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Abstract Driven by the precipitous advancement of generative artificial intelligence, large-scale
pre-trained models, particularly those based on the Transformer architecture, are exhibiting an
exponential increase in parameter scale. As the community ventures into training models with
hundreds of billions or even trillions of parameters, conventional uni-dimensional parallelism
methods encounter formidable challenges. These traditional approaches are increasingly con-
strained by limitations in computational efficiency, prohibitive memory footprints on individual
devices, and excessive communication overhead across the hardware cluster. Consequently, hy-
brid parallelism, which strategically combines multiple parallelization techniques, has emerged as
the dominant and indispensable paradigm for large-scale distributed training in contemporary deep
learning. This paper presents a systematic investigation into the parallelization characteristics in-
herent to the Transformer architecture, which serves as our primary research focus. We conduct
an in-depth analysis of the foundational mechanisms underpinning five key parallelism strategies:
data parallelism, tensor parallelism, sequence parallelism, pipeline parallelism, and expert paral-
lelism. Our examination goes beyond individual techniques to meticulously uncover the intricate

coupling relationships and delineate the combination boundaries that exist between these distinct
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strategies. This analysis is crucial for understanding how different parallelism dimensions can be
synergistically composed or where they might conflict, thereby informing the design of effective
and scalable training systems. A central contribution of this work is the development of a unified
representation framework for hybrid parallelism strategies. This framework is constructed by in-
tegrating the mathematical models of both intra-operator splitting and inter-operator splitting. A
key innovation of our framework is the explicit separation of the operator-splitting logic from the
parallel topology mapping. This decoupling provides a flexible and extensible theoretical tool for
analyzing existing research and designing novel hybrid configurations, as it allows for independent
reasoning about how a model is parallelized and how that parallel structure is mapped onto physi-
cal hardware. On a methodological level, we leverage the theoretical derivations from our unified
framework to summarize and chart the evolutionary trajectory of automatic parallelism search
techniques. These techniques, which are typically based on computation graph decomposition,
aim to discover optimal hybrid parallelism strategies automatically, thus alleviating the signifi-
cant engineering burden of manual configuration. Our framework provides a structured lens
through which the progress and remaining challenges in this domain can be systematically under-
stood. Finally, looking ahead, we cast a forward-looking perspective on future research direc-
tions, taking into account current technological bottlenecks and the advent of emerging hardware
architectures. We identify multi-modal computational collaboration and advanced scheduling for
heterogeneous clusters as two of the most critical frontiers. Addressing these areas will be para-
mount for enabling efficient co-training of models that process diverse data types and for effec-
tively utilizing complex computing systems with varied hardware accelerators. This paper aims to
provide a robust theoretical foundation to support these future endeavors, ultimately contributing
to the systemic breakthroughs required to conquer the challenges of training trillion-parameter
models and beyond.
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i, W, € R TS 40 A A AFAE A TR Y i & I
X, = X #3313 Broadcast #RAVE Py A BUHE 5¢ %5
G REFTA AR, B REITERBERY, =
X W, PR SERJG#EE All-Gather #2E R G 25

k
Y = All-Gather ( EX,-W, ) .
(=1

=R S NI R R R R K i
Scatter. Broadcast. All-Gather 1 All-Reduce %5
VB 31X 2658 15 3 72 1T BE RLCA N 2R AR A8, Meg-
atron- LMl i {4k Transformer By & 71 )2 Al
B P 28 P2 2, o 35 B AR TR AR T RS . TE 2 )RR
HAS (MLP) JZ2 rf BUH 15 55 W 50 U153, SR 5 B AT
P10y o X Fh 7 2 RAR kS0 1 9 U043 J5 B s 1 AllL-

Gather #4F LL X AT V143 i B9 Scatter 454, DT 5
ATSEAR AR B TOIMTIFRRSCR ., W TIER
T2 2 KR HLEIA B B B4 347 1% . )
DITEZ DAL BT b R AT RT3 08 . TEN T
VF) 281 [ 22 1 W S 3k R v g A Sk X B A o A
C 24 ARG AR S BOE BT L) BT Y143,
TSN AR B . IR NE 40 £ R
JNAE B 1] B 3 47 Broadcast, J2 [ B 3 47 All-re-
duce, f WK £ B9 P UGE (5 ERAEBUZ .

