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Abstract In real-world production and daily life scenarios, many optimization problems typically
possess multiple global optimal solutions. Such problems are referred to as multimodal optimiza-
tion problems. The crowding niching technique has long been recognized as an effective method
for solving multimodal optimization problems. However, a key limitation of this approach lies in
its reliance solely on the similarity between offspring individuals and their parent individuals.

This limitation can easily lead to “replacement errors”, and as a result, some global optima can-
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not be accurately located by the algorithm. Furthermore, for multimodal optimization problems,
some global peaks are often surrounded by rugged landscapes. This characteristic increases the
risk of the algorithm becoming trapped in local optima, thereby reducing its overall performance
in optimizing multimodal optimization problems. To effectively address these issues, this paper
proposes a novel multimodal optimization algorithm by designing a competitive crowding niching
technique. Based on the classical crowding technique, the proposed competitive crowding niching
technique incorporates a more comprehensive similarity assessment. Specifically, in addition to
evaluating the similarity between offspring individuals and their parent individuals, the proposed
technique also takes into account the similarity among the parent individuals themselves, and the
parent individual with the poorer fitness value is considered as a potentially replaceable individual. If
an offspring individual is dissimilar to all parent individuals, the potentially replaceable individual
has a chance to be removed from the population. In this way, the algorithm can significantly re-
duce the likelihood of replacement errors through maintaining better population diversity. Moreo-
ver, some individuals may be trapped into local optima due to the rugged landscape, a virtual nic-
hing strategy is designed to overcome this issue. In this virtual niching strategy., some auxiliary
individuals are generated within the neighborhood of trapped individual to form a virtual niche,
aiming to further explore the surrounding search space of the trapped individual. This strategy is
beneficial to increasing the chances of discovering the global peaks. Extensive experimental evalu-
ations are conducted on the well-established CEC2015 multimodal test suite as well as on two re-
al-world optimization problems (the trigonometric transcendental equation system and frequency-
modulated sound wave synthesis problem). The proposed algorithm is compared against 11 state-
of-the-art multimodal optimization algorithms, including two champion algorithms from previous
CEC multimodal optimization competitions. The results demonstrate that: 1) On the CEC2015
test suite, the proposed algorithm achieves the best performance on 16 functions and successfully
locates all global optima on 13 of them. The number of best results obtained by the proposed al-
gorithm exceeds that of the best-performing comparison algorithm by 15%. 2) On the two real-
world optimization problems, the proposed algorithm achieves an average improvement of
12.05% in terms of the Peak Ratio (PR) metric compared to the best-performing comparison al-
gorithm.

Keywords multimodal optimization; crowding technique; rugged landscape; local search
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BBV . H AR AR X R O OF B R AR
25 5 L DR R 3 7 B AN [R) ) A A BT 3 A 1 4 2l v
WARTEAR 380 22T R o o A B T
HH R P AR AL 5 T L A AR 3 B N o s DAER
R SCSIORS BE . A G AR SCER 13 D SO Bl e
LA B R AR 22 e O S AR R E
AN o fi . BT AR AD PR

X' =Gaussian (X, .c,) (10)
0; =min
{max( . fit(Xb'cst) — fit(X) ’”1) ,ub}
Jit (X o) — fit (X o) + 1. 0E — 10
(1D

o, fit (o) Fmad N BEREL X oo Tl X ore 73 00FR
rfﬁlﬂﬁitﬁﬁﬁ&mﬁﬂﬂw%ﬂﬁ/\ﬁ&, X, J YA,
Y X, 8 N AP, o BN AR, Y X
TN RS o, MK, IR max BT 0 BORNF
St omin BRECK ub B B ub B 16 23R TEAT IR
¢ FEs (38 it 5 A X~ s .

BIE 20 FE N T B SR e

¥iA: NP,FEs,pop ;

it pop.FEs;

1. FORi=1TO NP DO

2 e [ R A sh = BE (L0 A mUET AN AR X
3 IR X @M EE . FEs = FEs + 1;

4. IF fit(X)) > fir(X,) THEN

5 A X i X, 5

6 END IF

7 END FOR

3.3 EHUNEERE

20 W AJE Ak [ L o 3 Y A7 7 — L8 50 h ey UK )
B X — et S 2 A JR AR (E L 2 4 )R I
R Jay de D0 e ) 57 T 3 b 0y UK 3t T2 o, 5k %ok 300 19
SRAp 2 ARBRPR . LR 4 S, O, F1O, 751
FREARAL 3] L P A 2 R (e, /T A& ) O, Ji Y
MO T AR X -3, B B R R AR L Z T
O, o] I 0) 352 2 g 0K A 652 20 1) Joy o W 5 DR 0k, 300
ENLE] O, BIMERE R A D ARt . ik,

5755
E3 I A 2SN = q £
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EEXHAEAEIAL O, X Fh 4 R WA (1) MMOP, A& 3C %
FTRE T T — ol ke 8 /08 2 555 5 W LA KT skt 25 e o 3
(AN PAABGHE — 2548 % 15 B FLBk R 3 B AR L 3R e
7 3] 4> Jy W (i 19 7] i

AU /N A 5 TR W g o B T S R St e R A ) A
P — 20 1 200K J3E 48 2R, SR T 04 (L B 3 7T BE 23 A7
FEZA R A AR F 23 TR 9835 1 BE R 8
WA REL . TRIBS  — A% B — > 0 {8 A X B — 4
A TR AR L, AT R L
N 35 R W 22T AR S0 R FH I R B R Ak B Rl
T A A5 ) — 0 {1 A AN AR B — A 3 I BE e - A
HRERAEDEA K, WG R B Holland 42
N 3 R S R R b O BT A A AR R
IG5 22 HEATHE P - 5 £ 38 I B B 4 1 S R 1 S
O I BRIZ PO 38 2 AR A B Py i H A 2 )R
EE T — A3 I B f 4 HL R BT R 1 AN IR AE R R
O, EHEV LB, HEANRE 2%k PR,
B B RRE . RS - BE N 0.05 .
DD Jyln)Be g . ko b b i B v BR B R L 7R S
3 T HANAIS R .
BUR 3 WEBREAR

WA pop,D ;

LT pop;

1 4 pop BT AR I B BE ST B 25 AT HEIT

2 BEEBRER r =0.05+D

3. FOR i=1 TO |pop|—1 DO

4. FOR j=i+1 TO |pop| DO

5 H X 5X, BENT K X, K pop HIHER
6 END FOR

7 END FOR

FE 56 BURPRE A 3 S B A AR 5 S i A AR Y
TE IV BE 22 (B b 0 AR o, T TEA X S RO
IR FIRE BEER L LA R 3k IR BE SR A9 A 1A T4
FEAL/INE B R W (AR R, T IO A
LB SR B AN M B R A R ORG R I S
B2 R R 00 /IN A 5% O s of Ak B B AN AL 2 R T
MUK LA A A A 5 Joe B A 1A B 35 17 3 254 . 28
{H/NT 1. OE—6, A E A T 2835 BIKE FE 20K,
JC T L/ A B R A R, #7 KF 1. 0E— 6,
DU 25 B3 A AT BE AL T IR UK LI B A T SR S A A1
T R R 40/ AR B SR g SR i — B R . X TR B AL
B AR F L Se 1T S A A 5 R RE SR A R Y
PR d SRR AR L TR R d /2 15 R
P BE k — 1 A48 Bh A AR TE W L/ N A= 5% . 4l B

