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摘 要 在实际生产生活中,很多最优化问题通常有多个全局最优解,这类问题被称作多峰优化问题。拥挤小生

境技术是求解多峰优化问题的一种有效手段,但因其仅考虑子代个体与父代个体之间的相似性,从而容易导致“替
换错误”,造成部分全局最优解无法被定位。此外,在多峰优化问题中,部分全局峰值周围往往存在较为崎岖的地

形,使得算法容易陷入局部最优。为此,本文提出了一种基于竞争性拥挤小生境技术的多峰优化算法。在经典的

拥挤技术基础上设计了竞争性拥挤小生境技术,该技术不仅考虑子代个体和父代个体之间的相似性,还会同时考

虑父代个体之间的相似性,将适应度较差的一个父代个体视作可替换个体;当子代个体与父代个体均不相似时,该
可替换个体有机会被删除,以此减少替换错误的发生。并且,针对因崎岖地形而陷入局部最优的个体设计了一种

虚拟小生境策略,通过在该个体周围生成若干个辅助个体来形成虚拟小生境,以对该个体做进一步搜索,从而提高

找到全局峰值的可能性。为验证算法性能,在CEC2015测试集和2个实际优化问题(三角函数超越方程组、调频声

波合成问题)上进行了大量实验验证,与11种代表性的多峰优化算法(包含2种CEC多峰优化竞赛的冠军算法)进
行性能对比,结果表明:(1)在CEC2015测试集上,本文算法可在16个函数上取得最好结果,且在其中13个函数上

能找到所有全局最优解,最好结果数量较表现最优的对比算法提升了15%;(2)在2个实际优化问题上,本文算法

在峰值比指标上较表现最优的对比算法平均提升了12.05%。

关键词 多峰优化;拥挤技术;崎岖地形;局部搜索

中图法分类号 TP311      DOI号 10.11897/SP.J.1016.2026.00062

A
 

Multimodal
 

Optimization
 

Algorithm
 

Based
 

on
 

Competitive
 

Crowding
 

Niching
 

Technique

ZHOU
 

Xin-Yu1),2) TIAN
 

Long-Hui1) MING
 

Fei3) GONG
 

Wen-Yin3) WANG
 

Hui4)
1)(School

 

of
 

Digital
 

Industry,
 

Jiangxi
 

Normal
 

University,
 

Shangrao,
 

Jiangxi 334000)
2)(School

 

of
 

Computer
 

and
 

Information
 

Engineering,
 

Jiangxi
 

Normal
 

University,
 

Nanchang 330022)
3)(School

 

of
 

Computer
 

Science,
 

China
 

University
 

of
 

Geosciences
 

(Wuhan),
 

Wuhan 430074)
4)(School

 

of
 

Information
 

Engineering,
 

Jiangxi
 

University
 

of
 

Water
 

Resources
 

and
 

Electric
 

Power,
 

Nanchang 330099)

Abstract 
 

In
 

real-world
 

production
 

and
 

daily
 

life
 

scenarios,
 

many
 

optimization
 

problems
 

typically
 

possess
 

multiple
 

global
 

optimal
 

solutions.
 

Such
 

problems
 

are
 

referred
 

to
 

as
 

multimodal
 

optimiza-
tion

 

problems.
 

The
 

crowding
 

niching
 

technique
 

has
 

long
 

been
 

recognized
 

as
 

an
 

effective
 

method
 

for
 

solving
 

multimodal
 

optimization
 

problems.
 

However,
 

a
 

key
 

limitation
 

of
 

this
 

approach
 

lies
 

in
 

its
 

reliance
 

solely
 

on
 

the
 

similarity
 

between
 

offspring
 

individuals
 

and
 

their
 

parent
 

individuals.
 

This
 

limitation
 

can
 

easily
 

lead
 

to
 

“replacement
 

errors”,
 

and
 

as
 

a
 

result,
 

some
 

global
 

optima
 

can-



not
 

be
 

accurately
 

located
 

by
 

the
 

algorithm.
 

Furthermore,
 

for
 

multimodal
 

optimization
 

problems,
 

some
 

global
 

peaks
 

are
 

often
 

surrounded
 

by
 

rugged
 

landscapes.
 

This
 

characteristic
 

increases
 

the
 

risk
 

of
 

the
 

algorithm
 

becoming
 

trapped
 

in
 

local
 

optima,
 

thereby
 

reducing
 

its
 

overall
 

performance
 

in
 

optimizing
 

multimodal
 

optimization
 

problems.
 

To
 

effectively
 

address
 

these
 

issues,
 

this
 

paper
 

proposes
 

a
 

novel
 

multimodal
 

optimization
 

algorithm
 

by
 

designing
 

a
 

competitive
 

crowding
 

niching
 

technique.
 

Based
 

on
 

the
 

classical
 

crowding
 

technique,
 

the
 

proposed
 

competitive
 

crowding
 

niching
 

technique
 

incorporates
 

a
 

more
 

comprehensive
 

similarity
 

assessment.
 

Specifically,
 

in
 

addition
 

to
 

evaluating
 

the
 

similarity
 

between
 

offspring
 

individuals
 

and
 

their
 

parent
 

individuals,
 

the
 

proposed
 

technique
 

also
 

takes
 

into
 

account
 

the
 

similarity
 

among
 

the
 

parent
 

individuals
 

themselves,
 

and
 

the
 

parent
 

individual
 

with
 

the
 

poorer
 

fitness
 

value
 

is
 

considered
 

as
 

a
 

potentially
 

replaceable
 

individual.
 

If
 

an
 

offspring
 

individual
 

is
 

dissimilar
 

to
 

all
 

parent
 

individuals,
 

the
 

potentially
 

replaceable
 

individual
 

has
 

a
 

chance
 

to
 

be
 

removed
 

from
 

the
 

population.
 

In
 

this
 

way,
 

the
 

algorithm
 

can
 

significantly
 

re-
duce

 

the
 

likelihood
 

of
 

replacement
 

errors
 

through
 

maintaining
 

better
 

population
 

diversity.
 

Moreo-
ver,

 

some
 

individuals
 

may
 

be
 

trapped
 

into
 

local
 

optima
 

due
 

to
 

the
 

rugged
 

landscape,
 

a
 

virtual
 

nic-
hing

 

strategy
 

is
 

designed
 

to
 

overcome
 

this
 

issue.
 

In
 

this
 

virtual
 

niching
 

strategy,
 

some
 

auxiliary
 

individuals
 

are
 

generated
 

within
 

the
 

neighborhood
 

of
 

trapped
 

individual
 

to
 

form
 

a
 

virtual
 

niche,
 

aiming
 

to
 

further
 

explore
 

the
 

surrounding
 

search
 

space
 

of
 

the
 

trapped
 

individual.
 

This
 

strategy
 

is
 

beneficial
 

to
 

increasing
 

the
 

chances
 

of
 

discovering
 

the
 

global
 

peaks.
 

Extensive
 

experimental
 

evalu-
ations

 

are
 

conducted
 

on
 

the
 

well-established
 

CEC2015
 

multimodal
 

test
 

suite
 

as
 

well
 

as
 

on
 

two
 

re-
al-world

 

optimization
 

problems
 

(the
 

trigonometric
 

transcendental
 

equation
 

system
 

and
 

frequency-
modulated

 

sound
 

wave
 

synthesis
 

problem).
 

The
 

proposed
 

algorithm
 

is
 

compared
 

against
 

11
 

state-
of-the-art

 

multimodal
 

optimization
 

algorithms,
 

including
 

two
 

champion
 

algorithms
 

from
 

previous
 

CEC
 

multimodal
 

optimization
 

competitions.
 

The
 

results
 

demonstrate
 

that:
 

1)
 

On
 

the
 

CEC2015
 

test
 

suite,
 

the
 

proposed
 

algorithm
 

achieves
 

the
 

best
 

performance
 

on
 

16
 

functions
 

and
 

successfully
 

locates
 

all
 

global
 

optima
 

on
 

13
 

of
 

them.
 

The
 

number
 

of
 

best
 

results
 

obtained
 

by
 

the
 

proposed
 

al-
gorithm

 

exceeds
 

that
 

of
 

the
 

best-performing
 

comparison
 

algorithm
 

by
 

15%.
 

2)
 

On
 

the
 

two
 

real-
world

 

optimization
 

problems,
 

the
 

proposed
 

algorithm
 

achieves
 

an
 

average
 

improvement
 

of
 

12.05%
 

in
 

terms
 

of
 

the
 

Peak
 

Ratio
 

(PR)
 

metric
 

compared
 

to
 

the
 

best-performing
 

comparison
 

al-
gorithm.
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search

1 引 言

在实际的生产生活中,很多最优化问题通常有

多个全局最优解,比如:多椭圆检测[1]、蛋白质结构

预测[2]、桁架结构优化[3]以及特征选择[4]等问题。
这类问题被称为多峰优化问题(Multimodal

 

Opti-
mization

 

Problem,MMOP),而用于求解这类问题

的算法被称作多峰优化算法[5-6]。对多峰优化算法

而言,算法应有保持种群多样性的能力,以便找到多

个全局最优解。近年来,进化算法(Evolutionary
 

Algorithms,EAs)在最优化领域有出色表现,越来

越多的研究人员在设计多峰优化算法时开始尝试

EAs,且取得了较好求解效果。常见的EAs包括差

分进化算法(Differential
 

Evolution,DE)
 [7]、遗传算

法(Genetic
 

Algorithm,GA)
 [8]、人工蜂群算法(Ar-

tificial
 

Bee
 

Colony,ABC)
 [9]以及粒子群优化算法

(Particle
 

Swarm
 

Optimization,PSO)[10]等。然而,
因EAs最初是为求解单峰优化问题而设计的,缺少

相关的种群多样性保持机制,使得EAs无法高效求

解 MMOP。
为此,研究人员提出了小生境(Niching)技术来

保持种群多样性。通过结合小生境技术,EAs可更

好地保持种群多样性,从而能高效求解 MMOP。小

生境是生态学中的术语,指物种与特定环境之间的

相互匹配,描述了物种对环境中的相关资源条件做
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出的反应。小生境技术的主要思路是把种群划分为

多个部分,使得不同部分的个体能在不同环境中独

立进化,以避免个体趋同,提高算法找到多个全局最

优解的可能性。目前,主流的小生境技术包括拥挤

(Crowding)技术[11]、物种生成(Speciation)技术[12]、
适应度 共 享(Fitness

 

Sharing)技 术[13]以 及 聚 类

(Clustering)技术[14]。在这些小生境技术中,拥挤

技术因操作简单,所需参数少,受到了广泛关注,其
主要操作方式是:从父代种群中随机抽取CF 个个

体,再从中找出与当前子代个体最相似的父代个体

进行比较,保留适应度值更好的一个进入下一代。
相似度一般以欧氏距离来决定,距离越近则相似度

越高。拥挤技术的这种方式能减少个体间的拥挤程

度,增加种群多样性,其中参数CF 被称为拥挤因

子,大小一般设置为2或3。
然而,因CF 取值较小,拥挤技术容易出现“替

换错误(Replacement
 

Errors)”,即:随机选取的CF
个父代个体和子代个体均不相似,但子代个体又必

须替换其中一个不相似的父代个体,导致位于不同

峰上的个体被误删。通常,越不相似的个体越有可

能位于不同峰上。替换错误容易导致不同峰上的个

体丢失,使得部分全局最优解无法被定位。为此,

Thomsen在 提 出 的 CDE(Crowding
 

Differential
 

Evolution)算法中对CF 值进行了调整[11],将其设

置为整个种群大小,这样可在一定程度上减少替换

错误。事实上,CDE中的拥挤技术被公认是经典版

本,之后采用了这一技术的相关多峰优化算法也几

乎是基于这一版本[15-17]。但应指出的是,经典版本

的拥挤技术依然存在替换错误,一个重要原因是并

未考虑到父代个体自身的相似性,比如:当子代个体

与所有父代个体均不相似,而父代个体自身之间又

存在高相似度的个体,此时应避免子代个体和父代

个体之间的替换,反而应在有高相似度的父代个体

之间进行替换,以减少替换错误。
为此,本文提出了基于竞争性拥挤小生境技术

的多峰优化算法,简称CCDE-VN。在该算法中设

计了一种竞争性拥挤(Competitive
 

Crowding)技
术,通过在经典拥挤技术的基础上增加考虑父代个

体自身的相似性,使得在划分小生境时不仅考虑子

代个体和父代个体的相似性,还进一步考虑父代个

体之间的相似性。同时,针对 MMOP中因崎岖地

形①而导致开采难度较大的峰[19],设计了一种虚拟

小生境(Virtual
 

Niching,VN)策略,以生成辅助个

体的方式来形成虚拟小生境,提高算法在这类峰

上的 收 敛 精 度。为 验 证 CCDE-VN 的 性 能,在

CEC2015多峰优化测试集上进行了大量实验,与11
种知名多峰优化算法进行了性能对比(包括CEC多

峰优化竞赛中的2个冠军算法),实验结果表明

CCDE-VN具有更出色的性能。本文主要贡献可概括

如下:
(1)设计了一种竞争性拥挤技术。不同于经典

的拥挤技术只考虑子代个体和父代个体之间的相似

性,该技术还同时考虑了父代个体自身的相似性,以
此来进一步减小替换错误发生的可能性,提高算法

找到更多全局最优解的可能性。
(2)设计了一种虚拟小生境策略。因 MMOP

中不同类型的峰值所处地形的特点一般不同,导致

位于崎岖地形处的峰值很难开采。为此,虚拟小生

境策略会在这类峰值的邻近个体处生成若干辅助个

体,以形成一个虚拟小生境来提升峰的开采精度。
相比于高斯扰动等经典局部搜索策略,该策略能显

著提高找到全局最优解的能力。
本文其他部分安排如下:第2节简介相关工作,

第3节详细介绍本文提出的CCDE-VN算法,第4
节是实验部分,第5节对本文工作进行总结,并展望

了未来工作。

2 相关工作

2.1 DE算法

  DE是一种基于种群的启发式随机搜索算法[20],
被广泛用于求解最优化问题,主要包括初始化、变
异、交叉、选择四项操作。

(1)初始化操作

在算法开始时,先生成一个初始种群。假设种

群有NP 个个体,Xi=(xi,1,xi,2,…,xi,D)表示第

i个个体,i∈{1,2,…,NP},D 为问题维度。Xi 可

用如下公式生成:

xi,j =Lj +rand(0,1)·(Uj -Lj) (1)
其中,xi,j ∈ [Lj,Uj],Uj 和Lj 分别表示第j维决

策变量的上限和下限。rand(0,1)是[0,1]区间内

均匀分布的随机数。
(2)变异操作

在初始化操作后,种群中的每个个体 Xi 都将

执行变异操作,经典的变异操作有以下几种:
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① 崎岖地形(Rugged
 

landscape)[18]是指在优化问题的适应度
函数搜索空间中的部分区域存在多个局部最优解,增加了算法搜索
全局最优解的难度。



a)DE/rand/1:

Vi=Xr1+F·(Xr2-Xr3) (2)

  b)DE/best/1:

Vi=Xbest+F·(Xr1-Xr2) (3)

  c)DE/current-to-best/1:

Vi=Xi+F·(Xbest-Xi)+F·
(Xr1-Xr2) (4)

  d)DE/rand/2:

Vi=Xr1+F·(Xr1-Xr2)+F·
(Xr3-Xr4) (5)

  e)DE/best/2:

Vi=Xbest+F·(Xr1-Xr2)+F·
(Xr3-Xr4) (6)

其中,Vi =(vi,1,vi,2,…,vi,D)为变异个体。参数

F 是缩放因子,用于控制差分向量大小,取值一般为

0到1之间。Xr1,Xr2,Xr3,Xr4 和 Xr5 均为种群中

随机选取的互不相同的个体,且与 Xi 也不相同。

Xbest 是种群中适应度值最好的个体。
(3)交叉操作

在变异操作后,采用交叉操作生成Xi 和Vi 的

试验个体Ui=(ui,1,ui,2,…,ui,D)。常用的二项式

交叉操作如下:

ui,j =
vi,j,if

 

rand(0,1)≤CR
 

or
 

j=jrand

xi,j,otherwise (7)

其中,CR 为 交 叉 率,取 值 一 般 为0到1之 间。

rand(0,1)是[0,1]区间内均匀分布的随机数。jrand ∈
{1,2,…,D}是随机选取的一个维度,以确保Ui 至

少有一维来自Vi 。
(4)选择操作

生成试验个体后,选择操作会在Xi 和Ui 中选

择适应度值更好的一个进入下一代,该操作可表

示为

X'i =
Ui,if

 

fit(Ui)>fit(Xi)

Xi,otherwise (8)

其中X'i =(x'i,1,x'i,2,…,x'i,D)是选择的下一代个

体,fit(·)表示适应度函数。

2.2 多峰优化算法的相关工作

  设计多峰优化算法主要涉及两个方面:(1)如何

保持种群多样性,以找到更多的全局最优解;(2)如
何提高算法收敛精度,使得找到的全局最优解能满

足精度要求。针对这两个方面,可将现有相关工作

划分为三类:(1)应用小生境技术的多峰优化算法;
(2)应用多目标技术的多峰优化算法;(3)应用局部

搜索策略的多峰优化算法。前两类主要围绕如何保

持种群多样性,第三类重点解决如何提高收敛精度。
下面简介这三类相关工作:

(1)应用小生境技术的多峰优化算法

小生境技术是保持种群多样性的一种有效手

段,近年来如何应用小生境技术来设计多峰优化算

法是求解 MMOP的一个研究热点。例如,Li等

人[12]提出了一种应用物种生成技术的多峰优化算

法(简称SDE),先将种群中适应度较好的个体视作

小生境中心,再把与该中心同处指定半径内的个体

划分至同一小生境,使得SDE有较强开采能力。基

于CDE和SDE,Gao等人[14]结合聚类技术提出了

知名 的 Self-CCDE 和 Self-CSDE 算 法。在 Self-
CCDE中,通过聚类技术对随机个体的选取进行限

定,从而增强算法收敛性;对于Self-CSDE,则通过

聚类技术避免了小生境半径的设置问题,进一步优

化了算法流程。Lin等人[21]提出了一种应用 Nea-
rest-Better(NB)聚类的多峰优化算法(简称FBK-
DE),采用了改进的NB聚类来划分小生境,并设计

了物种平衡策略用于动态调整小生境大小,有效避

免了大量个体聚集于同一小生境的问题。Jiang[22]

在提出的NCD-DE算法中设计了一种新的小生境

中心选择方法,将小生境中心的选择问题转化为

0-1编码的离散优化问题,再通过 GA算法来优化

小生 境 中 心,从 而 避 免 小 生 境 的 参 数 设 置。与

NCD-DE算法类似,Liang[23]等人针对小生境中心

的设置问题提出了 NCIDE算法,通过同时考虑适

应度和距离来动态识别小生境中心,并将非中心个

体归入最近小生境。类似地,为缓解小生境设置的

参数敏感问题,Wang等人[24]提出了一种自适应小

生境规模的多峰优化算法(简称 AED-DDE),通过

单变量高斯分布来拟合种群的个体分布,将符合同

一分布的个体划分至同一小生境,并且采用主从小

生境分布模型用于弥补单个小生境与整个种群存在

交互不足的问题。Zhao等人[25]提出了一种应用

Local
 

Binary
 

Pattern(LBP)小生境技术的多峰优化

算法(简称LBPADE),模拟图像处理过程中的LBP
算子为每个个体构建小生境,以更好地定位更多的

全局最优解。最近,Zhou[26]等人提出了一种融合物

种生成技术和拥挤技术的混合小生境策略,采用适

应度地形分析技术将种群划分为两部分,对适应度

较好部分应用物种生成技术,而较差部分则使用拥

挤技术,以更好平衡算法的收敛性和多样性。
(2)应用多目标技术的多峰优化算法

除小生境技术外,还有一些相关工作将 MMOP
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转化为多目标优化问题(MOP)进行求解。通常,该
类工作会将 MMOP的适应度函数作为 MOP的第

一个目标,而第二个目标的设计则因算法而异。例

如,Cheng等人[27]将自适应多样性指标作为第二个

目标,该指标会随进化代数增加而动态调整,以实现

开采和多样性的动态平衡。Basak等人[28]在提出的

MOBiDE算法中,将当前个体与其他所有个体的平

均距离作为第二目标,再结合非支配排序与超体积

度量排序,有效减少了个体聚集情况,进一步增强了

种群多样性。类似地,Bandaru等人[29]将当前个体

与其他所有个体的距离平方和的倒数作为第二目

标,在NSGA-Ⅱ框架中引入了一种无参数的小生境

技术来调整支配准则,使得当两个个体能满足一定

距离要求时才能使用支配关系。与上述三种算法

不同的是,Wang等人[30]在提出的 MOMMOP算

法中将两个优化目标都进行了重新定义,第一个

目标定义为x1+a(X),而第二个目标为1-x1+
a(X),x1 为个体在第一个维度上的变量值,a(X)
是与适应度相关的函数,该方式可确保两个目标

相互冲突,更好地保持多样性,以找到更多全局最

优解。
(3)应用局部搜索策略的多峰优化算法

为提高算法收敛精度,这一类相关工作重点考

虑如何应用局部搜索策略。例如,Wang等人[31]提

出了一种应用简化协方差矩阵自适应演化策略

(MAES)的多峰优化算法,与协方差矩阵自适应演

化策略(CMA-ES)相比,MAES不再计算协方差矩

阵,降低了算法计算复杂度。Wang等人[32]在提出

的FDLS-ADE算法中,将局部搜索范围与进化过程

相关联,采用了一种标准差可动态变化的高斯扰动

策略,通过逐步减小标准差,使算法在早期能以较大

范围进行搜索,增强全局勘探能力,而后期则聚焦于

小范围的精细搜索,可有效平衡勘探与开采能力。
类似地,Chen等人[19]提出的算法也利用了高斯扰

动策略,但标准差的变化方式有所不同,其变化情况

与个体变化情况相关,当一个个体若干次未成功更

新时,便缩小采样区域以提高开采能力。根据小生

境中心的优劣情况,Sheng等人[33]提出了一种应用

自适应柯西搜索策略的多峰优化算法,对适应度较

差的小生境中心,会以较大的步长进行扰动,使算法

能快速接近全局最优解;而对适应度较好的小生境

中心,则会以较小步长进行扰动,从而提高算法收敛

精度。Jiang等人[22]在提出的NCD-DE算法中,引
入了宽、窄两种不同范围的局部搜索方程,其中宽范

围的搜索方程有助于个体跳出局部最优解,而窄范

围 的 搜 索 方 程 可 进 一 步 提 升 算 法 的 收 敛 精 度。

Zhao[16]等人在提出的 OADE算法中,将搜索方程

与问题维度相结合,当问题维度较低时,搜索方程以

当前个体来引导变异,而当维度较高时,则以小生境

中最优个体来引导变异,提高了算法性能。

3 本文算法

本文提出的CCDE-VN算法主要包含两个阶

段:1)在第一个阶段中设计了竞争性拥挤小生境技

术和自适应高斯扰动策略,目的是定位更多的全局

最优解并提升其精度;2)第二阶段使用了虚拟小生

境策略,对因崎岖地形陷入局部峰值的个体做进一

步搜索,以定位到附近的全局峰值。下面详细介绍

相关内容。

3.1 竞争性拥挤小生境技术

  在经典的拥挤技术中,若子代个体的适应度优

于最相似(欧氏距离最近)的父代个体,那么将替换

该父代个体,以维持种群多样性。然而,当子代个体

与所有父代个体均不相似时,这会导致替换错误。
为方便说明,在图1中给出了一个示例,红色点代表

子代个体,蓝色点代表父代个体,黑色五角星是全局

最优解。从图中可看出距子代个体Xc
i 最近的父代

个体为Xp
n ,这两者位于不同峰上。如果采用经典

拥挤技术,Xp
n 会因适应度值较差而被替换,从而导

致全局最优解Ob 周围缺少个体,使得算法难以定

位到Ob 。

图1 经典拥挤技术示意图
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  为此,本文在经典拥挤技术的基础上设计了竞

争性拥挤技术,从父代种群中找到两个最相似的父

代个体,将其中适应度较差的一个作为新增的可替

换个体,使得子代个体与所有父代个体均不相似时,
该新增的可替换个体有机会被删除,以减少替换错

误。以图2为例做进一步说明,图中 Xc
i 为子代个

体,Xp
n 是与Xc

i 最相似的父代个体,这两者距离为

Scp。Xp
a 与Xp

b 是父代种群中最相似的两个个体,
且假设Xp

a 的适应度差于Xp
b ,两者的距离为Spp 。

按Scp 与Spp 的大小关系可分为以下两种情况:

图2 竞争性拥挤技术示意图

(1)Scp 小于Spp ,如图2(a)所示。子代个体与

最近的父代个体相似度较高,若子代个体适应度更

好,可直接替换最近的父代个体。图中 Xc
i 优于

Xp
n ,此时Xp

n 被替换。
(2)Scp 大于Spp ,如图2(b)所示,此时与图1

情况相同。此时子代个体与最近的父代个体相似度

要低于父代种群中最相似的两个个体,即Xc
i 和Xp

n

的相似度要低于Xp
a 和Xp

b ,在竞争性拥挤技术中会

先比较Xp
a 和Xp

b ,再将两者中适应度较差的一个与

Xc
i 相比,这点不同于经典拥挤技术。图中Xc

i 优于

Xp
a ,表明Xp

a 不仅拥挤度较高且适应度也较差,此
时应被替换。需注意的是,Xc

i 也可能差于Xp
a ,但

因Xc
i 和Xp

n 可能位于同一峰值,Xc
i 不应被直接舍

弃,而应与Xp
n 再做进一步比较,以保留两者中适应

度较好的一个。
此外,在竞争性拥挤技术中还存在一种特殊情

况:当父代种群中最相似的两个个体适应度都接近

最优值时,子代个体将很难有机会替换掉其中较差

的一个。此时,算法只能选择替换与该子代个体最

近的父代个体,这也会增加替换错误的可能性。为

此,本文还设计了一种检测机制:在每次进行选择操

作时,检测父代种群中最相似的两个个体中较差的

一个是否被成功替换,若连续φ 次未能成功替换,
在这种情况下不宜再比较适应度,而应直接用子代

个体替换其中较差的父代个体。本文实验中参数φ
设为30·D,D 表示问题维度,关于该参数的敏感性

分析在实验部分给出了。
为更好地说明竞争性拥挤技术,在算法1中给

出了伪代码表示,其中 NP 为种群大小,D 为问题

维度,F 为缩放因子,CR 为交叉概率,φ 为阈值参

数,FEs为评估次数,pop为种群,φCnt为计数器,

fit(·)为适应度函数。

算法1.竞争性拥挤小生境技术

输入:NP,D,F =0.1,CR =0.3,φ,FEs,pop,φCnt=0;

输出:pop,FEs,φCnt;

1. FOR
 

i=1
 

TO
 

NP
 

DO

2.  用DE/rand/1生成子代个体Xc
i ;

3.  计算Xc
i 适应度,

 

FEs=FEs+1;

4.  在pop 中找到与Xc
i 最相似的个体Xp

n ,两者距离记

为Scp ;

5.  在pop 中找到最相似的两个个体Xp
a 和Xp

b ,两者距

离记为Spp ;

6.  将Xp
a 和Xp

b 中适应度较差的个体记为Xp
w ;

7.  检测Xp
w 是否被成功替换过,若被成功替换过,则令

φCn=0;否则,令φCn=φCnt+1;

8.  IF
 

φCnt≥φ
 

THEN

9.
 