)% AN e 9 4 B4 3 5 7 50 117

R 7 B (LLNVD 15 I 2 i 2 v i DR
B 3of K T 5 B A7 3 COOMD [l 81, S 7 fig e ix
—XEREL, 81 34T (SP) £ 1 32 T A=, HAZ 0 AR
ST T 51 4 B X i A B AT U0 08

i T i 2 S AL Cattention) B3 8 4R T A
FE 3145 K., Korthikanti 28 A5 £ 91 408 5 91 17
Fe AR R H TR L7 T 9 4 B2 N AFAE TR 1 3B
(4N Dropout JZ M1 LayerNorm J2), 3148 HAE N
Megatron K ®EIFITHY R, X — kA —H
T 28 NI T, B B A Trans-
former J2 i {5 5 3K MELSE PRI Broadcast HITH
W All-Reduce 146 M R All-Gather F1H X Re-
duce-Scatter, HEAA AR MNE 4 (b) s, Hrp g £
7R FE Y 0] B 3 47 Reduce-Scatter, 2 [v] Bf #E 47 All-
Gather, g WIJE¥ g 19 P YGE 5 B2 E B . HX b
T5 SR FE B AT B4 FE S ik T AT R AR R A A —
TR 7 2 AT T R

H TP Attention BFAEF AN AEE FIRE A
AT B B, Hao Liv % A4 H T —F08 19
Attention % 3 — Block-wise Attention™*™, % &
WA R & flash-attention™ ™™ ) 4> 75 2 B A<, I3
1525 F online softmax & U % Attention Y%
24BN OG?) BEARE] OCs) , AT AT LLEE 7 51
Y b ST IR AT AR KM T T F B I AT A
K, FEULFERE & JE Y Ring-Attention 57 3%
Wit — i ViR AW ES . RO
Su /(1

0. K" max(0. k")
e ] L

g )
0 KT -max(@ K1)
XK iK;
Ee

max; =max(max(Q,K| ), ,max(Q,K;)),

Attn(Q, ,K; ,V,) =

T
Attn(Q,.K.V) = [eQIKjim.aXAttn(Qi K.V, ] 1131:1 o
Hrp, 0, FRE i A Query ME. K, 5V, 535N
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% 4 Key 1 Value a3, B,, N Key 5 Value 43

F:F ring-attention # R, Megatron-LM Iji H
H—F &k T B F XIHA47 (Context Parallel, CP),
{ENXF Megatron SP 97 &, AR T H SP {ViE A

F Dropout JZH1 LayerNorm JZ1 /7%, CP [6] i}t
ATy B2 Attention )2 FIRT i #f 28 M 4% )2 (FFND ,
M B R 5 5K & IF AT (TP 1E 38 1Y — i IR 17 4 B
FCRAR AR IR 4o 7R e b SRR AE i 1 R
FHIEAT AR 3R AE L B2 1] 5 2R 4T All-Gather,

(a) Megatron TP

=|% =& I='.>I

FFFI3FAT

(b) Megatron TP + SP

Fe 33T

(¢) Megatron CP

K4 kBT 5P R R

SR B}, Deepspeed H BA 7E FF %) I 47 3R m& F

HEE TR TR DeepSpeed-Ulys-
TR OAE T 0T e 91) 4k BE X g A B0 i
305 SR IG R 30 all-to-all 45 A 15 K 28 e
QKV JE B, 7E 4T attention T HT. & GPU
i3 all-to-all 3815 22 e B L L 3RAT 58 8 75 51 th AN
[] attention head ¥ £ i+5 56 MG . # K F H]
all-to-all JEF A 45 R4 )p v 4 e w0l 7. 5
ring-attention AH [, 3 Bl ik 1 b 2 B K T {5 I
. BT R, YA RSP K E & GPU
BB R LI 32007 ¥R BE DR AR I A T B 1H E L T AT
BY RN E T token WIFHIKEE, LR R ML
WY 207 e LU o AT 7 2 2.5 A s I
Yk 4 R TAK B RIAL, OF B BA R 4 Y3 ]
PER G B . AN %0 BAAFTE— & SR BR %, B

50
sest |

o 91 3447 4 B2 B9 RN L BE B head Bt B BR 78
GQA (Grouped-Query Attention)P" 77 % T, head
B 1 R A )RR Sy