AN A2 BT AR R

Ii_j:‘r,,j—ﬁ—[rand(O,l) «2—1]+d/2 (14)
Ho X =z vz ez ) BaEBINME, = €
{1,200k =1}, X, =(a;1 52,5 sx:p) NEALFR
KL rand (0,1) J2[0, 1T A #52) 53 A B B AL
B, kNN R L d ERT 1
HBRH N 1. &= min(60,15 « D) , 3 D Jy a5
4r

TR R N B Z J5 % Sk 4 ML iy DE/

rand/1 SRBE XX b AR BEAT A B, DL FE 448 R 9k
Ab B A £ J] L 25 1] A B Bk i R S . 2 R
LN A 55 v B AR R i 2 A A A 365 7 3 22 (B /N T
1. OE—6 I, A 7 32 kg 480 /5 A= B8 2 W 50, 3 ik o Ak
SEHIWT T — AR 1 T R /N A B SR . LA
K5 g o fieask — 20 BB L 181 AP g o S AR A E A
A [) — i 2 8 AE Hh i ok € S Rl B . R
X, R m h A B DR TG TR 1 R 5 3R B
JEBR i DA 23 B H R R AU/ AR B R Mg AT I R
ZJa Akg b X, E S X, R R 22N T
L. OE—6 . JUAS - Ab B 75 U R X X, SR T RE 0L/ A
Bgws, KIhAMA X, AT REEE, 5 X, 19I55
J3E 22 R AR o PR o 2 0 LT T R 48008 A B8 SR

X X,
N A

U0 TR R L R T 0 E B B A R R I {1 1Y
AR T 2 A5 A7 AE 4 Jay W A, G 2R R a8 1 3P A IR
BOH T L/ AR BT SR g, A BB 23 7R T 25 4 Jay (B 1Y
AN TR R AL/ AR B AR W, AT TR 2 A 0 R R R
PEAG AR, R,y 42 1) R 0070 A 45 5R W 1Y 1 R
B A SCH SRR 43 S A B B, BEVE I 80 06 Y i
INf £ BREICPEAR OB T 55 — B B, AT B A PR A B
HOARFN A 3 I e 340 30 A s AR 200 T A
B B AT R AP0 /N A BT SR . Dy B4 b 3 B R AL
AR AR A R T ARG ERIR .

% 4 BB/ B g

A pop s D, FEs, MaxFEs,F = 0.5, CR = 0.9,e =
1.0E — 6;

f: pop s

1. FORi=1TO | pop | DO

e >

5 RMES SR
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2. IF FEs > MaxFEs THEN 3.5 EEmEERENH
3. break; CCDE-VN & iy £ L BW KA 75
4. END IF T DR R [R) & 2 B Al X A TR e . IR
5. 5=0; B RERRECH G A BEER/NE NP [
5 Fi==1]1f2lX,)~ fir(X) > e THEN Yy D o 5Y 3 B 5 D A T 0 I i) B
7. L X, SRR BT A R RS d 5 e
oo TRRODIRE L R COFESERE 1 SESHEDI /N SRR T 5 00
. gffi;ﬁiiiﬂ " 172;;&,;1; AT IS5 LB 053000 1 5
11. WHILE max( fit(S)) — min(fit(S)) > ¢ QNP = D). Eﬁ&ﬁﬁﬁﬁiﬂﬁﬁ%ﬁ%i;ﬂ@ﬁﬁ%\
Lo R 11010 A AT S S 2R OR S B L A I B S T) 52 4% B Ry
3. ST XS N DEfrang/ OCNET Do AEIRERE UKL 9 S AU ROy
LA U OCNP « D), #HREIH . W £ 5 ) 714 15 2
" U, I, FEs — FEs 41, R0 B 47 A 32 0 IR I 4 0 B A e g R
. N — O, H—BrBi FUHN 0.8 + G, ML 1
16. END FOR W 24 K 0.8 « G » (NP « D+NP*+
17. END WHILE NP « D)+ NP* «- D+1), NP>D, HiUf 4
18.  ENDIF B — R B 2%, B DL YR 1 B AR A ) 42 4R B AT i
19. END FOR H OG « NP,

3.4 CCDE-VN EXBEiRE

Shy BT R b U B AR SCHR Y CCDE-VIN 83,
R 5 oy iy 7 HAAAARS, b 28y R R
53 WY BT T 43 300 AT A O SR W 12 2 B0 BUR%
PESHTTE LR R sy th 2 4 i . 5 HALE A8/ AE
BeH AR Z W AL 5535 4 Eb . CCDE-VN 3 224 4
T RS AL

(D2 347 4 20 L B 31 55 R Wtk o 5 4 M
FrHAR .

(2057 4 47 ¥ 22 0 1 v BT 90 3 SR ms gt oy A 3
JOE e i I Bl SR

(3 6 17 : N HIEBRFEA

(DEF 74T B2 T B RU/INE S R0
#ik 5. CCDE-VN
#iA: 9. FEs.MaxFEs ;
i pop s
1. WHILE FEs << MaxFEs THEN
2 IF FEs <75« MaxFEs THEN
3 AT B2 G VI BE /N B R (B D
4 PRAT 1 3 0 5 30 4 3 S Bk 2)
5. ELSE
6 PAT IR A Bk 3) 5
7 T 1L/ AR BRI (R vk )
8 break;
9 END IF

10. END WHILE

(TR 2 A 38 N i W7 40 3l SR ms o 75 4k 21 Fh
FF rp o R R A e A B 25 AN AR i B Y ) ) A2
FBEJE ONP) o X A A8 e 5 4 2l % 15 ]
HIEHR OCNP « D), HEHFEERIER — X —k . 0
4R ONP), HIL, Bk 2 MR 2 445
0€0.8 + G« (NP+NP « D+NP)), i D=1,)Lk
R 2 R AN AR OG « NP« D),

(OTERIE 3 IEBRE NG, FEEAE R B 5 Y
AR TE — 5 B A A Y A A 44 DRk I () 52 2%
Al ONP? < D),

(DTFEFIEL 4 BIV/NES RS b A /N E
BENA 15 « D MR BEST DE 48, K Be it ) & 22
R OS5« D) BEMERRE N 0.2.G
RS 4 e A M S 22 B O(G - D).,

Zi I ,CCDE-VN Bk i M 2 2 O (G -
NP*+G « NP « D+NP* « D+G « D", i T
G > NP > D , WS 0 S 4 I [0] 52 2% 5 ml 3ty
O(G « NPY,

4 LWWIEFMERST
4.1 MiXJHMSHIZE

g UE CCDE-VN S M fig . 48 SCR ] CEC2015
M AL, TR MR, ZMIK4E 5 CEC2013 ik
B U g A M T L R 22 W A A A R A I B —
EMK4E . CEC2015 175 20 AN [R) 4 B A4 3 o
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BB R B RAE L O E BNk 1 fs, Hrp F1-
F5 J&AHXT 7] 500 2 06 pR %K, F6-F10 Syl § B i £
UEE PRI, T F11-F20 J2 i 2 AN 52 A oh B & T8 1L
M)A 2% 22 W pRE . AN, B R BCRT X N A B K
TEA YRR ol FE R0 A £ 42 I 3K 4 1 D Sk A 1L
e e,