   使用Xc
i 替换Xp

w,φCnt=0,
 

break;

10.
 

 END
 

IF

11.
 

 IF
 

Scp <Spp
 THEN
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12.
 

  IF
 

fit(Xc
i)>fit(Xp

n)
 

THEN

13.
 

   使用Xc
i 替换Xp

n;

14.
 

  END
 

IF
15.

 

 ELSE
16.

 

  IF
 

fit(Xc
i)>fit(Xp

w)
 

THEN

17.
 

   使用Xc
i 替换Xp

w ;

18.
 

  ELSEIF
 

fit(Xc
i)>fit(Xp

n)
 

THEN

19.
 

   使用Xc
i 替换Xp

n;

20.
 

  END
 

IF
21.

 

 END
 

IF
22.

 

END
 

FOR

3.2 自适应高斯扰动策略

  在多峰优化算法中,算法的收敛精度描述了算

法所得解与问题的全局最优解之间的接近程度。收

敛精度越高表明算法的求解质量越高,越容易达到

精度要求。通常,局部搜索策略是提高算法收敛精

度的一种常见手段,例如前文2.2节“相关工作”中
所述的第三类相关工作。高斯扰动策略因操作简

单、计算复杂度低而受到广泛应用。标准的高斯扰

动策略如下式所示:

X'i =Gaussian(Xi,σ) (9)
其中,X'i 是高斯扰动后生成的新个体,Xi 为当前

个体,σ是标准差。一般来说,σ 越大,扰动幅度越

大,σ越小,扰动幅度越小。
通常,算法在初期应注重勘探能力,而在后期则

需偏重开采能力。因此,应用了标准高斯扰动策略

的相关算法一般会将σ值设置为在进化过程中逐渐

递减。但应指出的是,这种方式并没有考虑到个体

差异性,因为适应度不同的个体所适合的扰动范围

也往往不同。适应度较差个体需较大σ,有助于跳

出局部最优;而适应度较好个体则适合较小σ,以提

高收敛精度。为此,本文提出自适应高斯扰动策略,
综合考虑进化过程和个体差异性,为每个个体设定

自适应σ值,具体如下式(10)和(11)所示:

X'i =Gaussian(Xi,σi) (10)

σi=min

max fit(Xbest)-fit(Xi)
fit(Xbest)-fit(Xworst)+1.0E-10

,lb  ,ub􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

(11)
其中,fit(·)表示适应度函数,Xbest和Xworst分别表

示种群中适应度最好和最差的个体,Xi 为当前个体。
可看出当Xi 的适应度越好时,σi 越小;相反,当Xi

适应度越差,σi 越大。同时,max函数可将lb置为下

界,min函数将ub置为上界。ub和lb会随着评估次

数FEs的增加而减小,其计算公式如下所示:

lb=10∧
 -10·FEs

MaxFEs  (12)

ub=10∧
 -10·FEs

MaxFEs +4  (13)

  在图3中给出了ub与lb的变化趋势情况。从

图中可看出σi 在进化过程中会逐步减小,使得σi 不

仅与个体适应度相关,同时也与进化过程动态关联,
进一步提升了高斯扰动策略的灵活度与有效性。自

适应高斯扰动策略的伪代码如算法2所示。

图3 ub与lb变化趋势

算法2.自适应高斯扰动策略

输入:NP,FEs,pop;

输出:pop,FEs;

1. FOR
 

i=1
 

TO
 

NP
 

DO
2.  按自适应高斯扰动公式,即式(10),生成新个体X'i ;

3.  计算X'i 适应度值,
 

FEs=FEs+1;

4.  IF
 

fit(X'i)>fit(Xi)
 

THEN
5.

 

   使用X'i 替换Xi ;

6.  END
 

IF
7. END

 

FOR

3.3 虚拟小生境策略

  多峰优化问题中通常存在一些较为崎岖的地

形,这种地形一般包含多个局部峰值,若全局峰值

(即全局最优解)位于这种崎岖地形中,这对算法的

求解会带来较大挑战。以图4为例,Oa 和Ob 分别

代表优化问题的两个全局峰值,可看出Oa 周围的

地形相对平滑,
 

没有明显的局部峰值;相比之下,

Ob 周围则较为崎岖,有较多的局部峰值;因此,算法

定位到Ob 的难度更大,容易陷入局部最优。为此,

图4 崎岖地形示意图
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针对存在类似Ob 这种全局峰值的 MMOP,本文专

门设计了一种虚拟小生境策略,以对此类峰值附近

的个体做进一步搜索,帮助其跳出局部最优,提高定

位到全局峰值的可能性。
虚拟小生境策略的主要思路是对峰值附近的个

体做进一步的细粒度搜索,然而峰值附近可能会存

在多个个体,若所有个体均搜索,会浪费适应度函数

评估次数。同时,一般情况下一个峰值仅对应一个

个体,也无需搜索所有附近个体。因此,在执行虚拟

小生境策略之前,本文先采用清除技术[34]处理种

群,使得同一峰值处仅保留一个适应度最好的个体,
清除其余非必要个体。清除技术最早由 Holland提

出[31],主要思路是先将种群中的所有个体按适应度

从好到差进行排序,选择适应度最好的个体作为中

心,再清除该中心指定半径范围内的其他个体;之后

选择下一个适应度最好且未被清除的个体作为中

心,重复以上步骤,直至所有个体要么被选中保留,
要么被清除出种群。通常,清除半径r设定为0.05·

D,D 为问题维度。为更好地说明清除技术,在算法

3中给出了其伪代码表示。

算法3.清除技术

输入:pop,D ;

输出:pop;

1.  将pop 中所有个体按适应度从好到差进行排序;

2.  设定清除半径r=0.05·D ;

3.  FOR
 

i=1
 

TO
 

|pop|-1
 

DO
4.   FOR

 

j=i+1
 

TO
 

|pop|
 

DO
5.    若Xi 与Xj 距离小于r,将Xj 从pop 中清除;

6.   END
 

FOR
7.  END

 

FOR

在完成种群处理后,将其他个体与最好个体的

适应度差值作为判断标准,用于评估这些个体是否

达到精度要求,以对未达到精度要求的个体再使用

虚拟小生境策略。值得注意的是,由于无法确定适

应度最好的个体自身是否满足精度要求,因此会直

接采用虚拟小生境策略来处理该最好个体,之后再

依次比较其他个体与最好个体的适应度差值。当差

值小于1.0E-6,则认定该个体已经达到精度要求,
无需再用虚拟小生境策略;相反,若大于1.0E-6,
则表明该个体可能处于崎岖地形,陷入了局部最优,
需采用虚拟小生境策略来进一步搜索。对需要被处

理的个体而言,先计算该个体与种群中最近个体的

距离d,再以该个体为中心,在半径为d/2的范围

内生成k-1个辅助个体来形成虚拟小生境。辅助

个体的生成方式如下所示:

 x'z,j =xi,j +[rand(0,1)·2-1]·d/2 (14)
其中X'z=(xz,1,xz,2,…,xz,D)表示辅助个体,

 

z∈
{1,2,…,k-1},Xi=(xi,1,xi,2,…,xi,D)为被处理

个体,rand(0,1)是[0,
 

1]区间内均匀分布的随机

数。为避免小生境范围过大,若d 值大于1,则将

其限制为1。k= min(60,15·D),其中D 为问题

维度。
在形成虚拟小生境之后,将采用经典的 DE/

rand/1策略对这k个个体进行处理,以充分搜索被

处理个体的周围空间,帮助其跳出局部最优。当虚

拟小生境中最好个体和最差个体的适应度差值小于

1.0E-6时,则认定该虚拟小生境已收敛,算法将继

续判断下一个个体是否需使用虚拟小生境策略。以

图5为例做进一步说明,图中蓝色点代表种群中个

体,同一虚线圆框中的粉色点为辅助个体。假设

Xa 是种群中最好个体,但因无法确定其是否达到精

度要求,所以会直接采用虚拟小生境策略进行搜索。
之后,继续处理Xb ,若其与Xa 的适应度差值小于

1.0E-6,则不再处理;否则,将对Xb 采用虚拟小生

境策略。图中个体Xb 位于局部峰值,与Xa 的适应

度差距较大,因此会对其使用虚拟小生境策略。

图5 虚拟小生境技术示意图

需说明的是,因无法确定每个陷入局部峰值的

个体附近是否存在全局峰值,如果将大量的评估次

数用于虚拟小生境策略,可能会在远离全局峰值的

个体上使用虚拟小生境策略,从而浪费适应度函数

评估次数。因此,为控制虚拟小生境策略的计算开

销,本文将算法划分为两个阶段,算法前80%的适

应度函数评估次数用于第一阶段,执行竞争性拥挤

技术和自适应高斯扰动策略;剩余的20%用于第二

阶段,执行虚拟小生境策略。为更好地说明虚拟小

生境策略,在算法4中给出了伪代码表示。

算法4.虚拟小生境策略

输入:pop,
 

D,
 

FEs,MaxFEs,F =0.5,CR =0.9,ε =
1.0E-6;

输出:pop;

1. FOR
 

i=1
 

TO
 

|pop|
 

DO
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2.  IF
 

FEs>MaxFEs
 

THEN

3.   break;

4.  END
 

IF

5. S=Ø;

6.  IF
 

i==1||fit(X1)-fit(Xi)>ε
 

THEN

7.   计算Xi 与种群中最近个体的距离d;

8.   按式(14)生成k-1个辅助个体;

9.   计算辅助个体适应度,FEs=FEs+k-1;

10.
 

  定义S 用于保存Xi 和k-1个辅助个体;

11.
 

  WHILE
 

max(fit(S))-min(fit(S))>ε

12.
 

   FOR
 

j=1
 

TO
 

k
 

DO

13.    将当前个体记为 XS
j ,在小生境中用DE/rand/

1生成试验个体Uj ;

14.    计算Uj 适应度,FEs=FEs+1;

15.    如果Uj 优于XS
j ,则用Uj 替换XS

j ;

16.   END
 

FOR

17.
 

  END
 

WHILE

18.
 

 END
 

IF

19.
 

END
 

FOR

3.4 CCDE-VN算法整体流程

  为更清楚地说明本文提出的CCDE-VN算法,
在算法5中给出了其伪代码,其中参数η 把算法划

分为两阶段用于分别执行相关策略,该参数的敏感

性分析在实验部分中已给出。与其他使用拥挤小生

境技术的多峰优化算法相比,CCDE-VN主要有如

下四点修改之处:
(1)第3行:将经典的拥挤技术改进为竞争性拥

挤技术。
(2)第4行:将经典的高斯扰动策略改进为自适

应高斯扰动策略。
(3)第6行:应用清除技术。
(4)第7行:提出了虚拟小生境策略。

算法5.CCDE-VN
输入:η,FEs,MaxFEs;

输出:pop;

1.
 

WHILEFEs<MaxFEs
 

THEN

2.
 

 IF
 

FEs<η·MaxFEs
 

THEN

3.
 

  执行竞争性拥挤小生境技术(算法1);

4.
 

  执行自适应高斯扰动策略(算法2);

5.
 

 ELSE

6.
 

  执行清除技术(算法3);

7.
 

  执行虚拟小生境策略(算法4);

8.
 

  break;

9.
 

 END
 

IF

10.
 