SEBR _F o, ring-attention 5 Ulysses B ff 5 &4
B ERIEAR R, B TR s ar,
DL — 20 4 T BRI 2380

) BFI 5L HIHT

£ %3477 (Expert Parallelism, EP) & —ff
L Jg e i AR S (Mixture-of-Experts s MoE) %
TR IFAT M, o O U AE TR B h ) 5 A4S &
FREG P A BN Z2 AT B b DTS2 W IR A o
BRI . TEXFRAEM T L B4 & AN 67 57 Ak Bl ey A
G — TR IR A Y Gl B b A%
FOHE T . 25 BRI T B B 1Y 3B S
A0 B AT HE S Sy



14 3K 5T A - RBEELYI 2k IR B R AT ROR SRk 117

E
M) = DG, (x)E,(x).E, € {Device, }X .

Hrr, G, () HITHEMZ AR E IS A, E, N
I3 AT B I L A, AR A All-to-All SR AF
SRS U A IR S B 7E 4096 AR AT SR T A
SRS, SR ZH A LA PR -

O AF T 5 5 e 2

All-to- AL {5 AL 13 B PR GIE 20 45 1 L (R
WG R FE R A A S A, AR ST
Bt KRB 1558 All-to- ALL (38 175 B 42 g

T comm =alogK + %

Hrb, o HMEKIER, B NI, S HFHKE, B
FAHERSF . M K =4096 B, 38 5 85 00 s I 2R
A 3800 L 1o WIAT 5T 42 70 )2 All-to-All 5K
W% L3 5 5 5 P N'VLink %4 595 45 InfiniBand
i R AL AL . 2 DeepSeek JF IR B DeepEP !,
5 DeepSeek- V38 3¢ b $1 H A9 21 BR 1 1] 75 5 2%
PR¥F— 2, DeepEP $44E T — 41 £ X5 HE XF FR 48071 T8
W R AT T O B AR L B AR AR N NV Link
¥k ) RDMA 8, 33 26 % 4 41k g 7 ok o, (i
T8 T U0 S5 R B I AT 55

@ 3l 2 B 3 34 1 IR 5

JSE EP JE 4 W 4 5 R Rk PR s A
& {H R B 4 3% 34 5 (Micro-batch Leve) &5 8%
FAr AL Z R, BT = BATE I 2k Qwen 51 155
BFAFF 9 2% B 24 A Bt U R SR U B — B (i
2 AR B | A% 58 17 3 4 A 4 % BRI 2 iR A 14 5
SrmCE O I RO AL RE ). HAR A 2 )R
48577 1= (Global Load Balance) #8178 128 4> 1% 4¢
THE IR 158 1 T 52 B0 A 38, il S0l Ry S v % K 1
B TF 47 % . [5) B #F BigBench JE i | [ I IR 2K
(PPL)IE 15% .
3. 1.2 ARRS AR T YR O

(1) Bl R 4 B 9% 03 5 Bt O R A7

Bl I 17 (Data Parallelism, DP)™* il #% .0 J
R R B EE A T 20 L 2 DU, IR R A [ R 3
=8ty Twil b e £l R i 1 B N 5 S o o B g 1171
Aab B o — 8 43 A ol N7 58 T 1] 4% 1 R I ) AR
BEEAE . RIERRES R G, S TH R R aE i All-
Reduce BRVEIC B BE , DL PR BT 2 8000 — 3Kk
B A PR H: S BT B HLRE 5T 00 AT 2 B iy T H 5
BRI A )3 A A H R RS A AR L R RO AR A
#E, All-Reduce #:4F AT GE 8 B35 (9 PERE L 291,

1% 2 W B35 I0 47 J7 A7 AE A it U AR ) L, QA
RSHRARAL RS S W EEFH 20 1M ZeRO-
DP " 7R IR EEAT T ik, ZeRO 24 T =4~
AL B BE : ZeRO-1 AU AL RS 2743 B
FEAF Adam %5 155 B A AL 28 AR L 33030 43308 A R 2
Bt B s ZeRO-2 FE UL IR -, ifF— 20 %) 80 JE 1A 7
Ay Fs T ZeRO-3 W SZEL T e RS B AR AL L g A5 1 2
R B AT 40 o 33X =B B R AS [r) RIS 114 A5 7Y
FNBE RSP T 2 2 B0 B ARk kB . (A
L0 AP 25 P B 2 AN )R 2 1 3015 R4