Rz 1 CEC215 MiXEHEXBER

e PV RONITAT AR R
Hoik Y i
F1 2 1 50000 80
F2 5 1 50000 80
F3 1 1 50000 80
F4 4 2 50000 80
F5 2 2 50000 80
F6 18 2 200000 100
F7 36 2 200000 300
F8 81 3 400000 300
F9 216 3 400000 300
F10 12 2 200000 100
F11 6 2 200000 200
F12 8 2 200000 200
F13 6 2 200000 200
F14 6 3 400000 200
F15 8 3 400000 200
F16 6 5 400000 200
F17 8 5 400000 200
F18 6 10 400000 200
F19 8 10 400000 200
F20 8 20 400000 200

RN LA R B3 AR SCR A T W {H R PR
(Peak Ratio) fl T % SR (Success Rate) ¥E J %t It
RIPERESSAr . PR BRBEIREZ RS eR 2 A0 4

JRy B A A A K i A 4 R e A ik B S R - 3 L
o AR A R

YNPF,
~ NKP + NR
Hefr, NPF, 2550 gaafy b #2809 42 Je) 5 pe i 4
B NKP SR A ) B B A7 4 e o DIE A 1) A 2
NR FaRfkiafr ki, £ PEfEfbr SR FoR
kL Z s AT T s AT OB BT A 1B AT RO L
{6 He il s A7 2 38 B ik e — s A1 P RE H 2 B
AeRm . SR MR A W pros, K
NSR sl Ba 7 I,

NSR

RIS ECE y FER /N NP 4% CEC2015
MA@ HEA T I E (e DL, Bkl 280 g
H 0.8, S ET R A T ¢ 2 30 « DB/
A 358 R B B Bl B SR EL £ = min(60.15 « D)

4.2 5HMHBEXEEILL

ARSCHEELT 11 AR 2 1 2 i fE 4k 5k 1A T
PEREXT H, BARE L e 2 Frs . FEXF ek B
B 1~7 2N H/INESRRR B 2 AR o 5y
e 1~4 J2& N 28 /N A B3 B R B L B0 A 1) B
B ML 5~7 S rAE 48 1 o7 FH B AL /N AR B 4
ARWED:, Bk 8 =N RS R Z kb
L RIL 9 RN HZ BB AR L., [EE UM
SELEVE 10 A11 43 2 CEC2013 #il CEC2015 £
VAT R S A . e TR RIE R T S
HARICE 2 UK TAE .

PR (1

x2 MIEEEHEXER

L2 kA R TR IR

1. CDE!Y LI BF /N B R 1 2 e e 50k 2003 4F

2. SDE!? I FE A A 8GN AR S R 1 2 A AL B 1 2005 4¢

3. Self-CCDE* Iof SR 2 0 R WO 5 /N B R R 1) 2 AR AL R 2014 4

o FH /N A B R ) 22 W AR AR 5 ik 4. Sel{-CSDE!" N7 FH 2 Ty ik g 4 e 2 /N A B R Y 22 W R AL B 2014 4F
5. FBK-DE™! 3 FH 5 30T 0 3R 2R /N B 22 W AR AL 2019 4

6. NCD-DE™ REFH GA B Ak /N 55 b i 2 W A A 50k 2021 4F

7. AED-DDE" JE P 15 30 40 76 K 43N AR B 1Y 22 e Ak 50k 2020 4F

L FH JR A % 4 2 i e Ak Bk 8. FDLS-ADE! 7 FH 1R 34 2 0 AT R A R 1 2 e AR B 2023 4F
IV EASR 75 N Sk=R7S 9. MOMMOP""] INGEASR T Z NISEA 2R 87 2015 4E
. e s 10. dADE/nrand/15¢ ;A B ARG A I 2 e AL Bk 2013 4F
CEC ZRLAE ST 11, NMMSOL! 180 25 2 M R A 2 W 0t 150 2014 4F

A A B D pR B Bk A7 aE AT 51 kL K
EIEAE Jy B 85 B MR RS N 1. 0E-4, LAk,
S S O [ SR AR A5 R N 25 ek, 2 BOE
A1, 000”5 5w, 17 #4737 5 1 X 0. 0007
GER“07 R . Ry Iy R UL, XA DU pR AR B

gl AT ™ . 5 UL AL s AT RO
51 WY SR AT T (1) 35X 2 22 0 1 1k B vk 45
I8 rP Y H LA L ) 4 - NCD-DE™ | AED-DDE"™"' |
FDLS-ADE"* [ i A SCR F M TR 35 & 1 5 3
BB AR G B R AT X HE 5 (2) A BOR S22 — A B A



72 it =2

Bl

i 2026 4F

ORI B RS AR iV ) M s L 10 v e 2K VA
B W8 R R g 25 (] T,

BT L, T A b B 1 S 2 2R 1 ok R
T TF I SCER B , HAK Sy . (1) CDE Al SDE %5
H AT SCHk 5] % 35 (2) Self-CCDE, Self-CSDE,
NMMSO 55k P8 T CHk[6 ]t & 25 (3) FBK-DE
25 JOR VR F SCk[ 21 ] 3% 45 (4)NCD-DE 45 55k i
F3ck[22]% % 15 (5) AED-DDE 45 3 3% I T Sk
(2473 4;(6)FDLS-ADE 45 %3k J8 T Scik[32 1

F 4; (1) MOMMOP 25 3ok 5 T SClk[16 ] 5% 35
(8)dADE/nrand/1 5 3 >k I T SCHR[36 ] b & 2,
3 45 TR AR g IR o+ ROR A U
PEREREAL,“ — " RN AR U R 22, =" RR AR
SCRE S X LA REAE Y . AR 3 TR E L A S
% CCDE-VN F£ BT A M ok 500 1 3594 300 6 0L 7
F1~F13.F15 LI} F17~F18 3% 16 4> sk %L I fig 48
I 25 B R IR TE F1~F13 FAee 2T A 194 Jm) it
Ef#. PR Al SR ¥y 1., BARKSZEGZ5 R an T .