END
 

WHILE

3.5 算法时间复杂度分析

  因CCDE-VN算法的主要步骤涉及四个子算

法,因此其时间复杂度也由这四个子算法决定。设

算法的最大迭代次数为G ,种群大小是 NP ,问题

维度为D 。下面分别分析这四个子算法的时间复

杂度:
(1)在算法1竞争性拥挤小生境技术中,需对所

有个体进行变异交叉操作,这部分的时间复杂度为

O(NP·D)。在父代种群找到距离最近的两个个

体,可定义一个距离表来实现,相应的时间复杂度为

O(NP2·D)。查找距离子代最近的父代个体为

O(NP·D)。若种群更新,可将已算出的子代与父

代距 离 存 入 表 中,因 此 该 部 分 的 时 间 复 杂 度 为

O(1)。第一阶段的迭代次数为0.8·G,因此算法1
的时间复杂度为O(0.8·G·(NP·D+NP2+
NP·D)+NP2·D+1)。因 NP>D,且仅需生

成一次距离表,所以算法1的最终时间复杂度可计

为O(G·NP2)。
(2)在算法2自适应高斯扰动策略中,需找到种

群中适应度值最好与最差的个体,该过程的时间复

杂度是O(NP)。对所有个体使用高斯扰动的时间

复杂度为O(NP·D)。选择操作是一对一选择,时
间复杂度为O(NP)。因此,算法2的时间复杂度为

O(0.8·G·(NP+NP·D+NP))。因D≥1,所以

算法2的最终时间复杂度为O(G·NP·D)。
(3)在算法3清除策略中,主要操作是找到与当

前个体在一定阈值内的其他个体,因此时间复杂度

可计为O(NP2·D)。
(4)在算法4虚拟小生境策略中,每个虚拟小生

境内有15·D 个个体进行DE操作,因此时间复杂

度为O(15·D2),第二阶段的迭代次数为0.2·G ,
因此算法4的最终时间复杂度为O(G·D2)。

综上,CCDE-VN算法的时间复杂度为O(G·

NP2+G·NP·D+NP2·D+G·D2)。由于

G >NP >D ,因此算法的最终时间复杂度可计为

O(G·NP2)。

4 实验验证和结果分析

4.1 测试函数和参数设置

  为验证CCDE-VN算法性能,本文采用CEC2015
测试集。需注意的是,该测试集与CEC2013测试

集[35]完全相同,是多峰优化领域中应用最广泛的一

套测试集。CEC2015包含20个不同维度的测试函
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数,均为求最大值,相关信息如表1所示。其中,F1-
F5是相对简单的多峰函数,F6-F10为可扩展的多

峰函数,而F11-F20是由多个基本函数组合形成

的复杂多峰函数。此外,每个函数所对应的最大

评估次数和种群规模均按测试集的原文献建议进

行设置[35]。

表1 CEC2015测试集的相关情况

函数
全局最优解

数量
问题维度

最大评估
次数

建议的种群
规模

F1 2 1 50000 80
F2 5 1 50000 80
F3 1 1 50000 80
F4 4 2 50000 80
F5 2 2 50000 80
F6 18 2 200000 100
F7 36 2 200000 300
F8 81 3 400000 300
F9 216 3 400000 300
F10 12 2 200000 100
F11 6 2 200000 200
F12 8 2 200000 200
F13 6 2 200000 200
F14 6 3 400000 200
F15 8 3 400000 200
F16 6 5 400000 200
F17 8 5 400000 200
F18 6 10 400000 200
F19 8 10 400000 200
F20 8 20 400000 200

为方便对比不同算法,本文采用了峰值率PR
(Peak

 

Ratio)和成功率SR(Success
 

Rate)作为对比

的性能指标。PR 是算法在多次运行中能找到的全

局最优解个数占所有全局最优解总个数的平均比

例,其计算公式如下:

PR=∑
NR

i NPFi

NKP·NR
(15)

其中,NPFi 是第i次运行中找到的全局最优解个

数,NKP 是优化问题的所有全局最优解的总个数,

NR 表示算法运行次数。第二个性能指标SR 表示

算法多次运行中成功运行次数与所有运行次数的比

值,其中成功运行是指算法在一次运行中能找到所

有全局最优解。SR 的计算公式如下所示,其中

NSR 表示成功的运行次数。

SR=
NSR
NR

(16)

  本文的参数设置为:种群大小 NP 按CEC2015
测试集的建议进行设置(如表1),阶段划分参数η
为0.8,竞争性拥挤技术中阈值φ 为30·D,虚拟小

生境策略的辅助个体数k=min(60,15·D)。

4.2 与其他相关算法对比

  本文选取了11种代表性的多峰优化算法进行

性能对比,具体情况如表2所示。在对比算法中,算
法1~7是应用小生境技术的多峰优化算法,其中算

法1~4是应用经典小生境技术及其改进版本的算

法,而算法5~7是近年来提出的应用新型小生境技

术的算法。算法8是应用局部搜索的多峰优化算

法,算法9是应用多目标技术的算法。值得说明的

是,算法10和11分别是CEC2013和CEC2015多

峰优化竞赛的冠军算法。关于这些算法的简介可参

考本文第2节“相关工作”部分。

表2 对比算法的相关情况

算法类别 算法名称 算法描述 算法年份

应用小生境技术的多峰优化算法

1.CDE[11] 应用拥挤小生境技术的多峰优化算法 2003年

2.SDE[12] 应用物种生成小生境技术的多峰优化算法 2005年

3.Self-CCDE
 [14] 应用聚类方法改进拥挤小生境技术的多峰优化算法 2014年

4.Self-CSDE[14] 应用聚类方法改进物种生成小生境技术的多峰优化算法 2014年

5.FBK-DE[21] 应用最近更好聚类划分小生境的多峰优化算法 2019年

6.NCD-DE[22] 应用GA算法优化小生境中心的多峰优化算法 2021年

7.AED-DDE[24] 应用高斯分布划分小生境的多峰优化算法 2020年

应用局部搜索的多峰优化算法 8.FDLS-ADE[32] 应用高斯扰动进行局部搜索的多峰优化算法 2023年

应用多目标技术的算法 9.MOMMOP[30] 应用多目标技术的多峰优化算法 2015年

CEC多峰优化竞赛的冠军算法
10.dADE/nrand/1[36] 应用动态存档技术的多峰优化算法 2013年

11.NMMSO[37] 应用动态多种群技术的多峰优化算法 2014年

  所有算法在每个测试函数上独立运行51次,取
平均值作为最终结果,解的精度为1.0E-4。此外,
为更好地突出不同算法在结果上的差异性,当算法

取得“1.000”结果时,用“1”进行表示;而对“0.000”
结果用“0”表示。为方便起见,对每个测试函数的最

优结果进行加粗凸显。需说明的是,运行次数设置

为51次的原因有两方面:(1)这是多峰优化算法领

域中的常见做法,例如:NCD-DE[22]、AED-DDE[24]、

FDLS-ADE[32],因此本文采用相同设置,方便与这

些相关算法进行对比;(2)奇数次实验会有一个明确
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的中位数值,可避免偶数次实验中可能出现的中位

数不明确和对称性偏差问题。
为客观对比,所有对比算法的实验结果均来源

于公开的文献报道,具体为:(1)CDE和SDE结果

来源于文献[5]中表3;(2)Self-CCDE、Self-CSDE、

NMMSO结果来源于文献[6]中表2;(3)FBK-DE
结果来源于文献[21]中表4;(4)NCD-DE结果来源

于文献[22]中表1;(5)AED-DDE结果来源于文献

[24]中表4;(6)FDLS-ADE结果来源于文献[32]中

表4;(7)MOMMOP结果来源于文献[16]中表3;
 

(8)dADE/nrand/1结果来源于文献[36]中表2。
表3给出了详细的对比结果,其中“+”表示本文算法

性能更好,“-”表示本文算法性能更差,“=”表示本

文算法与对比算法性能相当。从表3中可看出,本文

算法CCDE-VN在所有测试函数上均有较好表现,在

F1~F13、F15以及F17~F18这16个函数上能取得

最好结果,特别是在F1~F13上能找到所有的全局最

优解,
 

PR 和SR 均为1。具体的实验结果分析如下:

表3 CCDE-VN与其他11种多峰优化算法的对比结果

函数
CCDE-VN CDE SDE Self-CCDE Self-CSDE FBK-DE

PR SR PR SR PR SR PR SR PR SR PR SR
F1 1 1 1(=) 1 0.657(+) 0.373 1(=) 1 1(=) 1 1(=) 1
F2 1 1 1(=) 1 0.737(+) 0.529 1(=) 1 1(=) 1 1(=) 1
F3 1 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F4 1 1 1(=) 1 0.284(+) 0 1(=) 1 0.620(+) 0.160 1(=) 1
F5 1 1 1(=) 1 0.922(+) 0.843 1(=) 1 0.990(+) 0.980 1(=) 1
F6 1 1 1(=) 1 0.056(+) 0 0.953(+) 0.400 0.692(+) 0.080 0.990(+) 0.820
F7 1 1 0.861(+) 0 0.054(+) 0 0.648(+) 0 0.466(+) 0 0.813(+) 0
F8 1 1 0(+) 0 0.015(+) 0 0.678(+) 0 0.312(+) 0 0.824(+) 0
F9 1 1 0.474(+) 0 0.011(+) 0 0.260(+) 0 0.107(+) 0 0.425(+) 0
F10 1 1 1(=) 1 0.147(+) 0 1(=) 1 0.985(+) 0.860 1(=) 1
F11 1 1 0.330(+) 0 0.314(+) 0 0.743(+) 0.060 0.493(+) 0 1(=) 1
F12 1 1 0.002(+) 0 0.208(+) 0 0.275(+) 0 0.253(+) 0 0.935(+) 0.480
F13 1 1 0.141(+) 0 0.297(+) 0 0.623(+) 0 0.427(+) 0 1(=) 1
F14 0.846 0.255 0.026(+) 0 0.216(+) 0 0.657(+) 0 0.300(+) 0 0.907(-) 0.460
F15 0.762 0 0.005(+) 0 0.108(+) 0 0.318(+) 0 0.150(+) 0 0.730(+) 0
F16 0.680 0 0(+) 0 0.108(+) 0 0.587(+) 0 0.023(+) 0 0.707(-) 0
F17 0.711 0 0(+) 0 0.076(+) 0 0.248(+) 0 0.023(+) 0 0.630(+) 0
F18 0.667 0 0.167(+) 0 0.026(+) 0 0.290(+) 0 0(+) 0 0.667(=) 0
F19 0.515 0 0(+) 0 0.105(+) 0 0.088(+) 0 0(+) 0 0.520(-) 0
F20 0.265 0 0(+) 0 0(+) 0 0.070(+) 0 0(+) 0 0.450(-) 0

最好个数 16 7 1 6 3 13

函数
NCD-DE AED-DDE FDLS-ADE MOMMOP dADE/nrand/1 NMMSO

PR SR PR SR PR SR PR SR PR SR PR SR
F1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F2 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F3 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F4 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F5 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F6 1(=) 1 1(=) 1 1(=) 1 1(=) 1 0.984(+) 0.780 0.993(+) 0.880
F7 0.905(+) 0.078 0.838(+) 0.039 0.951(+) 0.216 1(=) 1 0.823(+) 0 1(=) 1
F8 0.961(+) 0.098 0.747(+) 0 0.999(+) 0.961 1(=) 1 0.967(+) 0.140 0.900(+) 0
F9 0.553(+) 0 0.384(+) 0 0.572(+) 0 1(=) 1 0.431(+) 0 0.978(+) 0.100
F10 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F11 1(=) 1 1(=) 1 1(=) 1 0.716(+) 0.020 0.667(+) 0 0.997(+) 0.980
F12 0.993(+) 0.941 1(=) 1 1(=) 1 0.939(+) 0.549 0.740(+) 0 0.985(+) 0.880
F13 0.892(+) 0.412 0.686(+) 0 0.702(+) 0.020 0.667(+) 0 0.667(+) 0 0.997(+) 0.980
F14 0.683(+) 0 0.667(+) 0 0.667(+) 0 0.667(+) 0 0.667(+) 0 0.707(+) 0
F15 0.640(+) 0 0.637(+) 0 0.689(+) 0 0.618(+) 0 0.627(+) 0 0.653(+) 0
F16 0.667(+) 0 0.667(+) 0 0.667(+) 0 0.650(+) 0 0.667(+) 0 0.660(+) 0
F17 0.522(+) 0 0.375(+) 0 0.446(+) 0 0.505(+) 0 0.403(+) 0 0.468(+) 0
F18 0.667(=) 0 0.654(+) 0 0.667(=) 0 0.497(+) 0 0.633(+) 0 0.663(+) 0
F19 0.505(+) 0 0.375(+) 0 0.424(+) 0 0.223(+) 0 0.018(+) 0 0.350(+) 0
F20 0.252(+) 0 0.250(+) 0 0.250(+) 0 0.125(+) 0 0.005(+) 0 0.175(+) 0

最好个数 9 9 10 10 6 7
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(1)F1~F5是5个较为简单的低维测试函数,
全局最优解数量不超过5个,因此除SDE和Self-
CSDE外,大多数算法均可稳定地找到所有解。

(2)虽然F6~F10也是低维函数,且问题最高

维度不超过3维,但全局最优解数量却非常多,其中

F9有多达216个全局最优解。从表3中可看出,除

CCDE-VN和使用了多目标技术的 MOMMOP外,
其他算法均无法在这5个函数上稳定地找到所有

解。以F9为例,除竞赛冠军算法NMMSO可偶尔

找到所有解外,其他算法的PR 值最高不超过0.6,
这表明CCDE-VN的竞争性拥挤小生境技术有很强

的勘探能力,在有大量峰值的问题上能表现出更好

性能。
(3)F11~F15是低维的复杂函数,尽管全局最

优解数量较少,最多不超过8个,但这5个函数均有

较为崎岖的地形,对算法的开采能力有更高要求。
从表3中可看出,F11上PR 值为1的对比算法仅

有4个:FBK-DE、NCD-DE、AED-DDE 和 FDLS-
ADE,而 F12上 PR 为1的对比算法只有 AED-
DDE和FDLS-ADE,F13上PR 值为1的对比算法