PRI AT, ZeRO S BE TR 2 55 B .
ZeRO-1 WIPLIAE T, B AULE M Ak 25 RS T 3 i) A
W KA PR 2 1 T B AR YI 25 1 T 1l A 1) A% 9% ik
BRI AAEM AN AE . MHILZ T, ZeRO-2
1) A% 4% 2 30 e B B A AL R 7E BB A
T8 58 WU Sz B fsk & — K Reduce-Scatter #24E AR
BAL GG 1719 All-Reduce, 1% 77 % A £ 580 38
15t {FL 38 A5 005 R 52 4% B A BT $2 T . 1T ZeRO-3
W55 BEAE B A T2 B AT IS # AT All-Gather #
VE K B 41 58 B A 5SS 500, 30 ok T A I S
K. R A AU AR 4 LI 2R HE B RIF A7 R s, 2> ik
AFH ZeRO BB HAERG AT R T T A
il ZeRO 38 {5 TF 85 5 B A 19 IF A7 5 W6 1 58, Ze-
RO-1 fEfER— AR Z g0,

(2) ASHE L7 50 IEAT 1 5 51 4 B 4% 43

Token-level #F43 & — Fh T ¢ 51 4 B 3 47 B9 4%
SRR 7 X E T A R UK T e A
B ) Transformer FH, 41 GPT R FIAEAISY X b
R AU SR fife W 2% 465 40, A R SR 8 6 (causal mask-
ing) B PR B AN 57 B 1 i 113 (UM T 24 i o2 8 % 22 i
0L E . B MU, X T A A BROECIR S F 8 (R
by oo k) S HIEE 2 SelfAtt(h,) By 5 B
T E by ohy s b)) B BRECR A, I B AT
i)z FENCh,) BIFEAUBIR T b, A&, KFTZ
HIHE M 54T R3O T AEE W
TR T 50 A BT A Token, S 8UR S8 T 44
TR M T A 75 7 e . SR, X
TR bR B AR, 45 25 T H UK T S R E
FEE U 0 4k BE IR A 5 R I 45 SR T A E
ANEERE R — R 2 8 58 B IS B0 T 4k 82T
3.2 HEBRESESRAKEHFT

TR 4302 $8 B 455 R 43 Ry 24> B B, IR AE
ANF TR R AT, Bk B A (9 R %
T F0 R GG S B4 R 4y o 24 F L AT R AE
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AR A EIR T AT - AT JR S B A A
T R o A ARG A7 305 8O 54T 55 A fi i 3%
IR BN R A AR D)l B T R 43 Sy 24
T B 5 HUT AR A B — 3 0 1 F 5 &1, AT
AR TR R AR N 2 B R — R N R K
R 1) 2 7 A 3 KRB B B, i A AT S50 kE e N A
b e RO TR -1 /(T R [ = o |51 B 70 o o7 N R 2
HIERIF T, WE 5 Fras , R0 A B A
] J22 43 B AN [R) 4 11 53 1 & Ll 1 5301 0] A9 Kt
P, A S ECE A 2 B — R & 7ETHE AT
M A U IR A TR B IR R IR AT RCR

R T A ROR 8 B IR AT M TR R R S
2 45 AR AR RO 1) 5 AR 43, LS KAk
M7 3 9 Y I K £ I AT R L T ROHE v 4 T
Oy TEE R HRK &I AT R GPipe ™ L i i ¥
— B HE R R 3 S 2 A SR AS TR B B IR R
FrA R R A BRI A, TR 8 AE B — 2D I 2k
I B R B LI K e IEAT I AR . GPipe MK
LA ME 5 Frw ., lad X Fhor =L, i B R4
H¥HKLIFATMLE A v LUTEAS W3 5 N A7 4
PR OL T SEEE R AL AT BRI RN,
A SCALT IS [ 2 1) i K & I47 . S5 28 oK & (ks 2
ARk AN #4786 BE IR 20) B T AR EEUF R
SR, R AN FEAS SCHSYa RN .
@) wrrauminmien ([ summem SRS AR