#* 3 CCDE-VN 5EM 11 HEBERLEEZNXTLLER

. CCDE-VN CDE SDE Sel{-CCDE Sel{-CSDE FBK-DE
Lk PR SR PR SR PR SR PR SR PR SR PR SR
F1 1 1 1(=) 1 0.657(+) 0.373 1(=) 1 1(=) 1 1(=) 1
F2 1 1 1(=) 1 0.737(+) 0.529 1(=) 1 1(=) 1 1(=) 1
F3 1 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F4 1 1 1(=) 1 0. 284(+) 0 1(=) 1 0.620(+) 0.160 1(=) 1
F5 1 1 1(=) 1 0.922(+) 0.843 1(=) 1 0.990(+) 0.980 1(=) 1
F6 1 1 1(=) 1 0.056(+) 0 0.953(+) 0.400 0.692(+) 0.080 0.990(+)  0.820
F7 1 1 0.861(+) 0 0.054(+) 0 0.648(+) 0 0.466(+) 0 0.813(+) 0
F8 1 1 0(+) 0 0.015(+) 0 0.678(+) 0 0.312(+) 0 0.824(+) 0
F9 1 1 0.474(+) 0 0.011(+) 0 0.260(+) 0 0.107(+) 0 0.425(+) 0
F10 1 1 1(=) 1 0.147(+) 0 1(=) 1 0.985(+) 0.860 1(=) 1
F11 1 1 0.330(+) 0 0.314(+) 0 0.743(+) 0.060 0.493(+) 0 1(=) 1
F12 1 1 0.002(+) 0 0.208(+) 0 0.275(+) 0 0.253(+) 0 0.935(+)  0.480
F13 1 1 0.141(+) 0 0.297(+) 0 0.623(+) 0 0.427(+) 0 1(=) 1
F14 0. 846 0.255 0.026(+) 0 0.216(+) 0 0. 657(+) 0 0. 300(+) 0 0.907(—)  0.460
F15 0.762 0 0. 005(+) 0 0.108(+) 0 0.318(+) 0 0.150(+) 0 0. 730(+) 0
F16 0. 680 0 0(+) 0 0.108(+) 0 0.587(+) 0 0.023(+) 0 0.707(—) 0
F17 0.711 0 0(+) 0 0.076(+) 0 0.248(+) 0 0.023(+) 0.630(+) 0
F18 0. 667 0 0.167(+) 0 0.026(+) 0 0.290(+) 0 0(+) 0 0.667(=) 0
F19 0.515 0 0(+) 0 0.105(+) 0 0.088(+) 0 0(+) 0 0.520(—) 0
F20 0. 265 0 0(+) 0 0(+) 0 0.070(+) 0 0(+) 0 0.450(—) 0
A4 16 7 1 6 3 13
o NCD-DE AED-DDE FDLS-ADE MOMMOP dADE/nrand/1 NMMSO
R PR SR PR SR PR SR PR SR PR SR PR SR
F1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F2 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F3 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F4 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F5 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F6 1(=) 1 1(=) 1 1(=) 1 1(=) 1 0.984(+) 0.780 0.993(+)  0.880
F7 0.905(+) 0.078 0.838(+) 0.039 0.951(+) 0.216 1(=) 1 0.823(+) 0 1(=) 1
F8 0.961(+) 0.098 0.747(+) 0 0.999(+) 0.961 1(=) 1 0.967(+) 0.140 0.900(+) 0
F9 0.553(+) 0 0. 384(+) 0 0.572(+) 0 1(=) 1 0.431(+) 0 0.978(+)  0.100
F10 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1 1(=) 1
F11 1(=) 1 1(=) 1 1(=) 1 0.716(+) 0.020 0.667(+) 0 0.997(+)  0.980
F12  0.993(+) 0.941 1(=) 1 1(=) 1 0.939(+) 0.549 0.740(+) 0 0.985(+)  0.880
F13  0.892(+) 412 0.686(+) 0 0.702(+) 0.020 0.667(+) 0 0.667(+) 0 0.997(+)  0.980
F14  0.683(+) 0 0.667(+) 0 0.667(+) 0 0.667(+) 0 0.667(+) 0 0.707(+) 0
F15  0.640(+) 0 0.637(+) 0 0.689(+) 0 0.618(+) 0 0.627(+) 0 0.653(+) 0
F16 0.667(+) 0 0.667(+) 0 0.667(+) 0 0. 650(+) 0 0.667(+) 0 0.660(+) 0
F17  0.522(+) 0 0.375(+) 0 0. 446(+) 0 0.505(+) 0 0. 403(+) 0 0. 468(+) 0
F18  0.667(=) 0 0.654(+) 0 0.667(=) 0 0.497(+) 0 0.633(+) 0 0.663(+) 0
F19  0.505(+) 0 0.375(+) 0 0.424(+) 0 0.223(+) 0 0.018(+) 0 0. 350(+) 0
F20  0.252(+) 0 0.250(+) 0 0.250(+) 0 0.125(+) 0 0.005(+) 0 0.175(+) 0
B i 9 9 10 10 6 7
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(DF1~F5 J& 5 A% Ay 1] ) 0 24 00 4k e
SR R EURE ANEBE 5 A4, R UL Bk SDE il Self-
CSDE 4, K 2 %0 5 1 34 ] A2 e b 4% 21 i A fi

(2) B8R F6~F10 L2 Ik 4k ok £k, H In) 8 & 5
Yr g AR L 3 4 A A R SR L AR AR A AR 2
F9 fi 23k 216 2w, W& 3l E b
CCDE-VN fiffi ] 7 Z Htr R 8y MOMMOP 4b,
HAb VLY To A3 5 /> pR B b R M R 3 o A
fitt. LLF9 R, B 55 #8562 5 NMMSO 1] ff /8
BT AT g4 HA BB L ) PR e AT 0.6,
X R W CCDE-VN (1355 4 P30 85 /A 55 1R A AR 38
B R BE T 70 A R i W 7% [) L 1 R 3 0 A T 4
PERE .

(3)F11~F15 ZARLE 1 52 2 R 50, 58 & R e
M E D 2 ANt 8 A HiX 5 A R A
38 WRF IR 1) ML T, XS VE I TR OR BE A B R R
MF 3 Al FEH,F11 | PR E 9 1 MR & 21X
# 4 4. FBK-DE.NCD-DE, AED-DDE HI FDLS-
ADE, i F12 & PR & 1 X LB % R A AED-
DDE #l FDLS-ADE,F13 | PR {6~ 1 Byxf He B
VA FBK-DE, o] & F11~F13 4 # K 1Y R i 4
JE R Sk T S B R 25 . SR, AR
XA CCDE-VN 1E F11~F13 [ PR {64 K
1, RAT R b 4R ) 4 3B A A . fF Fl4 b, R4
CCDE-VN Jf4E% — A d1{{ 22 T FBK-DE, 7£ F15
L BT N LG PR O YR B 0. 73, i
CCDE-VN #1 0. 762, A W] @ (3, X gy
BroJ 43 i, CCDE-VN 7E AR 4 1) 52 % ok %0 | [8) A 4
%, MR %S MOMMOP £ F1~F10
5 CCDE-VN £ 1 4P g8, H H A F11~F15 I
42T CCDE-VN, X & B MOMMOP £ # H
P75 MR RE 1 (H TR B )1 #£ 25 T CCDE-VN,

(DOF16~F20 W42 5 T F1~F15, 5K fi ¥k
JEAL T, o Y AR 5 4EL ol 20 4E. AE
X 5 %P CCDE-VN 7E F17 E W 84 F FBK-
DE.f F18 b5 FBK-DE 14, i #£ F16.F19.F20
-2:F FBK-DE, 3 I.CCDE-VN 7& F16 ~F20
R PE RE{L R T FBK-DE, {H B W48 F HiAih 10
AR, 454 CCDE-VN 7E F1~F15 | 4% {k
PERE KSR T 75 CCDE-VN PEREA BSR4 77,

DN b 3R S 56 45 SR f 4 B v] Y, CCDE-VN AN
A R B PR BE T o 2 A5 B0 I T SR BE ) L A
PEREZE M TR AL, BHEEENE, L8
CCDE-VN 7€ K 2 £ i ph £ - 2247 F %) 3k,