仅有FBK-DE。可看出F11~F13有较大的求解难

度,大部分算法都无法取得较满意的结果。然而,本
文提出的CCDE-VN在F11~F13上的PR 值均为

1,即可稳定地找到全部最优解。在F14上,尽管

CCDE-VN并非第一,但也仅差于FBK-DE。在F15
上,所 有 对 比 算 法 的 PR 值 均 未 超 过 0.73,而

CCDE-VN却为0.762,有较明显的优势。从这些分

析可得出,CCDE-VN在低维的复杂函数上同样优

秀。值得一提的是,尽管 MOMMOP在F1~F10
上与CCDE-VN有相当性能,但其在F11~F15上

却全部差于CCDE-VN,这表明 MOMMOP有较为

优秀的勘探能力,但开采能力要差于CCDE-VN。
(4)F16~F20的维度要高于F1~F15,求解难

度也更大,其中维度最低为5维,最高为20维。在

这5个函数中,CCDE-VN在F17上明显好于FBK-
DE,在F18上与FBK-DE相当,而在F16、F19、F20
上差于FBK-DE。事实上,CCDE-VN在F16~F20
上的整体性能仅次于FBK-DE,但明显优于其他10
个对比算法。结合CCDE-VN在F1~F15上的整体

性能,依然可得出CCDE-VN性能有很强的竞争力。
从上述实验结果和分析可看出,CCDE-VN不

仅有出色的勘探能力,也具备较强的开采能力,整体

性能 要 优 于 对 比 算 法。但 需 要 注 意 的 是,尽 管

CCDE-VN在大多数测试函数上要好于对比算法,

但在F14和F20上与FBK-DE有较明显的差距。
分析CCDE-VN在F14上的种群分布可发现,F14
的部分最优解所处的吸引盆较小,使得算法在第一

阶段时就无法准确定位;而F20的吸引盆则过大,
易导致算法的种群多样性过早下降,削弱算法在第

一阶段的勘探能力。因此,对于存在吸引盆大小和

形状分布不规律的函数,CCDE-VN仍有提升空间,
这也是我们后续研究工作的一个重要方向。

4.3 策略有效性验证

  本小节将对本文提出的竞争性拥挤小生境技

术、自适应高斯扰动策略以及虚拟小生境策略进行

消融实验,以验证其有效性。

4.3.1 竞争性拥挤小生境技术验证

为验证竞争性拥挤技术的有效性,基于CCDE-
VN设计了一个对比算法 CDE-VN。在 CDE-VN
中,用经典的拥挤技术替换竞争性拥挤技术,其他方

面与CCDE-VN保持相同。为在统计意义上检验算

法之间的性能是否存在显著性差异,本文采用非参

数的 Wilcoxon秩和检验,显著性水平设为0.05,用
符号“+”表 示 CCDE-VN 性 能 更 好,“≈”表 示

CCDE-VN与 对 比 算 法 性 能 相 当,而 “-”表 示

CCDE-VN性能更差。两个算法的实验结果如表4
所示,从中可看出CCDE-VN在5个函数上要显著

  
表4 竞争性拥挤小生境技术验证的实验结果

函数
CCDE-VN CDE-VN

PR SR PR SR
F1 1 1 1(≈) 1
F2 1 1 1(≈) 1
F3 1 1 1(≈) 1
F4 1 1 1(≈) 1
F5 1 1 1(≈) 1
F6 1 1 1(≈) 1
F7 1 1 0.863(+) 0
F8 1 1 1(≈) 1
F9 1 1 0.433(+) 0
F10 1 1 1(≈) 1
F11 1 1 1(≈) 1
F12 1 1 1(≈) 1
F13 1 1 1(≈) 1
F14 0.846 0.255 0.781(+) 0.098
F15 0.762 0 0.723(+) 0
F16 0.680 0 0.673(≈) 0
F17 0.711 0 0.679(+) 0
F18 0.667 0 0.667(≈) 0
F19 0.515 0 0.517(≈) 0
F20 0.265 0 0.265(≈) 0
+ / 5
≈ / 15
- / 0
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地优于 CDE-VN,且 未 在 任 一 函 数 上 差 于 CDE-
VN。特别地,在F7和F9这类有大量全局最优解

的问题上,CCDE-VN性能提升明显,F7的PR 值

提升0.1以上,F9的PR 值提升了0.5以上。值得

注意的是,F9是CEC2015测试集中全局最优解最

多的函数,有216个全局最优解,且解的分布十分不

均匀。这表明相比于经典的拥挤技术,竞争性拥挤

技术显著增强了算法的勘探能力,有效提升了算法

定位全局最优解的能力。

4.3.2 自适应高斯扰动策略验证

为验证该策略的有效性,设计了两个对比算法:

1)CCDE-VN_noG,删除了自适应高斯扰动策略,其
他方面与CCDE-VN保持相同;2)CCDE-VN_R,将
自适应高斯扰动策略中的标准差σi 设置为随机取

值,不再按个体做个性化设置,即将式(11)的计算方

式修改为下式:

σi=lb+rand(0,1)·(ub-lb) (17)

  表5给出了CCDE-VN与上述两个对比算法的

实验结果。从表中可看出,CCDE-VN在8个测试

函数上要优于CCDE-VN_noG。以F8为例,图6展

示了F8在二维时的函数图像,可看出其全局峰值

所处地形非常陡峭,要求算法有很强的开采能力才

能找到该全局峰值。在该 函 数 上,CCDE-VN 比

   
表5 自适应高斯扰动策略验证的实验结果

函数
CCDE-VN CCDE-VN_noG CCDE-VN_R
PR SR PR SR PR SR

F1 1 1 1(≈) 1 1(≈) 1
F2 1 1 1(≈) 1 1(≈) 1
F3 1 1 1(≈) 1 1(≈) 1
F4 1 1 1(≈) 1 1(≈) 1
F5 1 1 1(≈) 1 1(≈) 1
F6 1 1 1(≈) 1 1(≈) 1
F7 1 1 1(≈) 1 1(≈) 1
F8 1 1 0.447(+) 0 0.971(+) 0.137
F9 1 1 1(≈) 1 1(≈) 1
F10 1 1 1(≈) 1 1(≈) 1
F11 1 1 1(≈) 1 1(≈) 1
F12 1 1 1(≈) 1 1(≈) 1
F13 1 1 0.895(+)0.431 0.980(+) 0.882
F14 0.846 0.2550.719(+)0.020 0.755(+) 0
F15 0.762 0 0.730(+) 0 0.755(≈) 0
F16 0.680 0 0.667(+) 0 0.667(+) 0
F17 0.711 0 0.578(+) 0 0.694(≈) 0
F18 0.667 0 0.657(≈) 0 0.667(≈) 0
F19 0.515 0 0.189(+) 0 0.488(+) 0
F20 0.265 0 0.145(+) 0 0.196(+) 0
+ / 8 6
≈ / 12 14
- / 0 0

图6 函数F8在二维时的图像

CCDE-VN_noG的PR 值高0.5以上,这说明自适

应高斯扰动策略能显著提升算法的开采能力。与

CCDE-VN_R相比,CCDE-VN有6个测试函数更

优,且未在任一个函数上差于CCDE-VN_R,这验证

了设置高斯扰动标准差时,同时考虑个体差异性与

进化过程要优于仅考虑进化过程。

4.3.3 虚拟小生境策略验证

为搜索处于崎岖地形处的全局峰值,在CCDE-
VN中采用了虚拟小生境策略。为验证该策略的有

效性,设计了对比算法CCDE,不再使用虚拟小生境

策略,其他方面与CCDE-VN保持相同。CCDE-VN
与CCDE的对比结果如表6所示。

表6 虚拟小生境策略验证的实验结果

函数
CCDE-VN CCDE

PR SR PR SR
F1 1 1 1(≈) 1
F2 1 1 1(≈) 1
F3 1 1 1(≈) 1
F4 1 1 1(≈) 1
F5 1 1 1(≈) 1
F6 1 1 1(≈) 1
F7 1 1 1(≈) 1
F8 1 1 1(≈) 1
F9 1 1 1(≈) 1
F10 1 1 1(≈) 1
F11 1 1 0.667(+) 0
F12 1 1 0.750(+) 0
F13 1 1 0.667(+) 0
F14 0.846 0.255 0.667(+) 0
F15 0.762 0 0.669(+) 0
F16 0.680 0 0.667(+) 0
F17 0.711 0 0.529(+) 0
F18 0.667 0 0.523(+) 0
F19 0.515 0 0.105(+) 0
F20 0.265 0 0(+) 0
+ / 10
≈ / 10
- / 0
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  从表6中可看出,CCDE-VN在F1-F10这10个函

数上的表现与CCDE相当,这说明两个算法在处理低

维、地形平滑的测试函数时,性能差距不明显。然而,在

F11-F20这10个复杂函数上,因其包含了较为崎岖的地

形,使得CCDE-VN要显著优于CCDE,这验证了虚拟小

生境策略是有效的。为直观说明,图7给出了CCDE和

CCDE-VN在F11上的种群分布情况,图中的红点代表

个体。从两个子图的局部放大图可看出,全局峰值所处

地形非常崎岖,包含大量局部峰值。尽管CCDE能搜索

到全局峰值的周围空间,但因崎岖地形而陷入了局部峰

值。相比之下,CCDE-VN因采用了虚拟小生境策略,
可更准确地定位全局峰值,避免局部峰值的影响。

图7 CCDE与CCDE-VN在F11上的种群分布情况对比

4.4 参数敏感性分析

4.4.1 阶段划分参数η敏感性分析

在CCDE-VN中,采用阶段划分参数η 用于调

节两个阶段的评估次数分配,第一阶段用于执行竞

争性拥挤技术和自适应高斯扰动策略,而第二阶段

执行虚拟小生境策略。通常,η值越大,分配给第一

阶段的评估次数更多,而第二阶段的评估次数会相

对减少,此时算法勘探能力更强,但对于包含崎岖地

形的优化问题易陷入局部峰值;相反,η 值越小,第
二阶段的评估次数会增加,此时算法的开采能力更

强,但勘探能力会减弱,易遗漏部分全局最优解。因

此,有必要对η进行敏感性分析,以确定最优取值,
更好地平衡勘探和开采能力。为此,本节实验中选

取了五种不同的η值:η=0.2、0.4、0.6、0.8和0.9,
实验结果如表7所示。从表中可看出,η=0.8时算法

效果最佳,η=0.6略差于η=0.8。对η=0.2和0.4,

表7 不同η 值的实验结果

函数 η=0.2 η=0.4 η=0.6 η=0.8 η=0.9
PR SR PR SR PR SR PR SR PR SR

F1 1 1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1 1 1
F7 0.969 0.294 0.997 0.902 1 1 1 1 1 1
F8 1 1 1 1 1 1 1 1 1 1
F9 0.993 0.569 1 1 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1 1 1 1
F12 1 1 1 1 1 1 1 1 1 1
F13 0.977 0.863 1 1 1 1 1 1 1 1
F14 0.670 0 0.670 0 0.830 0.176 0.846 0.255 0.820 0.157
F15 0.674 0 0.716 0 0.745 0 0.762 0 0.760 0
F16 0.667 0 0.667 0 0.667 0 0.680 0 0.670 0
F17 0.556 0 0.637 0 0.699 0 0.711 0 0.703 0
F18 0.667 0 0.667 0 0.667 0 0.667 0 0.667 0
F19 0.316 0 0.380 0 0.515 0 0.515 0 0.375 0
F20 0.125 0 0.162 0 0.275 0 0.265 0 0.125 0

最好个数 11 13 16 19 14
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因第一阶段的评估次数不足,使得算法对最优解的

定位能力也更差。而η=0.9则将过多评估次数分

配给第一阶段,导致算法对崎岖地形的处理能力不

足,在更为复杂的F19和F20上出现明显的性能下

降。综上,本文最终选取η=0.8。

4.4.2 阈值φ 敏感性分析

在竞争性拥挤小生境技术中,若父代种群中最

相似的两个个体中“较差”的一个连续φ 次未被子

代个体成功替换,则会直接用子代个体替换该“较
差”父代个体。若φ 值太大,可能会使得子代个体

长时间无法替换该“较差”父代个体,只能替换与其

最相似的父代个体,增加了替换错误发生的可能性。

相反,若φ 值太小,则易使得直接替换的次数过多;
同时,当父代种群中最相似的两个个体的相似度较

低时,这也会进一步导致替换错误发生。因此,本节

实验测试了五种φ 值:φ=10·D、20·D、30·D、

40·D、50·D ,实验结果如表8所示。从表中可看

出,φ=10·D 在F8和F9上无法找到所有全局最

优解,φ=20·D 在F9上表现不稳定,φ=50·D 则

在F7和F13上表现不稳定。当φ=40·D 时,算法

可在16个函数上取得最好结果,但与φ=30·D 相

比,其性能差距并不明显。并且,φ=30·D 在F14-
F17上均好于φ=40·D ,仅在F19和F20差于φ=
40·D 。因此,综合来看φ=30·D 最为合适。

