC  —*—Thresholding ~ —e—Weighting

—— Costing ‘

Fig. 3 Comparing ETA with other meta-learning approaches. The lower the total cost, the better

Both MetaCost and CSC are thresholding-
based meta-learning methods, and they rely heavi-
ly on the accurate probability estimation of exam-
ples. ETA does not require accurate estimation of
probabilities — An accurate ranking is sufficient.
The experimental results in this section show ETA
and Costing are the best.

5.2 Sensitivity to Cost Ratios
In the last section, we compare the perform-

ance of meta-learning methods under different mis-
classification cost ratios. In this section, we evalu-
ate the sensitivity of these meta-learning methods
1,
10:1, and 20 : 1 between false positive and false

in terms of different cost ratios of 2 :1, 5:

negative. These cost ratios are independent to the
number of positive and negative instances.
Bagging (with 10 iterations) is still applied in

all methods. The results, shown in Fig. 4, are
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presented in terms of the average total cost (in

units; we set the false negative misclassification

cost as one unit) over ten-fold cross-validation.

The vertical axis represents the total cost, and the

horizontal axis represents the cost ratios. We sum-

marize the results in Table 5.
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From the results in Fig. 4 and Table 5, we can

draw the following conclusions. First, the relative

relationship for the performance of the meta-learn-

ing methods remains the same: ETA and Costing

are the best, followed by Weighting. However,
MetaCost is much better than CSC. This shows
that the post-relabeling ( CSC) becomes worse

when the cost ratios increase. ETA is competitive

to Costing. Both outperform all other methods for

most cost ratios in seven out of twelve datasets

tested.

Second, overall the total misclassification cost

increases with increasing values of the cost ratios.

This is expected as the sum of false positive and

false negative increases when the value of the cost

Total cost under different cost ratios

ratio increases.

Another interesting conclusion is that each
method has a different sensitivity to the cost ratio
increment. The sensitivity can be reflected by how
quickly the total misclassification cost increases
when the cost ratio increases. The less quickly it
increases the better.

However, Weighting outperforms MetaCost
in five of the rest datasets. ETA and Costing are
again the best (i. e. , the slowest increment) in six
out of twelve datasets tested. Costing performs
better than MetaCost on six datasets, better than
CSC on eight datasets, and better than Weighting
on six datasets. ETA performs better than Meta-
Cost on six datasets, better than CSC on nine data-
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sets, and better than Weighting on seven datasets.
Except two datasets (Credit-g and Diabetes) , ETA
is one of the best methods for the rest of the data-
sets. In all, we can conclude that CSC is most sen-
sitive to the increment of the cost ratios, followed
by MetaCost, and followed by Weighting. ETA
and Costing are the most resistant (the best) to
the cost ratios. Thus, when the cost ratio is large,
it is recommended over other methods.

6 Conclusions

In this paper, we conduct a comparative study
of cost-sensitive learning algorithms, particularly,
cost-sensitive meta-learning ones. The Empirical
Threshold Adjusting (called ETA) is proposed. It
is simple as it "learns" the best threshold from the
training instances, thus, the best threshold chosen
reflects not only different misclassification costs
but also sample variations and distribution. ETA
and Costing are comparative, and both outperform
other existing cost-sensitive meta-learning meth-
such as MetaCost, CSC, and Weighting.
ETA also has the best resistance (insensitivity) to

ods,

large misclassification cost ratios. Thus, it is rec-
ommended to use especially when the difference in
misclassification costs is large.

In our future work, we plan to extend ETA to
data with multiple classes.

The authors thank NSERC for

the support of their research.
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