{B7E F14 #1 F20 |5 FBK-DE £ # B & () 2255,
434 CCDE-VN #& F14 I 4 Fl B 20 i 1] % L. F14
A0 4 e A0 e T Ak 1 T2 51 4 58 /DN ol A5 B30 AR 5 —
W B BN 38 G 12 o 0 2 75 T F20 A9 W 51 2 0k ok
Gy B D RIRE 2 RE R O R R W 59 AR AR
— W BRI R RE F1 . TR X AR AR WS K /N A
FEAR 3 A A LAY BR 8, CCDE-VN A5 47 2 7 25 (]
XA RFRATE LW TAER — N EE 1,
4.3 REEFRMERIE

AR/ RE R AR SCHRE A S R B B /N A SR
AL H A R sh R m DL K i 8L /N A B R g AT
TH Rl S50, DLBGIE A 5o
4.3.1 e MRS N AR AR RIUE

Sk S5 IE 38 G PR T R 1A &0tk L 36 F CCDE-
VN &3t T — A% 3 3 CDE-VN, #£ CDE-VN
b, 8 B 40 B R 8 55 P MR BT RO oAb 7
5 CCDE-VN fR£5M [ . A7EG 8 X LR RH
BZ B ERERFAEREEZER . ACRHAES
) Wilcoxon LIS K, & 3 MK SF 3%k 0. 05, H
55 “ 47 F R CCDE-VN t R 4, “~” £ /&
CCDE-VN 5 X b 55 3 M se A 24, M “ — 7 &R
CCDE-VN PEfigs 25, WMABILER LA Rk 4
fim . N a] & Y CCDE-VN 7£ 5 > R %l [ 32 5 3%

x4 TEUEAFKPMERERARIENIBER

ik CCDE-VN CDE-VN
PR SR PR SR

F1 1 1 1(=) 1
F2 1 1 1(=) 1
F3 1 1 1(=) 1
F4 1 1 1(=) 1
F5 1 1 1(>) 1
F6 1 1 1(=~) 1
F7 1 1 0. 863(+) 0
F8 1 1 1(=) 1
F9 1 1 0.433(+) 0
F10 1 1 1(=~) 1
F11 1 1 1(=) 1
F12 1 1 1(=) 1
F13 1 1 1(=) 1
F14 0. 846 0. 255 0.781(+) 0.098
F15 0.762 0 0.723(+) 0
F16 0. 680 0 0.673(=~) 0
F17 0.711 0 0.679(+) 0
F18 0. 667 0 0.667(~) 0
F19 0.515 0 0.517(=>) 0
F20 0. 265 0 0.265(~) 0
+ / 5

~ / 15

_ / 0
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Bl

AL T CDE-VN, H R 7E AL — K %4 I 22 T CDE-
VN, $550H .78 F7 fl F9 X A K 4 )5 & A i
e -, CCDE-VN P R4 F+ B 2., F7 1y PR {H
fF 0.1 LI, FO M PR ESEF T 0.5 DL b, (HAH
TR, F9 & CEC2015 Mk 4 v 4 /) 5 1 i o
Z W RE A 216 D R ERAIUE B A o
By, X RBIAH T 2 i P BFBOR 55 A R 4 B
FOR B F R T AE R RE ) A RUR T TR
7E v 4 Ry B AL A 1) g
40302 FEE N g R 2l 3R W e ik

Sk 90 UIE 2 R W A R L ST T AN X F
1) CCDE-VN_noG, B T F 3& N /= 8 Pt 2l 5w, H:
fl 77 1 5 CCDE-VN {454 [F ; 2) CCDE-VN_R, ¥
F 38 1 e 5T P 30 5R W b i bR 9 25 o, 1R BE HILEX
1B s AR RS A B3 B, B =X D TR T
LEECh T

o, =10+ rand(0,1) « (ub —1b) a7n

#5454 T CCDE-VN 5 Lk Wi~ xt e & iy
SR LR, NERF AT EF . CCDE-VN 7£ 8 4~ ik
PR E AL T CCDE-VN_noG, UL F8 M, K 6 &
7~ 1 F8 T 4t it i ok B EIR , T HH 4 Jy 6 {H
JIT Ak b A B BE U, R B A AR SR A IR BE A
etk Bz 2 R (H., 7Eix K% I, CCDE-VN [t

5 BENSHMHIEMBIENIKRER
-~ CCDE-VN CCDE-VN_noG CCDE-VN_R

PR SR PR SR PR SR
F1 1 1 1(~) 1 1(~) 1
F2 1 1 1(~) 1 1(~) 1
F3 1 1 1(~) 1 1(~) 1
F4 1 1 1(~) 1 1(~) 1
F5 1 1 1(~) 1 1(~) 1
F6 1 1 1(~) 1 1(~) 1
F7 1 1 1(~) 1 1(~) 1
F8 1 1 0.447(+) 0 0.971(+) 0.137
F9 1 1 1(~) 1 1(~)
F10 1 1 1(~) 1 1(~) 1
F11 1 1 1(~) 1 1(~) 1
F12 1 1 1(~) 1 1(~) 1
F13 1 1 0.895(+) 0.431 0.980(+) 0.882
Fl14  0.846 0.255 0.719(+) 0.020 0.755(+) 0
F15  0.762 0 0.730(+) 0  0.755(~) 0
F16  0.680 0 0.667(+) 0.667(+) 0
F17  0.711 0 0.578(+) 0  0.694(~) 0
F18  0.667 0 0.657(=~) 0 0.667(~) 0
F19  0.515 0 0.189(+) 0  0.488(+) 0
F20  0.265 0 0.145(+) 0  0.196(+) 0
+ / 8 6
~ / 12 14
- / 0 0

N 2026 4F
200-
04 ' “
-1004 ' “
200+ ; Leal |y '
_3-(1[3’-1&%“‘_"»--\_;"' ‘ ' ‘ -~y
) 6H;xggwf'ﬂ-i
0510
K6 R FS 78 4Et 1y &4

CCDE-VN_noG #J PR {8 0.5 LA b, X Ui B [ i
N I Bl R g e W E AR R R ). 5
CCDE-VN_R #f It , CCDE-VN 47 6 />l 3 5% %4 57
s HARTEAE—A i %h | 22T CCDE-VN_R, X 5 iE
T T B A o 22 B, R S A R 2 S
e RS T A s
4.3.3  REABL/INA: B OR 0 50 E

Ry 45 2 Ak Ui K 1 TR A 7 4> JRy I 1B, 7E CCDE-
VN HCR T RN SRR MG . 50 UE 2% 5K w1 A
Rk, W T A L e CCDE , A R R 80/ A= 385
S, HoAl 75 1 5 CCDE-VN #4354 W, CCDE-VN
L5 CCDE WXt b g5 R an sk 6 i .