表8 不同φ 值的实验结果

函数 φ =10·D φ =20·D φ =30·D φ =40·D φ =50·D
PR SR PR SR PR SR PR SR PR SR

F1 1 1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1 0.999 0.980
F8 0.761 0 1 1 1 1 1 1 1 1
F9 0.780 0 0.985 0.275 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1 1 1 1
F12 1 1 1 1 1 1 1 1 1 1
F13 1 1 1 1 1 1 1 1 0.997 0.980
F14 0.925 0.588 0.886 0.373 0.846 0.255 0.814 0.118 0.814 0.196
F15 0.755 0 0.767 0 0.762 0 0.755 0 0.752 0
F16 0.696 0 0.683 0 0.680 0 0.673 0 0.670 0
F17 0.672 0 0.706 0 0.711 0 0.696 0 0.701 0
F18 0.667 0 0.667 0 0.667 0 0.667 0 0.667 0
F19 0.500 0 0.507 0 0.515 0 0.520 0 0.517 0
F20 0.243 0 0.270 0 0.265 0 0.277 0 0.277 0

最好个数 14 14 15 16 13

4.4.3 辅助个体数k敏感性分析

在虚拟小生境策略中,对崎岖地形处峰值的附

近个体会生成k-1个辅助个体来形成虚拟小生境。
若k设置过小,虚拟小生境易过早收敛,难以帮助这

些附近个体跳出局部峰值;若k值过大,又会使虚拟

小生境占用过多评估次数,浪费算法的计算资源。
因此,本小节对k 值进行实验和分析,选取了与问

题维度相关的四种取值:k=5·D、10·D、15·D、

20·D ,以及四种固定取值:k=10、30、60、100。值

得注意的是,与问题维度相关的k 值上限为60。因

此,共有八种不同的k值进行实验,对比结果如表9
所示。可看出k=5·D、10、30时,辅助个体数量较

少,虚拟小生境易过早收敛,导致算法性能较差。

k=60在F13上无法稳定地找到所有解。尽管k=
100可在16个函数上表现最好,但因虚拟小生境占

用过多评估次数,导致在F19和F20上性能出现明

显下降。当k=10·D、15·D、20·D 时,算法性能

最好,且彼此无明显区别,因此本文选择了这三者的

中间值k=15·D 。

4.4.4 DE中F 和CR 敏感性分析

在算法1竞争性拥挤小生境技术和算法4虚拟

小生境策略中,均采用 DE作为搜索算法。对 DE
而言,F 和CR 是其重要的两个控制参数。F 表示

缩放因子,值越大,差分向量的扰动作用越大。CR
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  表9 不同k值的实验结果

函数
k=5·D k=10·D k=15·D k=20·D

PR SR PR SR PR SR PR SR
F1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1
F8 1 1 1 1 1 1 1 1
F9 1 1 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1 1
F12 1 1 1 1 1 1 1 1
F13 0.993 0.961 1 1 1 1 1 1
F14 0.846 0.275 0.846 0.255 0.846 0.255 0.830 0.216
F15 0.684 0 0.745 0 0.762 0 0.760 0
F16 0.673 0 0.690 0 0.680 0 0.667 0
F17 0.652 0 0.708 0 0.711 0 0.706 0
F18 0.667 0 0.667 0 0.667 0 0.667 0
F19 0.512 0 0.515 0 0.515 0 0.515 0
F20 0.279 0 0.282 0 0.265 0 0.272 0

最好个数 13 16 15 15

函数
k=10 k=30 k=60 k=100

PR SR PR SR PR SR PR SR
F1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1
F8 1 1 1 1 1 1 1 1
F9 1 1 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1
F11 0.997 0.980 1 1 1 1 1 1
F12 1 1 1 1 1 1 1 1
F13 0.971 0.843 1 1 0.997 0.980 1 1
F14 0.817 0.157 0.859 0.314 0.866 0.314 0.846 0.216
F15 0.676 0 0.735 0 0.765 0 0.772 0
F16 0.667 0 0.676 0 0.667 0 0.673 0
F17 0.596 0 0.664 0 0.708 0 0.730 0
F18 0.552 0 0.667 0 0.667 0 0.667 0
F19 0.157 0 0.495 0 0.512 0 0.468 0
F20 0 0 0.252 0 0.287 0 0.125 0

最好个数 12 14 15 16

为交叉率,值越大,试验个体与变异个体越相似。在

算法1中,[F=0.1,CR=0.3];而算法4中[F=
0.5,CR=0.9]。因此,本小节对这两个算法的F
和CR 取值进行敏感性分析,分别对比四组不同取

值。第1组和第2组是互换算法1和算法4的取

值。第3组和第4组则分别采用了DE中的常用设

置:[F=0.5,CR=0.5]、[F=0.9,CR=0.1]。表

10和表11分别给出了对算法1和算法4的参数敏

感性实验结果。
对算法1而言,从表10的结果可看出[F=

0.1,CR=0.3]在17个函数上得到了最好结果。
[F=0.5,CR=0.9]则效果较差,仅取得13个最好

结果,尽管其在F14上取得较好结果,但在F6-F9
上均无法稳定地找到所有解。[F=0.5,CR=0.5]
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表10 算法1中不同F 与CR 值的实验结果

函数
[F=0.1,CR=0.3] [F=0.5,CR=0.9] [F=0.5,CR=0.5] [F=0.9,CR=0.1]

PR SR PR SR PR SR PR SR
F1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1
F6 1 1 0.947 0.529 1 1 1 1
F7 1 1 0.991 0.745 0.999 0.980 1 1
F8 1 1 0.334 0 0.619 0 1 1
F9 1 1 0.571 0 0.826 0 0.988 0.392
F10 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1 1
F12 1 1 1 1 1 1 1 1
F13 1 1 1 1 1 1 1 1
F14 0.846 0.255 0.987 0.922 0.889 0.431 0.882 0.333
F15 0.762 0 0.762 0.020 0.750 0 0.752 0
F16 0.680 0 0.670 0 0.673 0 0.673 0
F17 0.711 0 0.713 0 0.706 0 0.708 0
F18 0.667 0 0.667 0 0.667 0 0.667 0
F19 0.515 0 0.495 0 0.495 0 0.493 0
F20 0.265 0 0.223 0 0.252 0 0.316 0

最好个数 17 13 11 14

表11 算法4中不同F 与CR 值的实验结果

函数
[F=0.5,CR=0.9] [F=0.1,CR=0.3] [F=0.5,CR=0.5] [F=0.9,CR=0.1]

PR SR PR SR PR SR PR SR
F1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1
F8 1 1 1 1 1 1 1 1
F9 1 1 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1
F11 1 1 0.990 0.941 1 1 1 1
F12 1 1 0.988 0.902 1 1 1 1
F13 1 1 0.925 0.608 1 1 1 1
F14 0.846 0.255 0.843 0.235 0.840 0.235 0.667 0
F15 0.762 0 0.706 0 0.755 0 0.664 0
F16 0.680 0 0.676 0 0.673 0 0.667 0
F17 0.711 0 0.652 0 0.625 0 0.532 0
F18 0.667 0 0.667 0 0.667 0 0.667 0
F19 0.515 0 0.426 0 0.532 0 0.164 0
F20 0.265 0 0.056 0 0.250 0 0 0

最好个数 19 11 15 14

只取得11个最好结果,且在F7~F9上的结果不稳

定。虽然[F=0.9,CR=0.1]在F20上表现较好,
但在F9上表现不稳定,在F15~F17和F19上表现

也略差于[F=0.1,CR=0.3]。综上考虑,采用[F=
0.1,CR=0.3]为算法1的取值。

对算法4而言,从表11可看出[F=0.5,CR=
0.9]有较明显优势,可在19个函数上取得最好结

果。[F=0.1,CR=0.3]则相对较差,仅取得了11
个最优,且在F11~F13上结果不稳定。[F=0.5,

CR=0.5]的整体性能略差于[F=0.5,CR=0.9],
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且在F17上有较为明显的性能下降。[F=0.9,CR=
0.1]在F14~F17和F19~F20上表现较差。因此,
最终选择[F=0.5,CR=0.9]作为算法4的取值。

4.4.5 种群规模NP 敏感性分析

为分析种群规模 NP 对算法性能的影响,本小

节测试五种代表性取值:NP =50、100、200、300、

400,表12给出了实验对比结果。从表中可得到三

点结论:(1)NP 值应大于最优解数量,否则会因个

体数量不足而遗漏部分最优解。例如,F9有216个

最优解,当NP=50、100、200均无法找到所有最优

解。(2)对F1-F5这类较为简单的低维测试函数,

CCDE-VN对种群规模不敏感,NP 略大于或小于

推荐值均能找到所有最优解。(3)对F16-F20这类

维度较高的复杂函数,NP 较大或较小都不适宜。
一方面,虽然较大 NP 可增强勘探能力,有助于定

位更多最优解,但也会因有限的适应度函数评估次

数而降低开采能力,导致算法的收敛精度不够。另

一方面,较小 NP 有利于提高开采能力,但会因勘

探能力不足而导致遗漏部分最优解。综上所述,对
于不同类型的问题,种群规模设置也应有所区别。

表12 不同NP 值的实验结果

函数
推荐

NP
最优解
数量

NP=50 NP=100 NP=200 NP=300 NP=400
PR SR PR SR PR SR PR SR PR SR

F1 80 2 1 1 1 1 1 1 1 1 1 1
F2 80 5 1 1 1 1 1 1 1 1 1 1
F3 80 1 1 1 1 1 1 1 1 1 1 1
F4 80 4 1 1 1 1 1 1 1 1 1 1
F5 80 2 1 1 1 1 1 1 1 1 1 1
F6 100 18 1 1 1 1 1 1 1 1 1 1
F7 300 36 0.999 0.980 1 1 1 1 1 1 1 1
F8 300 81 0.440 0 0.932 0.020 1 1 1 1 1 1
F9 300 216 0.231 0 0.450 0 0.804 0 1 1 1 1
F10 100 12 1 1 1 1 1 1 1 1 1 1
F11 200 6 1 1 1 1 1 1 1 1 1 1
F12 200 8 0.968 0.745 1 1 1 1 1 1 1 1
F13 200 6 1 1 1 1 1 1 1 1 0.990 0.941
F14 200 6 0.752 0.039 0.768 0.039 0.856 0.314 0.886 0.373 0.882 0.392
F15 200 8 0.748 0 0.755 0 0.762 0.020 0.745 0 0.750 0
F16 200 6 0.676 0 0.683 0 0.690 0 0.670 0 0.683 0
F17 200 8 0.672 0 0.696 0 0.708 0 0.708 0 0.691 0
F18 200 6 0.631 0 0.667 0 0.667 0 0.667 0 0.667 0
F19 200 8 0.449 0 0.502 0 0.512 0 0.507 0 0.387 0
F20 200 8 0.294 0 0.297 0 0.272 0 0.154 0 0.127 0

4.5 在实际优化问题上的应用

4.5.1 三角函数超越方程组

在实际工程领域中,很多优化问题涉及三角函

数超越方程组的求解[38],例如电机结构设计[39]、传
热问题[40]以及多杆复杂机构位置分析问题[41]等。
这些问题中的三角函数超越方程组通常包含多个最

优解,本质上是一个多峰优化问题,求解难度较大。
式(18)给出了一个三角函数超越方程组的实例[38],
该实例有18个全局最优解。

F1(X)=1+sin(x2-x1)· x1-
π
4  ·sinx1

sinx2

+ x2-
3π
4  ·sinx2

sinx1 =0

F2(X)=1-sin(x2-x1)· x1-
π
4  ·cosx1

sinx2

+ x2-
3π
4  ·cosx2

sinx1 =0

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(18)

  本 文 采 用 CCDE-VN 对 其 进 行 求 解,与

CEC2015多峰优化竞赛的冠军算法 NMMSO[37]、

2023年提出的FDLS-ADE算法[32]以及在实际问题

中有较好表现的两个多峰优化算法———HNDE/

2A[42]和 KSDE[43]进行对比。因该问题是求零点

解,不宜直接用优化算法求解,可先转化为求最大值

或最小值问题,例如:求所有方程的绝对值之和或平

方和的最小值问题,可形式化为min∑
m

i=1|ei(x)|

或min∑
m

i=1ei
2(x),其中ei(x)表示方程组中的

第i个方程,m 是方程个数。方便起见,本文采用

求平方和的最小值,即 min∑
m

i=1ei
2(x)。实验中

每个算法运行51次,评估次数设为200000。除

NMMSO采用了动态种群外,其他算法的种群规模

均设为100。算法的PR 值和SR 值分别如图8与

图9所示。
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图8 算法在三角函数超越方程组问题上的PR 值

图9 算法在三角函数超越方程组问题上的SR 值

从这两个图中可看出,CCDE-VN的PR 值和

SR 值要优于其他对比算法。尽管 CCDE-VN 与

NMMSO 在 PR 值 上 差 距 不 大,但 在 SR 值 上

CCDE-VN比 NMMSO高0.3以上,即CCDE-VN
在51次 运 行 中 找 到 所 有 解 的 次 数 要 显 著 高 于

NMMSO。该实验表明 CCDE-VN 有较好的鲁棒

性,在求解难度较大的实际问题上也能表现出优异

性能。

4.5.2 调频声波合成问题

调频声波合成[44]是音频信号处理中的一个重

要问题,通过调节波形生成器的相关参数,可调频合

成复杂且多样的音色,在音乐合成、声音设计以及数

字音频处理等领域有广泛应用。该问题的求解目标

是按给定的频率特性和音色生成声波信号,可形式

化为式(19)-(20)[44]:

y(t)=a1sin(w1tθ+a2sin(w2tθ+
a3sin(w3tθ))) (19)

y0(t)=1.0sin(0.5tθ+1.5sin(4.8tθ+
2.0sin(4.9tθ))) (20)