() mrrammmrmnr (] 2mmm

1 il =
1 1 l 2
I I 2 2
il _ K
(@) W5
o =2 ) A EI R
1]2]3]2 |2 4
i R e R
B ¢ [2]3]3
(b) GPipe
1]2 o) [2) (5] [4
1]2 & « & 2 3 4
I TR E 4
BRI Ed B E
(e) IF1B
1 a2 [« ] [ 2 G 67
1[3]2]4 3 1 4 2 sl ||
AR | i [ 3 |2 |4 | e
3 S 0 [ 2 | [ a 4 ‘MG 8 (s
(d) Chimera
K5 WKL IFAT

T 7K e TP 25 AN TS B B 22 1) A7 7 B0 1K R
P, T B S A% 7E AF 1 A 3 4 o8 BUTH B e Ab T
25 PR, oA S8R 5 B R 3 S0 o B 9 25
RV ED S Bubble, H A O i /K 4 IF 47 (19 4 5%
N AE T WA i /A6 Bubble f4 % & 15 22 it 1
) B A A7 1 5 . il an, SERSR R BB S
2, DA/ 38 5 TF 6 o RS T3 2 7E 52 A B ik
HER A IG5 B BEAT 38 15 015 2 F — A St ik
BT . X EERENS 7E — @ B b el A A
T, DT 2 — 25 0 /0 33 7K £ 1 /Y Bubble, 42 7 8 &
IATRCE.

Narayanan % A 7& PipeDream"""’ 1 2 } 1y
1F1B AR, i 2o 35 HE 3 K Gk S R ilE A7 /e 1m) 3 57
T T 8 — A i ) ook i o — A R 1o 3 R A8 Al 1 47 1)
KRGS . AR IX P 7 i JF K 46 45 Bubble 1Y +F
SLER] F B AT HEAT S 1) 4 AR R 2 nT LU R b R
JHCTHIT [i] o 2 7™ A A 0% A i 45 3 o U 7K 2k 7 U 1
BAEG MR E SR, HAT 1F1B K& D
ZWET I N TS R R s 2

BEAh, Ui K £k 947 38 A VF 2 A8 4 T AE S B o
GEMS"™ [ CHIMERA"™" 2 H X% 5t i /K £, ZE-
RO-BUBBLE"" @] 37 1 Hi $2 8 7K Sz ri ot 72 v 9
BT S 4000 B 158 RO (A B0 BT o s, i — 20
FHEW K LR 980 bubble, [R]F, Al 138 32 H 44
TR FEA W1 B LA IR 7 K 26 1 DU
VIE AT ffpe T 1F1B 5 mg n] AE S 2 W A7
R FH 6 Yy ] R 1 ) st LT T8 B T 3K 4% Bubble,
[ 37 7K 26 45 & offload™™ | Checkpoint %5 #% A
RE fif YL I K 26 RTS8 A7 ] A

B T W A B e Uk 2 B R 4y i T IR % To-
ken 4k FE¥5 4. TeraPipe' R4 Hi ] Bl T Trans-
former FYREPE, BIAS K 19 )7 51 75 B 80K 1 1 S
] o AN DAL Sy 5057 4 K008 10 3% 300 78 3, g 2 T
A A W CEV 3 il AS 35 57 Hb 4y B0 50 808 L SR S
e AT % 20 A8, I b g ka3 B A AL R
FTHF I
3.3 HITHESEE

o0 Bl B /i = R Rl 0P 1 = M S P R TI| E
55 ATk E - ¥R Tk G 2 5] AR A A5 . i
5789 0 H 2 IR AT VI 2 i BRI 2 — , L HAE K
FRASE A7 X G, 3 48 3R A0 5 1) B o PT BB 2
5B W BRI 2SR, Flux™™ 48 2, 6 ]
PCle W& #EATYIZRET , 5K & 34751 A B9 38 5 i
A YN GRTREAY 40%~60% . R L, 7E R IFATIT
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SRR I 5 2 58 0 25 JEE AR T8 O SR IBORH B ) A1
A R W ke V26 AR 388 £ AR

TEFEATH 7 W IFAT I AR AR 5 2 5] A RS Y 4R
BB AR ERAE LA AR 45 A T3 5 00 22 1) 9 B0 — 3
PEFIERA M, X 258 F B A5 (H AR T Scatter,
Broadcast. All-Gather 1 All-Reduce %5, &z
PRARERA HRR E 1 TR 45 A 3E 3 5. Bl 40, Scatter
EE R T 8 Bl N — DR o KB 2 AW
All-Gather W ] F 8 4 4> 38 b o 8 R4 5] —
. TR K Ze I AT b 8 E T B 0= B Bz ) Y
P2P Gl AF . BB B 45 5w S o A R AR
L T — BB,

T DA A T 85 5, AT LU J7 1A T (D AR
BER ARG W EE SRR (O ESITE 58
F LS A T 3 R B S A
TR B TR 4 5 g 45 D7 =Xk 9 /D 38 AR SE IR Al
Bi o 5 J5 A W S 2D AR Rl A T AUk
Wl D E AE X S A B ZE R . HARANE .