F6 EHUNERFHBIEHIBER

CCDE-VN CCDE

PR SR PR SR
F1 1 1 1(~) 1
F2 1 1 1(~) 1
F3 1 1 1(~) 1
F4 1 1 1(~) 1
F5 1 1 1(~) 1
F6 1 1 1(~) 1
F7 1 1 1(~) 1
F38 1 1 1(~) 1
F9 1 1 1(~) 1
F10 1 1 1(~) 1
F11 1 1 0.667(+) 0
F12 1 1 0. 750(+) 0
F13 1 1 0.667(+) 0
Fl14 0. 846 0. 255 0.667(+) 0
F15 0.762 0 0.669(+) 0
F16 0. 680 0 0.667(+)
F17 0.711 0 0.529(+) 0
F18 0. 667 0 0.523(+)
F19 0.515 0 0.105(+)
F20 0. 265 0 0(+) 0
+ / 10
~ / 10
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JEIB T4 — Pl e T 38 PR I N A SR B9 2 0 A S vk

75

M 6 A FH i ,CCDE-VN 7£ F1-F10 iX 10 bR
BRI S CCDE A4, i3 i B P A58 2 70 A0 FRAIG
A T A I R B ) PEREZE BE RN I . SR E
F11-F20 iX 10 & 2R %L I, RHAL & T 5 R IRp iR i) s
& fif% CCDE-VN 21 L F CCDE, X $iiF T HE 480/

SRS RN . S EDWBEEH L B 7 45 T CCDE Hil

218
2218495 L5871

-2.1849 1687
(a) CCDER MRS i 52

1.68705

CCDE-VN 7£ F11 b By #E o3 A 15 00, B b i 20 s AR 3R
AR AT Sy R B AT &, 42 Jmy WA e Ak
MO AR F IR A 2 KR R . S OCDE R &R
1) 4 SRy UG (L 1) JE 12 [, {IEL AT iy IR e JE2 A A T Jeg e
fH. HMZ F,CCDE-VN R T HE 480/ A 5% 5 g
B A b 7 4 S 0 L 3R i JR) TS 06 L FH) R )

-2.185 1.6871

-2.18495 1.68705

22,1849 1.687
(b) CCDE-VN B FhEE 4> A 150

¥l 7 CCDE 5 CCDE-VN £ F11 b 550 #E 4> 4 15 4 Eb

4.4 SYHBESN
4.4.1 BB S8 g USRS A

7E CCDE-VN R B Bl 42 280 ¢ JH T
TS B BB VAL OB TS 5 — B BT T AT SR
GRS BT HOR T A & N s B S S A B B
PAT RN A BE R0 . 8, p (R, 44 56—
B B IEAR B £ T 58 B B 0 TEAS T B A
Xof /0 o I A A 3 B PR R 0 B X T R IR

T BIL A 1R R 5 B A Jm R W (L s AH B . (ELAB/DN 5
T BTG UOBC2s BN S IR RV B TR B O B
s AE IR BE 1 2255 o By st I w00 42 SRy B I
AT N BERS o BEAT BB 2 M s DR E B A0 AL
A A AR AT R BE Ty . Dyl AR L 5G
BUT HFASE ) 9 . 9= 0.2.,0.4.0.6.,0.8 F10.9,
SEREIRINZR T PR . WERBPRIEH, 9= 0. 8 IR
ROR A, = 0.6 2T 9= 0.8, XF y= 0.2F10.4,

R7T TR nENXEER

. 7=0.2 7=0.4 7=0.6 7=0.8 7=0.9
LES PR SR PR SR PR SR PR SR PR SR
F1 1 1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1 1 1
F7 0. 969 0.294 0.997 0. 902 1 1 1 1 1 1
F8 1 1 1 1 1 1 1 1 1 1
F9 0.993 0. 569 1 1 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1 1 1 1
F12 1 1 1 1 1 1 1 1 1 1
F13 0.977 0. 863 1 1 1 1 1 1 1 1

F14 0. 670 0 0. 670 0 0. 830 0.176 0. 846 0. 255 0. 820 0.157
F15 0.674 0 0.716 0 0. 745 0 0.762 0 0. 760 0
F16 0. 667 0 0. 667 0 0. 667 0 0. 680 0 0. 670 0
F17 0.556 0 0. 637 0 0. 699 0 0.711 0 0. 703 0
F18 0. 667 0 0. 667 0 0. 667 0 0. 667 0 0. 667 0
F19 0.316 0 0. 380 0 0.515 0 0.515 0 0. 375 0
F20 0.125 0 0.162 0 0.275 0 0. 265 0 0.125 0
H IF KL 11 13 16 19 14
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PRI 565 — i B A9 TP Ak U RO J2 o8 5 B8 ke A 1 A 1)
SERIRE I 2, T p = 0. 9 WPK i 23R4k v
T 25 5 — I B S 350 00 ok T R IR Ml T 1) Ak BEAE 1 AN
KPR N R F19 A F20 b B0 B B A T AE
R, 25 b AR U AR EL n =0. 8,
4.4.2  BIE ¢ BURME BT

P55 e BT /N AE B R v, A AR b I
FEARL A T A AN A v “ A8 227 1 — N5 2R o IRR B T
FRA R B Ty 5 e, 0 25 1 4 T AR A M B 4 0% A

2SR o IR T RE 2 45 AU 1
IR 1) T A i e 22 7 AR A HUBE R e 5 0

e ALY ACARAN A 39 i 1 5 40 8 R S A ) FT B

FABC A7 @ fHR /N W) 5 (i A5 B 4 J B i %2 5
() ], 2 A AR rh 5 A AR B S A R 18 R D) B2 A
i, Xt — 0 S HOE A R A . I, AT
SCEIGR T IR o fH: 9 =10+ D.20+ D30« D,
40 « D50 « D B4R INK 8 Fim. WRPTHTH
. =10+ D 7¢ F8 Al F9 LGk 5 i A 4 Jm
ol . =20+ D 7E F9 ERIAFE . 9 =50+ D N
fE F7 M F13 ERMATRE . Y =40« D I, 571k
FITE 16 DR EBUS fdF 45 B ¢ =30 « D A
W HE R 2EBEIF A, JFH, o= 30D £ F14—
F17 E#UT =40+ D AUAE F19 FI F20 2T ¢ =
40« D . HIL. 25 KF ¢ =30« D I NGIE.

xS ATE o ENIHRER

_— ¢=10+D ¢ =20+D ¢ =230+D @ =140+D ¢ =150+D
PR SR PR SR PR SR PR SR PR SR
F1 1 1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1 0. 999 0. 980
F8 0.761 0 1 1 1 1 1 1 1 1
F9 0.780 0 0. 985 0.275 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1 1 1 1
F12 1 1 1 1 1 1 1 1 1 1
F13 1 1 1 1 1 1 1 1 0.997 0. 980
Fl14 0. 925 0.588 0. 886 0.373 0. 846 0. 255 0.814 0.118 0.814 0.196
F15 0.755 0 0.767 0 0.762 0 0.755 0 0.752 0
F16 0. 696 0 0. 683 0 0. 680 0 0.673 0 0. 670 0
F17 0.672 0 0. 706 0 0.711 0 0. 696 0 0. 701 0
F18 0. 667 0 0. 667 0 0. 667 0 0. 667 0 0. 667 0
F19 0.500 0 0.507 0 0.515 0 0.520 0 0.517 0
F20 0. 243 0 0.270 0 0. 265 0 0.277 0 0.277 0
53S0 14 14 15 16 13