其中θ=2π/100,其他参数的取值范围是[-6.4,

6.35]。求解该问题的关键是找到最优解X ={a1,

w1,a2,w2,a3,w3},使得由式(19)生成的估计声

波与式(20)给定的目标声波尽可能相似。因此,可
通过最小化估计声波与目标声波之间的误差平方和

来求解,如式(21)所示:

f(x)=∑
100

t=0

(y(t)-y0(t))2 (21)

该问题是一个高度非线性且存在大量局部峰值的

MMOP,最优解为f(x)=0,有8个已知的全局最

优解。
本文用CCDE-VN求解该问题,并与CEC2015

多峰竞赛的冠军算法 NMMSO[37]、FDLS-ADE算

法[32]以及两个性能较好的其他算法———DIDE[19]和

DHNDE[15]进行对比。每个算法运行51次,适应

度函数评估次数为200000。除 NMMSO采用动

态种群外,其他算法的种群规模均设为100。算法

的PR 值如图10所示。因该问题非常复杂,所有

算法均无法在给定的评估次数内找到所有解,即

SR 全为0,因此未给出对应的SR 图。从图10
中可看出,CCDE-VN的 PR 值为0.336,排名第

一,而其他对比 算 法 的 PR 值 最 高 仅 为0.015。
因此,这也进一步验证了CCDE-VN性能非常有

竞争力。

图10 算法在调频声波合成问题上的PR 值

4.5.3 求解实际问题的时间对比情况

为验证CCDE-VN求解上述两个实际问题的运

行时间情况,本小节对比了CCDE-VN和其他对比

算法的实际耗时情况,分别在表13和14中给出具

体数据。可看出,虽然CCDE-VN在两个实际问题

上的平均运行时间并非最短,但也能排至第二。总

体来看,CCDE-VN不论是在求解精度,还是在运行

时间上均有较好表现。
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表13 各算法求解三角函数超越方程组的时间

算法 时间/s
FDLS-ADE 3.94
CCDE-VN 4.39
KSDE 9.48
NMMSO 17.65
HAND/2A 18.63

表14 各算法求解调频声波合成问题的时间

算法 时间/s
DIDE 6.37

CCDE-VN 7.12
FDLS-ADE 8.05
DHNDE 11.37
NMMSO 17.65

5 结 论

经典的拥挤小生境技术是求解多峰优化问题的

一种有效手段,但其存在替换错误问题,易导致部分

全局最优解无法被定位。此外,在多峰优化问题中,
有些全局峰值所处地形较为崎岖,使得算法易陷入

局部最优,对问题求解带来很大挑战。为此,本文提

出了一种基于竞争性拥挤小生境技术的多峰优化算

法,简称CCDE-VN,主要贡献有两点:(1)提出了竞

争性拥挤小生境技术,不仅考虑子代个体与父代个

体之间的相似性,同时还考虑了父代个体自身之间

的相似性,可减少替换错误的发生,更好地保持种群

多样性。(2)提出了虚拟小生境技术,在可能处于局

部峰值的个体周围生成若干辅助个体,形成一个虚

拟小生境,以进一步对该个体做细粒度搜索,从而更

好地定位到全局峰值。
在CEC2015测试集和两个实际优化问题上进

行了大量实验验证,可得到如下六点结论:(1)在竞

争性拥挤技术中,通过增加可替换个体的方式,能有

效减少替换错误的发生;(2)在设置高斯扰动的标准

差时,同时考虑进化过程与个体差异性这两点因素

有更好效果;(3)对处于崎岖地形处的全局峰值,有
必要进一步处理其附近个体,以提高定位到全局峰

值的可能性;(4)本文提出的三种策略之间能实现优

势互补;(5)与其他11种有代表性的多峰优化算法

的对比结果表明,CCDE-VN性能有很强的竞争力;
(6)CCDE-VN在实际优化问题上也有很好性能。在

未来,将对竞争性拥挤小生境技术做进一步研究:
(1)尝试去除参数φ,使得该技术有更好普适性,能
作为一个通用框架用于改善其他同类算法性能;

(2)进一步提高在高维函数上的性能,例如:F16-F20;
(3)尝试用于求解更多的实际优化问题,例如:桁架

结构优化。

致 谢 感谢西安电子科技大学高卫峰教授对本文

提出的中肯意见,使得本文的质量得以提升! 感谢九

江学院彭虎教授在算法对比实验部分提供的帮助!

参 考 文 献

[1] Wang
 

Z,
 

Chen
 

D,
 

Gong
 

J,
 

et
 

al.
 

Fast
 

high-precision
 

ellipse
 

detection
 

method.
 

Pattern
 

Recognition,
 

2021,
 

111:
 

107741
[2] AlQuraishi

 

M.
 

Machine
 

learning
 

in
 

protein
 

structure
 

predic-

tion.
 

Current
 

Opinion
 

in
 

Chemical
 

Biology,
 

2021,
 

65:
 

1-8
[3] Jafari

 

M
 

,
 

Salajegheh
 

E
 

,
 

Salajegheh
 

J.
 

Optimal
 

design
 

of
 

truss
 

structures
 

using
 

a
 

hybrid
 

method
 

based
 

on
 

particle
 

swarm
 

optimizer
 

and
 

cultural
 

algorithm.
 

Structures,
 

2021,
 

32:391-405
[4] Hu

 

X
 

M,
 

Zhang
 

S
 

R,
 

Li
 

M,
 

et
 

al.
 

Multimodal
 

particle
 

swarm
 

optimization
 

for
 

feature
 

selection.
 

Applied
 

Soft
 

Computing,
 

2021,
 

113:
 

107887
[5] Zhao

 

H,
 

Li
 

J
 

R,
 

Liu
 

J.
 

Localized
 

time-distance-based
 

multi-

modal
 

optimization
 

algorithm
 

and
 

its
 

application
 

in
 

PID
 

con-

trol.
 

Chinese
 

Journal
 

of
 

Computers,
 

2024,
 

47
 

(6):
 

1323-1340
 

(in
 

Chinese)

(赵宏,李珈瑞,刘静.
 

基于局部时空的多峰优化算法及其在

PID控制中的应用.
 

计算机学报,
 

2024,
 

47
 

(6):
 

1323-1340)

[6] Cheng
 

Z
 

G,
 

Zhan
 

Z
 

H.
 

Two-layer
 

collaborative
 

differential
 

evolution
 

algorithm
 

for
 

multimodal
 

optimization
 

problems.
 

Chinese
 

Journal
 

of
 

Computers,
 

2021,
 

44(9):
 

1806-1823
 

(in
 

Chinese)

(陈宗淦,詹志辉.
 

面向多峰优化问题的双层协同差分进化算

法.
 

计算机学报,
 

2021,
 

44(9):
 

1806-1823)

[7] Li
 

M,
 

Zhao
 

Y,
 

Cao
 

R,
 

et
 

al.
 

A
 

recursive
 

framework
 

for
 

im-

proving
 

the
 

performance
 

of
 

multi-objective
 

differential
 

evolu-

tion
 

algorithms
 

for
 

gene
 

selection.
 

Swarm
 

and
 

Evolutionary
 

Computation,
 

2024,
 

87:
 

101546
[8] Cavallaro

 

C,
 

Cutello
 

V,
 

Pavone
 

M,
 

et
 

al.
 

Machine
 

learning
 

and
 

genetic
 

algorithms:
 

a
 

case
 

study
 

on
 

image
 

reconstruction.
 

Knowledge-Based
 

Systems,
 

2024,
 

284:
 

111194
[9] Zhou

 

X
 

Y,
 

Yin
 

Z
 

Y,
 

Gao
 

W
 

F,
 

Tan
 

G
 

S,
 

Yi
 

Y
 

G.
 

Adaptive
 

multi-neighborhood
 

artificial
 

bee
 

colony
 

algorithm
 

based
 

on
 

re-

inforcement
 

learning.
 

Chinese
 

Journal
 

of
 

Computers,
 

2024,
 

47
(7):

 

203-228
 

(in
 

Chinese)

(周新宇,尹子悦,高卫峰,谭贵森,易玉根.
 

一种基于强化学习

的自适应多邻域人工蜂群算法.
 

计算机学报,
 

2024,
 

47(7):
 

203-228)

[10] Tijjani
 

S,
 

Ab
 

Wahab
 

M
 

N,
 

Noor
 

M
 

H
 

M.
 

An
 

enhanced
 

par-

ticle
 

swarm
 

optimization
 

with
 

position
 

update
 

for
 

optimal
 

fea-

ture
 

selection.
 

Expert
 

Systems
 

with
 

Applications,
 

2024,
 

247:
 

12-37

181
 

期 周新宇等:一种基于竞争性拥挤小生境技术的多峰优化算法



[11] Thomsen
 

R.
 

Multimodal
 

optimization
 

using
 

crowding-based
 

differential
 

evolution//Proceedings
 

of
 

the
 

IEEE
 

Congress
 

on
 

Evolutionary
 

Computation.
 

Portland,
 

USA,
 

2004:
 

1382-1389
[12] Li

 

X.
 

Efficient
 

differential
 

evolution
 

using
 

speciation
 

for
 

mul-

timodal
 

function
 

optimization//Proceedings
 

of
 

the
 

7th
 

Annual
 

Conference
 

on
 

Genetic
 

and
 

Evolutionary
 

Computation.
 

New
 

York,
 

USA,
 

2005:
 

873-880
[13] Li

 

X.
 

A
 

multimodal
 

particle
 

swarm
 

optimizer
 

based
 

on
 

fitness
 

Euclidean-distance
 

ratio//Proceedings
 

of
 

the
 

9th
 

Annual
 

Con-

ference
 

on
 

Genetic
 

and
 

Evolutionary
 

Computation.
 

London,
 

UK,
 

2007:
 

78-85
[14] Gao

 

W,
 

Yen
 

G
 

G,
 

Liu
 

S.
 

A
 

cluster-based
 

differential
 

evolu-

tion
 

with
 

self-adaptive
 

strategy
 

for
 

multimodal
 

optimization.
 

IEEE
 

Transactions
 

on
 

Cybernetics,
 

2013,
 

44(8):
 

1314-1327
[15] Wang

 

K,
 

Gong
 

W,
 

Deng
 

L,
 

et
 

al.
 

Multimodal
 

optimization
 

via
 

dynamically
 

hybrid
 

niching
 

differential
 

evolution.
 

Knowl-

edge-Based
 

Systems,
 

2022,
 

238:
 

107972
[16] Zhao

 

H,
 

Zhan
 

Z
 

H,
 

Liu
 

J.
 

Outlier
 

aware
 

differential
 

evolu-

tion
 

for
 

multimodal
 

optimization
 

problems.
 

Applied
 

Soft
 

Computing,
 

2023,
 

140:
 

110264
[17] Zhang

 

Y
 

H,
 

Gong
 

Y
 

J,
 

Gao
 

Y,
 

et
 

al.
 

Parameter-free
 

Voronoi
 

neighborhood
 

for
 

evolutionary
 

multimodal
 

optimiza-

tion.
 

IEEE
 

Transactions
 

on
 

Evolutionary
 

Computation,
 

2019,
 

24(2):
 

335-349
[18] Merz

 

P,
 

Freisleben
 

B.
 

Fitness
 

landscape
 

analysis
 

and
 

memet-

ic
 

algorithms
 

for
 

the
 

quadratic
 

assignment
 

problem.
 

IEEE
 

Transactions
 

on
 

Evolutionary
 

Computation,
 

2000,4(4):337-

352
[19] Chen

 

Z
 

G,
 

Zhan
 

Z
 

H,
 

Wang
 

H,
 

et
 

al.
 

Distributed
 

individuals
 

for
 

multiple
 

peaks:
 

A
 

novel
 

differential
 

evolution
 

for
 

multi-

modal
 

optimization
 

problems.
 

IEEE
 

Transactions
 

on
 

Evolu-

tionary
 

Computation,
 

2019,
 

24(4):
 

708-719
[20] Zhou

 

X
 

Y,
 

Huang
 

J
 

H,
 

Peng
 

H,
 

et
 

al.
 

Differential
 

evolution
 

algorithm
 

based
 

on
 

adaptive
 

bi-coordinate
 

systems
 

for
 

mixed-

variable
 

optimization
 

problem.
 

Chinese
 

Journal
 

of
 

Comput-

ers,
 

2024,
 

47(09):
 

2116-2140
 

(in
 

Chinese)

(周新宇,黄君洪,彭虎,等.
 

自适应双坐标系的差分进化算法

求解混合变量优化问题.计算机学报,
 

2024,
 

47(09):
 

2116-

2140)

[21] Lin
 

X,
 

Luo
 

W,
 

Xu
 

P.
 

Differential
 

evolution
 

for
 

multimodal
 

optimization
 

with
 

species
 

by
 

nearest-better
 

clustering.
 

IEEE
 

Transactions
 

on
 

Cybernetics,
 

2019,
 

51(2):
 

970-983
[22] Jiang

 

Y,
 

Zhan
 

Z
 

H,
 

Tan
 

K
 

C,
 

et
 

al.
 

Optimizing
 

niche
 

center
 

for
 

multimodal
 

optimization
 

problems.
 