(DA A5 kLA <3 o ik 4 5 3 (5 0k
Chn il S 2% 19 All-Reduce 5735 ) 3K Ul 2 38 {7 4
PRI B . A B AIRGE {5 A R R v S BIF ST
HRW T Z M AllReduce B ik, S 1Y
Ring AllReduce i 7387 S AH LA T H 40, R A
Reduce-Scatter 1 AllGather Wi 4~ Bir B, SEBL T #7
i, de A R A5 AR S, 8T IZ T Horovod 45 4E
2 Hierarchical AllReduce K5 &5 %1 4 K
ZAH L AN IETT AllReduce , 7576 41 0] #F 17 38
15 B A A5 R 16 100 45 2, W 3 ek T A AP R
T T KRBT ZRORY . 4, 2D-Torus
AllReduce FJ ] Z 4t M A% 30 b £ IS 4E & EIRAT
PATIEAF BRAE 2 — 2D AR Tl 5 T B 38 TR
PR o A R G o AR L T X R i Bk R £ Ak
BB . B4, Straggl AR 3 i 7E A7 16 12
3 5 (straggler) B, 26 Xt H 4 95 & $UF7 Reduce-
Scatter, FR7EME Y A [\ 2 )5 52 1l AllReduce, & 42
FET IR FE . GenTree™ M3 5 51 A 7 1Y 1
) AR, 1t 38 T AR 4R F 1% AllReduce
TR A TR S PRI P S T 1. 22 X & 1. 65
XRTGE e Ah TR BT R AL A 2T B Bl AR R
NIE PR N AllReduce ) B 56 W8 , A 78 h 2 T
A BB T 1

(2) YR TR 45 5 9 B « A8 R 23 A X o
AP H A PR B, A G i U Tn) L, A5 H
PEHN T 2 M E A TR AR BOR L AL AR R R AL (I QS-

GD il signSGD™) B B i 1k (41 Deep Gradi-
ent Compression ") | % 22 #b £2 AL #l (41 MEM-
SGD*) L B AR B 3 L (A PowerSGD) 3 4
e, BB 7 B n ACP-SGD™ |, MiCRO™ | TAGC ™
T QSDP™M A5t — B $E - T IR R n - etk
XL AR P25 A W E S T KU o A SR B 2
B RN A ATk

OBETFRE KB S8 E R T TS, M
AR Y CocoNet ™™, f BL 2 Y 5 4 ok 4 I 47
(Async Tensor Parallelism) i) TAE /E&E AL T —
FhiE A Kernel @A 97, e 0% A gh & 8 Al
5 i B EE (0 GEMM. FiLE: B 2 8] 19 il A
Kernel, Flux"/ 76 % HLE 7 Bl & 09 L0 o ik —
H, 5T Warps 5245 04T, 38 5 4 I AF 5 0] 38 1 %
30 Ay 308 155 45 A FEAS AR BT T RO I i 2 ROk 4 K
T 43 BT 95 13815 il I BB A T A h, MUTT SE T
A S A

(4) i 7K 2388 1 1 B - 3 3o 1T O /K 4 0 B 5 s
Cn 1F1B), o] P g Ak H S A S0 A . AE T
TR R, R GERT LS 2B K 2% i O 1 5 7R S )
TR B, W] LS 25 Hz e b i B, A T 45 3 15 B
R R IO i NN [ A ) s i (U B B
PipeDream J&7x T i 1 55 25 %5 & 18006 (8 A0 B B 52 B
A5G ES . FH IR I T mak 95%
FE AR R A M55 S Offload # WS, i id &
TR K 28 B B2 HE L 7T RL7E A R A OO
SEPAE - IS . L SSD N H AR BE of-
fload &4t SSDTrain (XK TBA) & & — A~ 4L B /R
B, Bl /0 5 GPU 15 58 4 IF 47 52 830G #il
B, T % 77 R ) ARG N bk g™ . B
FlashFlex™" 4 R4 306 S+ 4 offload & CPU &
SSD. Jf-3 it 5 1154 [\ 4 14 1% S AL A 5k 7 5 3 f
HEIR . I 25 4 S A 3 A RO T/ in 48 AR 1
TLK R B L BRI RO TR R L DAt T
AR IR I 5 A HE AR
3.4 HMEXHEAR