4,403 HEEIARE R BUSE S BT

TE 2 AU /N A 855 S s rh o R UK 3 T2 Ak i {1 1
AR S A B ke — 1 A5 B A AR TE R /N A 5%
Ak WE /N, BN 5E 5 sk Rl s, ik LS B X
S A 3 S A B R BB W A 5 T R E R, Sl AU
AN G TS 22 PP Al OB, TR 9 R R B R U
PRI, A /N5 6 kAR AT 5256 R 43 B, SE LT 5 1)
FOAE FE A SR DU AU . £ =5+ D10« D15« D,
20 « D, LA R DU fr [ 52 BUfE : £ =10.30.,60,100, {H
PR, 5 ) AR B AH G & {H L BR R 60,
U, A NFIAS R ke (EHEAT S0 56, 6 H g5 R an 3k 9
s, AHH k=5« D.10,30 i, &l B A 1 55 5 4

D BN SR Sy R, R R R 2
k=60 7E F13 Lok RUE AR B A . R k=
100 ATFE 16 > Rk b R IR b, {H DR R 400 /N AR 855 o
Pt Z 1AL UoB . S BUE F19 M F20 B MERE ) 38
WRFE, 2k =10+ D15+ D .20 « D i}, B 3L ERE
s HAR I T WY S DX PR A SR 4 Tk = Y
g £ =15+D .
4.4.4 DEW F FlCR 88404

TESE 1 e P B /N AE S HOR RIS 4 [
INESEHR B, YR ] DE AE N8 KA, X DE
M5, FMCRZEEEBZENHAEHSE. F Fx
AR TR BB, 22 43 ] a9 A S AR TR . CR



14 JEIH T4 — Pl e T 38 P B N A SR B9 2 0 A B vk 77

®9 ATEkEMIHER

_— k=5+D k=10+D k=15+D k=20+D
PR SR PR SR PR SR PR SR

F1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1
F8 1 1 1 1 1 1 1 1
F9 1 1 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1
Fl1 1 1 1 1 1 1 1 1
F12 1 1 1 1 1 1 1 1
F13 0.993 0.961 1 1 1 1 1 1
Fl4 0. 846 0.275 0. 846 0. 255 0. 846 0. 255 0. 830 0.216
F15 0. 684 0 0.745 0 0.762 0 0.760 0
F16 0.673 0 0. 690 0 0. 680 0 0.667 0
F17 0. 652 0 0.708 0 0.711 0 0.706 0
F18 0. 667 0 0. 667 0 0. 667 0 0. 667 0
F19 0.512 0 0.515 0 0.515 0 0.515 0
F20 0.279 0 0. 282 0 0. 265 0 0.272 0

53S0 13 16 15 15
T =10 i k= 30 : k = 60 : = 100 i

PR SR PR SR PR SR PR SR

F1 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1
F8 1 1 1 1 1 1 1 1
F9 1 1 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1
Fl11 0.997 0. 980 1 1 1 1 1 1
F12 1 1 1 1 1 1 1 1
F13 0.971 0. 843 1 1 0. 997 0. 980 1 1
Fl4 0.817 0.157 0. 859 0.314 0. 866 0.314 0. 846 0.216
F15 0.676 0.735 0 0.765 0 0.772 0
Fl6 0. 667 0 0.676 0 0. 667 0 0.673 0
F17 0.596 0. 664 0 0.708 0 0.730 0
F18 0.552 0 0. 667 0 0. 667 0 0. 667 0
F19 0.157 0. 495 0 0.512 0 0.468 0
F20 0 0. 252 0 0. 287 0 0.125 0

53 IS 12 14 15 16

R AR AR R MA SR AR BARRL, 75 10 FIER 11 85045 1 T XS 1 RS 4 S

a1, [F=0.1,CR=0.3];M&% 4 f[F= TSI A5 5
0.5,CR=0.9], WL, AN X XHABTEN F MEE1IME, NE 10 WERTHEHRLEF =

N CR HUE AT BB 53 B, 43 500 % He Y 20 A [] B 0.1,CR=0.3]#F 17 A~ R % 119 2] T % b5 25

fH. 55 1AM 2 412 BB 1 A% 4 E [F=0.5,CR=0.9 & 45 2 , AT 13 I df
fH. 25 3 A 4 AW 451k H T DE by s Hik RN HAE F14 RS R AF S5 R B 7 F6-F9
#H:[F=0.5,CR=0.5].[F=0.9,CR=0.1], % TR E AR B A . [F=0.5,CR=0.5]
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10 EX1HTEF 5SCRENIRER

. [F=0.1,CR=0. 3] [F=0.5,CR=0.9] [F=0.5,CR=0.5] [F=0.9,CR=0.1]
L PR SR PR SR PR SR PR SR
Fl 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1
F6 1 1 0.947 0.529 1 1 1 1
F7 1 1 0. 991 0.745 0.999 0. 980 1 1
F8 1 1 0.334 0 0. 619 0 1 1
F9 1 1 0.571 0 0.826 0 0.988 0.392
F10 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1 1
F12 1 1 1 1 1 1 1 1
F13 1 1 1 1 1 1 1 1
Fl14 0. 846 0. 255 0. 987 0. 922 0. 889 0.431 0. 882 0.333
F15 0.762 0 0.762 0.020 0. 750 0 0.752 0
F16 0. 680 0 0. 670 0 0.673 0 0.673 0
F17 0.711 0 0.713 0 0.706 0 0.708 0
F18 0. 667 0 0. 667 0 0. 667 0 0. 667 0
F19 0.515 0 0. 495 0 0. 495 0 0. 493 0
F20 0. 265 0 0.223 0 0. 252 0 0.316 0
53T 17 13 11 14
®11 EZ4HhAEAF5S5CRENITHER
[F=0.5,CR=0.9] [F=0.1,CR=0. 3] [F=0.5,CR=0.5] [F=0.9,CR=0.1]
R PR SR PR SR PR SR PR SR
Fl 1 1 1 1 1 1 1 1
F2 1 1 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1
F5 1 1 1 1 1 1 1 1
F6 1 1 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1
F8 1 1 1 1 1 1 1 1
F9 1 1 1 1 1 1 1 1
F10 1 1 1 1 1 1 1 1
F11 1 1 0. 990 0. 941 1 1 1 1
F12 1 1 0. 988 0. 902 1 1 1 1
F13 1 1 0.925 0. 608 1 1 1 1
Fl14 0. 846 0. 255 0. 843 0.235 0. 840 0.235 0. 667 0
F15 0.762 0 0.706 0 0.755 0 0. 664 0
F16 0. 680 0 0.676 0 0.673 0 0. 667 0
F17 0.711 0 0. 652 0 0.625 0 0.532 0
F18 0. 667 0 0. 667 0 0. 667 0 0. 667 0
F19 0.515 0 0.426 0 0.532 0 0.164 0
F20 0.265 0 0. 056 0 0. 250 0 0 0
53S0 19 11 15 14
HEAE 11 MR F4 R, BHAE FT~F9 L4 R AR XL AME AR 1L A FR[F=0.5,CR=