IEEE
 

Transactions
 

on
 

Cybernetics,
 

2021,
 

53(4):
 

2544-2557
[23] Liang

 

S
 

M,
 

Wang
 

Z
 

J,
 

Huang
 

Y
 

B,
 

et
 

al.
 

Niche
 

center
 

iden-

tification
 

differential
 

evolution
 

for
 

multimodal
 

optimization
 

problems.
 

Information
 

Sciences,
 

2024,
 

678:
 

121009
[24] Wang

 

Z
 

J,
 

Zhou
 

Y
 

R,
 

Zhang
 

J.
 

Adaptive
 

estimation
 

distribu-

tion
 

distributed
 

differential
 

evolution
 

for
 

multimodal
 

optimi-

zation
 

problems.
 

IEEE
 

Transactions
 

on
 

Cybernetics,
 

2020,
 

52(7):
 

6059-6070

[25] Zhao
 

H,
 

Zhan
 

Z
 

H,
 

Lin
 

Y,
 

et
 

al.
 

Local
 

binary
 

pattern-based
 

adaptive
 

differential
 

evolution
 

for
 

multimodal
 

optimization
 

problems.
 

IEEE
 

Transactions
 

on
 

Cybernetics,
 

2019,
 

50(7):
 

3343-3357
[26] Zhou

 

X,
 

Li
 

N,
 

Fan
 

L,
 

et
 

al.
 

Adaptive
 

niching
 

differential
 

e-

volution
 

algorithm
 

with
 

landscape
 

analysis
 

for
 

multimodal
 

op-

timization.
 

Information
 

Sciences,
 

2025,
 

700:
 

121842
[27] Cheng

 

R,
 

Li
 

M,
 

Li
 

K,
 

et
 

al.
 

Evolutionary
 

multiobjective
 

op-

timization-based
 

multimodal
 

optimization:
 

Fitness
 

landscape
 

approximation
 

and
 

peak
 

detection.
 

IEEE
 

Transactions
 

on
 

Ev-

olutionary
 

Computation,
 

2017,
 

22(5):
 

692-706
[28] Basak

 

A,
 

Das
 

S,
 

Tan
 

K
 

C.
 

Multimodal
 

optimization
 

using
 

a
 

biobjective
 

differential
 

evolution
 

algorithm
 

enhanced
 

with
 

mean
 

distance-based
 

selection.
 

IEEE
 

Transactions
 

on
 

Evolu-

tionary
 

Computation,
 

2012,
 

17(5):
 

666-685
[29] Bandaru

 

S,
 

Deb
 

K.
 

A
 

parameterless-niching-assisted
 

bi-ob-

jective
 

approach
 

to
 

multimodal
 

optimization//Proceedings
 

of
 

the
 

IEEE
 

Congress
 

on
 

Evolutionary
 

Computation.
 

Cancun,
 

Mexico,
 

2013:
 

95-102
[30] Wang

 

Y,
 

Li
 

H
 

X,
 

Yen
 

G
 

G,
 

et
 

al.
 

MOMMOP:
 

Multiobjec-

tive
 

optimization
 

for
 

locating
 

multiple
 

optimal
 

solutions
 

of
 

multimodal
 

optimization
 

problems.
 

IEEE
 

Transactions
 

on
 

Cybernetics,
 

2014,
 

45(4):
 

830-843
[31] Wang

 

R,
 

Hao
 

K,
 

Huang
 

B,
 

et
 

al.
 

Adaptive
 

niching
 

particle
 

swarm
 

optimization
 

with
 

local
 

search
 

for
 

multimodal
 

optimi-

zation.
 

Applied
 

Soft
 

Computing,
 

2023,
 

133:
 

109923
[32] Wang

 

Z
 

J,
 

Zhan
 

Z
 

H,
 

Li
 

Y,
 

et
 

al.
 

Fitness
 

and
 

distance
 

based
 

local
 

search
 

with
 

adaptive
 

differential
 

evolution
 

for
 

multimo-

dal
 

optimization
 

problems.
 

IEEE
 

Transactions
 

on
 

Emerging
 

Topics
 

in
 

Computational
 

Intelligence,
 

2023,
 

7(3):
 

684-699
[33] Sheng

 

W,
 

Wang
 

X,
 

Wang
 

Z,
 

et
 

al.
 

Adaptive
 

memetic
 

differ-

ential
 

evolution
 

with
 

niching
 

competition
 

and
 

supporting
 

ar-

chive
 

strategies
 

for
 

multimodal
 

optimization.
 

Information
 

Sci-

ences,
 

2021,
 

573:
 

316-331
[34] Dick

 

G,
 

Whigham
 

P
 

A.
 

Weighted
 

local
 

sharing
 

and
 

local
 

clearing
 

for
 

multimodal
 

optimisation.
 

Soft
 

Computing,
 

2011,
 

15:
 

1707-1721
[35] Li

 

X,
 

Engelbrecht
 

A,
 

Epitropakis
 

M
 

G.
 

Benchmark
 

func-

tions
 

for
 

CEC’2013
 

special
 

session
 

and
 

competition
 

on
 

niching
 

methods
 

for
 

multimodal
 

function
 

optimization.
 

RMIT
 

Uni-

versity,
 

Evolutionary
 

Computation
 

and
 

Machine
 

Learning
 

Group,
 

Australia,
 

Technical
 

Report,
 

2013
[36] Epitropakis

 

M
 

G,
 

Li
 

X,
 

Burke
 

E
 

K.
 

A
 

dynamic
 

archive
 

nic-

hing
 

differential
 

evolution
 

algorithm
 

for
 

multimodal
 

optimiza-

tion//Proceedings
 

of
 

the
 

IEEE
 

Congress
 

on
 

Evolutionary
 

Computation.
 

Cancun,
 

Mexico,
 

2013:
 

79-86
[37] Fieldsend

 

J
 

E.
 

Running
 

up
 

those
 

hills:
 

Multi-modal
 

search
 

with
 

the
 

niching
 

migratory
 

multi-swarm
 

optimiser//Proceed-

ings
 

of
 

the
 

IEEE
 

Congress
 

on
 

Evolutionary
 

Computation.
 

Beijing,
 

China,
 

2014:
 

2593-2600
[38] Li

 

T
 

J,
 

Jia
 

J
 

Y,
 

Hu
 

X
 

M.
 

Global
 

set
 

of
 

solutions
 

for
 

two
 

types
 

of
 

systems
 

of
 

nonlinear
 

equations
 

in
 

mechanical
 

engi-

28 计  算  机  学  报 2026年



neering.
 

Journal
 

of
 

Xidian
 

University,
 

2005,
 

32
 

(1):
 

71-74
 

(in
 

Chinese)

(李团结,贾建援,胡雪梅.
 

机械工程中两类非线性方程组的

完全解.
 

西安电子科技大学学报(自然科学版),
 

2005,
 

32
 

(1):
 

71-74)

[39] Kumar
 

P,
 

Hati
 

A
 

S.
 

Review
 

on
 

machine
 

learning
 

algorithm
 

based
 

fault
 

detection
 

in
 

induction
 

motors.
 

Archives
 

of
 

Com-

putational
 

Methods
 

in
 

Engineering,
 

2021,
 

28(3):
 

1929-1940
[40] Liu

 

D,
 

Cheng
 

Y
 

M.
 

The
 

interpolating
 

element-free
 

Galerkin
 

method
 

for
 

three-dimensional
 

transient
 

heat
 

conduction
 

prob-

lems.
 

Results
 

in
 

Physics,
 

2020,
 

19:
 

103477
[41] Kapsalyamov

 

A,
 

Hussain
 

S,
 

Brown
 

N
 

A
 

T,
 

et
 

al.
 

Synthesis
 

of
 

a
 

six-bar
 

mechanism
 

for
 

generating
 

knee
 

and
 

ankle
 

motion
 

trajectories
 

using
 

deep
 

generative
 

neural
 

network.
 

Engineer-

ing
 

Applications
 

of
 

Artificial
 

Intelligence,
 

2023,
 

117:
 

105500
[42] Wang

 

K,
 

Gong
 

W,
 

Liao
 

Z,
 

et
 

al.
 

Hybrid
 

niching-based
 

dif-

ferential
 

evolution
 

with
 

two
 

archives
 

for
 

nonlinear
 

equation
 

system.
 

IEEE
 

Transactions
 

on
 

Systems,
 

Man,
 

and
 

Cyber-

netics:
 

Systems,
 

2022,
 

52(12):
 

7469-7481
[43] Wu

 

J,
 

Gong
 

W,
 

Wang
 

L.
 

A
 

clustering-based
 

differential
 

evo-

lution
 

with
 

different
 

crowding
 

factors
 

for
 

nonlinear
 

equations
 

system.
 

Applied
 

Soft
 

Computing,
 

2021,
 

98:
 

106733
[44] Zhou

 

X,
 

Wu
 

Z,
 

Wang
 

H,
 

et
 

al.Gaussian
 

bare-bones
 

artificial
 

bee
 

colony
 

algorithm.
 

Soft
 

Computing,
 

2016,
 

20(3):907-924

ZHOU
 

Xin-Yu,
 

Ph.D.,
 

associate
 

professor.
 

His
 

main
 

research
 

interests
 

include
 

intelligent
 

computation.
TIAN

 

Long-Hui,
 

M.Eng.
 

candi-
date.

 

His
 

main
 

research
 

interest
 

is
 

swarm
 

intelligent
 

optimization
 

algo-
rithms.

MING
 

Fei,
 

Ph.D.
 

candidate.
 

His
 

main
 

research
 

inter-

ests
 

include
 

intelligent
 

optimization
 

and
 

evolutionary
 

multi-
task

 

optimization.
GONG

 

Wen-Yin,
 

Ph.D.,
 

professor.
 

His
 

main
 

research
 

interests
 

include
 

intelligent
 

computation
 

and
 

multi-objective
 

optimization.
WANG

 

Hui,
 

Ph.D.,
 

professor.
 

His
 

main
 

research
 

in-
terests

 

include
 

intelligent
 

computation
 

and
 

multimodal
 

opti-
mization.

Background
  In

 

the
 

real
 

world,
 

there
 

exist
 

many
 

multimodal
 

optimi-
zation

 

problems,
 

such
 

as
 

multi-ellipse
 

detection,
 

protein
 

structure
 

prediction,
 

truss
 

structure
 

optimization,
 

and
 

fea-
ture

 

selection.
 

These
 

problems
 

are
 

characterized
 

by
 

multiple
 

global
 

optima,
 

requiring
 

algorithms
 

to
 

find
 

as
 

many
 

of
 

these
 

optima
 

as
 

possible.
 

Although
 

the
 

evolutionary
 

algorithm
 

(EA)
 

is
 

an
 

effective
 

optimization
 

approach
 

suitable
 

for
 

uni-
modal

 

optimization
 

problems,
 

it
 

lacks
 

mechanisms
 

to
 

main-
tain

 

population
 

diversity,
 

and
 

therefore,
 

its
 

effectiveness
 

in
 

solving
 

multimodal
 

optimization
 

problems
 

remains
 

low.
 

To
 

address
 

this,
 

niching
 

techniques
 

have
 

been
 

developed
 

to
 

en-
hance

 

the
 

diversity
 

maintenance
 

capability
 

of
 

EA,
 

thereby
 

improving
 

its
 

effectiveness
 

in
 

solving
 

multimodal
 

optimiza-
tion

 

problems.
 

Among
 

these
 

niching
 

techniques,
 

crowding
 

niching
 

has
 

received
 

widespread
 

attention
 

due
 

to
 

its
 

simplicity
 

and
 

high
 

effectiveness.
However,

 

the
 

classical
 

crowding
 

niching
 

technique
 

only
 

considers
 

the
 

similarity
 

between
 

offspring
 

and
 

parents.
 

If
 

off-
spring

 

individuals
 

are
 

dissimilar
 

to
 

their
 

parents,
 

this
 

can
 

lead
 

to
 

“replacement
 

errors,”
 

which
 

significantly
 

impacts
 

algo-

rithm
 

performance.
 

To
 

address
 

this
 

issue,
 

this
 

paper
 

propo-
ses

 

an
 

improved
 

crowding
 

niching
 

technique.
 

Unlike
 

the
 

clas-
sical

 

crowding
 

niching
 

technique,
 

which
 

considers
 

only
 

the
 

similarity
 

between
 

offspring
 

and
 

parents,
 

our
 

approach
 

also
 

considers
 

the
 

similarity
 

between
 

parents.
 

By
 

identifying
 

the
 

two
 

most
 

similar
 

parents,
 

the
 

worse
 

of
 

the
 

two
 

in
 

terms
 

of
 

fitness
 

value
 

is
 

considered
 

a
 

replaceable
 

individual,
 

thereby
 

reducing
 

replacement
 

errors.
 

Extensive
 

experiments
 

were
 

conducted
 

on
 

the
 

CEC2015
 

benchmark
 

set,
 

and
 

11
 

repre-
sentative

 

algorithms
 

were
 

included
 

in
 

the
 

comparison,
 

inclu-
ding

 

two
 

championship
 

algorithms
 

from
 

the
 

CEC
 

multimodal
 

optimization
 

competition.
 

The
 

comparison
 

results
 

demon-
strate

 

that
 

our
 

approach
 

exhibits
 

highly
 

competitive
 

perform-
ance.
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