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Abstract Network traffic classification serves as a fundamental component of both network
management and cybersecurity, playing a pivotal role in ensuring the stability and security of
modern communication infrastructures. Among various network security threats, the accurate
identification of Distributed Denial of Service (DDoS) attacks remains particularly crucial, as such
attacks have the potential to severely compromise system availability and overall network
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reliability. DDoS attacks can cause significant disruptions to network services by overwhelming
targeted systems with an excessive volume of malicious traffic, leading to service outages, rapid
depletion of computational and network resources, and substantial financial losses. These
consequences critically impair the Quality of Service (QoS), affecting both end users and service
providers by degrading network performance and reducing operational efficiency. While
centralized machine learning models have demonstrated notable success in detecting DDoS attacks
by leveraging vast amounts of labeled data for training, their deployment in real-world network
environments is hindered by several intrinsic challenges. One of the most critical issues is the
highly imbalanced distribution of network traffic data, where attack patterns and normal traffic
exhibit significant variations across different clients. Furthermore, the centralized collection and
transmission of large-scale network data not only introduce severe privacy and security concerns
but also pose substantial bandwidth and storage constraints, making traditional data aggregation
approaches impractical. Additionally, heterogeneous network devices—ranging from high-

performance servers to resource-constrained edge devices—operate under diverse computational
capabilities and network conditions, while the constantly evolving nature of network traffic
dynamics further complicates the feasibility of real-time DDoS detection and mitigation strategies.
To effectively address these challenges and enhance the adaptability and efficiency of DDoS attack
detection in dynamic network environments, this paper introduces AdaPerFed (Adaptive
Personalized Federated Iearning), an asynchronous personalized federated learning-based
approach designed to detect and mitigate DDoS attacks while overcoming the inherent limitations
of centralized detection frameworks. First, we develop a customized ResNet-based deep learning
architecture that is specifically optimized for efficiently processing one-dimensional network traffic
data, enabling the extraction of rich temporal and spatial features crucial for DDoS detection.
Additionally, we integrate a dedicated Net module within the architecture to further enhance
feature extraction capabilities, allowing the model to capture complex attack patterns more
effectively and distinguish malicious traffic from benign network activities with higher precision
and robustness. Subsequently, we leverage Software-Defined Networking (SDN) to construct a
highly flexible and programmable network environment, allowing us to simulate realistic, large-
scale, and dynamically changing network conditions where diverse attack scenarios can be
systematically evaluated. To complement our detection framework, we incorporate a
comprehensive mitigation system, which dynamically adjusts network security policies and
defensive mechanisms in response to evolving attack patterns, ensuring proactive protection
against a wide range of DDoS threats. The personalized federated learning framework employed
in AdaPerFed effectively addresses the fundamental challenge of Non-Independent and Identically
Distributed (Non-IID) data, a common issue in federated learning where clients possess highly
diverse and unbalanced datasets. By incorporating an asynchronous learning mechanism, our
approach ensures that each client autonomously updates and fine-tunes its model based on local
data distributions, thereby enhancing personalization and improving overall model generalization.
Furthermore, this asynchronous and adaptive learning strategy enables the system to
accommodate heterogeneous devices with varying computational resources and network
conditions, significantly improving the robustness, scalability, and practical deployment potential
of the proposed framework. Extensive experimental evaluations conducted on three widely-used
benchmark datasets—CICDD0S2019, CIC-1IDS2017, and InNSDN—demonstrate that AdaPerFed
significantly outperforms state-of-the-art federated learning algorithms in terms of both detection

accuracy and learning efficiency. Across various experimental settings, our method consistently
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exhibits faster convergence rates, enabling the model to achieve optimal performance with fewer

training iterations, even as the number of participating clients increases. Furthermore,
AdaPerFed achieves a remarkable 15%-20% improvement in DDoS detection accuracy compared
to existing federated learning approaches, highlighting its superior ability to effectively identify
and mitigate DDoS attacks across diverse and complex network environments. Additionally,

ablation studies further validate the critical role of the personalized aggregation module in

enhancing overall system performance.
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Centralized detection models also encounter challenges in real-
world applications, such as privacy, security, and device
performance differences, limiting their applicability in dynamic
network environments.

To address these challenges, this study proposes an
asynchronous personalized federated learning method for DDoS
detection and mitigation, incorporating a customized ResNet
architecture and Net module to enhance feature extraction.
(SDN)

complex environments, the asynchronous learning mechanism

Using software-defined networking to simulate

effectively handles variations in device computing power and

network conditions, enabling efficient and robust DDoS
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detection performance and adaptability.
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