E. BIR[F=0.9,CR=0.1]1E F20 bRIELS, 0. 9147 4B A 3, mTH#E 19 A pR B T HUAS I 0 25
BYE F9 ERIMWARE FE FI5~F17 M F19 ERM R, [F=0.1,CR=0. 3 WA X5 2=, AVHRAR T 11
WHE2ZT[F=0.1,CR=0.3], £ L H B RH[F= &, HE F11~F13 F45R_RARE. [F=0.5,
0.1,CR=0.3 M8 1 WEYE, CR=0.5 Mk PERERS 22 T[F=0.5,CR=0.9],
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H7E F17 FAE NS AMERE TR, [F=0.9,CR=
0. 117 F14~F17 M1 F19~F20 FFEME 2, Hik,
RAEPE[F=0.5,CR=0. 9 [E RHEIE 4 pHUE.
4.4.5  FREERLEL NP SUSE 5 BT

o M AR RE AR NPt ik M R B B i L AR )N
TR AP AR R AEBCE: NP = 50,100,200,300,
400, 12 5 T g X g . Rl 15 5] =
M (D) NP ER K T 5 08 50, 75 0 2 A
PRBSCE AN JE T 3 U S o s L . A F9 A 216 A
HALf# .24 NP =50,100.,200 ¥ J0 3k 4% £ i 45 e i

fitt . (2OXF F1-F5 3k 28 4 0 fif £ A4 4K 4 I 3 e %1
CCDE-VN X} Fi B LA A B0, NP g R T80/ T
WA AR B T A B R % . (3 XF F16-F20 X 3%
Y P AR R NP OB R B R N ARG B
—J T . BARECR NP R BESRE IR BE 1 A B T e
1797 22 B A Ak AEL A 2% PR IR A 3 7 B8 R 50T Al IR
O REAR TR BE 7 - 3 BT R IS E A . )
— 7 BN NP AR T4 w5 JF R BE B 2 R
PRAE A N0 8Ost s W8 o e i . 2 BT, X
TR AU g [) L, Feb A R 15 A A O X 5]

R12 AENPEHILELER
N iz A fie NP =50 NP =100 NP =200 NP =300 NP =100
K <L
NP B PR SR PR SR PR SR PR SR PR SR
F1 80 2 1 1 1 1 1 1 1 1 1 1
F2 80 5 1 1 1 1 1 1 1 1 1 1
F3 80 1 1 1 1 1 1 1 1 1 1 1
F4 80 4 1 1 1 1 1 1 1 1 1 1
F5 80 2 1 1 1 1 1 1 1 1 1 1
F6 100 18 1 1 1 1 1 1 1 1 1 1
F7 300 36 0.999 0. 980 1 1 1 1 1 1 1 1
F8 300 81 0. 440 0 0.932 . 020 1 1 1 1 1 1
F9 300 216 0.231 0 0. 450 0 0. 804 0 1 1 1 1
F10 100 12 1 1 1 1 1 1 1 1 1 1
F11 200 6 1 1 1 1 1 1 1 1 1 1
F12 200 8 0.968 0. 745 1 1 1 1 1 1 1 1
F13 200 6 1 1 1 1 1 1 1 1 0. 990 0.941
F14 200 6 0.752 0. 039 0.768 039 0. 856 0.314 0. 886 0. 373 0. 882 0.392
F15 200 8 0.748 0 0. 755 0 0.762 0.020 0.745 0. 750 0
F16 200 6 0.676 0 0. 683 0 0. 690 0 0.670 0 0. 683 0
F17 200 8 0.672 0 0. 696 0 0.708 0 0.708 0 0.691 0
F18 200 6 0.631 0 0.667 0 0. 667 0 0.667 0 0. 667 0
F19 200 8 0. 449 0 0.502 0 0.512 0 0. 507 0 0. 387 0
F20 200 8 0.294 0 0.297 0 0.272 0 0. 154 0 0.127 0
4.5 ELRMRARDE ERRNA A Sk A CCDE-VN %f H gk 17 R ., 5
40501 R RBOR T R4 CEC2015 Z i fft fb 32 38 1 42 54 1 NMMSO ™" |
1E ST BR TR A AR S AL B B = 0K 2023 4F 421 9 FDLS-ADE 55 3% 1 1 7 52 b7 ] 1
B T R LH B SR AR ) T e AL S A R A AT s b 25 B0 T A £ 0% f AL 2 HINDE/
e ARTANY o a1 B0 4 , ,
) B DL K 2 AT 52 A AL AL S B ) A 2 ALY R KSDE™ ¥ 47 %F . A % 1] 5 2 sk 28
kb 5T H = N7 (=] S A% A~ AN B N S
AR ) =i % ﬁiﬁ@ﬁﬁf@ﬁ ELEZRE gy R i B T A5 R A T e R B K (1
‘i%’ﬁfﬁﬂﬁfj\' ij ?Zg;;;gff;ﬁ S B/ B 0 o A4 T 1 45,0 (8 2 R
A% — PN =K% C 7 RE A S0 N
‘ . Iy 010 35 /NI 1) 851 AT 504K min D) | es (&)
GBI 18 A4 e LR J7 R e /MEL TR &L, AT R XAk R mmzllzl e, () |
f. . EV i " g v ,ﬁ\: i > N ng N
F (X)) =1+sin(x, —x,) » [(r1*%>smxl jmmz":lel () T ei (@) RNTTRATH
St 850 AT, m BT DR L AR SCR
3 Sin‘r' S, m P
(e =) S =0 RF IR B ML B min D07 e G L 90
SN,
. i cose, U8 BASIEE T 51 W I AE KCBCR Y 200000, TR
Fo 0 =1 sinGas 20« [ (o= ) sing,  NMMSO R T 374 A0 B Ah , oA v 0l B B0
n ( 37() costJ 0 ¥J¥Eh 100, B PR H M SR HA Bl nE 8 5
Ty — — | o — = .
: 4 sinx, K9 Frs .
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Background

In the real world, there exist many multimodal optimi-
zation problems, such as multi-ellipse detection, protein
structure prediction, truss structure optimization, and fea-
ture selection. These problems are characterized by multiple
global optima, requiring algorithms to find as many of these
optima as possible. Although the evolutionary algorithm
(EA) is an effective optimization approach suitable for uni-
modal optimization problems, it lacks mechanisms to main-
tain population diversity, and therefore, its effectiveness in
solving multimodal optimization problems remains low. To
address this, niching techniques have been developed to en-
hance the diversity maintenance capability of EA, thereby
improving its effectiveness in solving multimodal optimiza-
tion problems. Among these niching techniques, crowding
niching has received widespread attention due to its simplicity
and high effectiveness.

However, the classical crowding niching technique only
considers the similarity between offspring and parents. If off-
spring individuals are dissimilar to their parents, this can lead

to “replacement errors,” which significantly impacts algo-
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rithm performance. To address this issue, this paper propo-
ses an improved crowding niching technique. Unlike the clas-
sical crowding niching technique, which considers only the
similarity between offspring and parents, our approach also
considers the similarity between parents. By identifying the
two most similar parents, the worse of the two in terms of
fitness value is considered a replaceable individual, thereby
reducing replacement errors. Extensive experiments were
conducted on the CEC2015 benchmark set, and 11 repre-
sentative algorithms were included in the comparison, inclu-
ding two championship algorithms from the CEC multimodal
optimization competition. The comparison results demon-
strate that our approach exhibits highly competitive perform-
ance.
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