(1) Offload $ A" KA R L5 o 1y Off-
load %A J& — Ffr 38 25 5 3 43 1 58 B8 Cln AR AL S
BB AR 2R D N GPU & 77 I i % 7% 3]
CPU WAFs A & . L2 it GPU B A7 A L WAk 7
o HAOU B A I S ad B b 3h 34 B AT i
U8 Y GPU A7 6 2B K 8 i A %) 85 180 48 3
VA A B 458, 1 T IS 0 28K [ S A L DT S o R
B AF PRI 24 KA, X BT A R S KOS
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S5 T T R AR A 43 B B G TC B AN (] A 11 [
i FH Offload A 7 — 20 FE AR 2% B Be 19 i 47 5
O3 JF i S BRSO | 5 & E 5 (A CPU-GPU
s AL D 515 Cin GPU R FT 1) /52 ) 4% 378 ok i
/U5 PR AR I R] S DT R Ak B AR K%

) FEHEH A XFR Checkpoint T A, 2
— P o DU A7 1 R BRI ZRA AL T 5 L 1%
O SEVAEL R T B[] A% 48 I 20 285 B TS0 1) 4% 46 v Y
o )T (R 1T AR AR A A . BLAOR UL EHT 1) i AR
rh AR PR R B S A3 O B2 AR U0 5 R (R BB A
A ) H A )25 SR AE A TS 7 BRI A 5 2
Te] A2 R e 83X SE R I, P AR 0 G A i R R X
JOLFR) R TRL 25 2R o R ek 2 R 28 4 o3 S T B A
BEANAR B A L R 1) B B A G . X
it B AR T I 2 B AIG A7 o L AH AR 4 i O 1
BT 235l A2y 30 00 BB TSTR 4 L 18 T WA R
SRS 3 A 6 S8 AR 9 5. H 5 Offload , ZeRO 4%
FEAT R M 255 7 I 25 8 R RLASEASE 280 1 5 B | A7 5
PGS ES RN

) TN A o A7 2R P, & AR A
WS EEA HUB BE IS, O A R AN AR 2D 2
PLSE AL 7 0K B BE AR 18 2 S80I 55 A% o DT BE 8T 42 )
BAIZH, FER MR AR AT B2 T AN ] i
A IR SO SR B (R R AR E ™), X 2 R B A
JRI R BT IS A7 A A A — Bk . AR 5 20 SR
30 2 U [ 20 A A N 1) B T R A A P 5 e )1 2
HEE B BE v S AN S 4 ) i LAY e Rl BE s 52
Ma A AW S AR E 1 . AN R AR S AL — B
P S e e e IR ) ROAR A2 3R Bl 2 e o
5| ASEIR #MEHLH] (A Stale Synchronous Paral-
lelism, SSP") Sk AR . % A IS T 40
PRt K AR A = 1Y 37 5 AH A 52 B v o AR
I 2 B RIS B — SO 2 ) A R A A . A BF 5
T, AR XoF 408 38 T o A

4 BAFITERAREOEHKSE

TR A HFAT BOR Y 38 2E 4R 28 ] 58 = A %0 i
JEIF

(1) RMERS B P YN Zr - 32 5 T ] S
A7 BRI 18 45 b R AUASEARE R 1) I ik T E

(2) RGERCRI $E Tt - 70 52 BUBE R m] I e 1) 5
filh o 2k — 2B RS U ] A BT R A2 BR A R 85T AR B
A A DU ARl o A

(3) A SR B 5T o] £ B & 16 Fn 3l 4k
FBL, R G0 1E M A8 RO 0 2 SO R IR A R AT AT
UED

T 5 38 o B X AR A R R R 25 ) 2 R E Y
FFAT SR W, R R Y BB 48 7E 43 A X R G b kAT
Y. BHERBBUIA Y R AB R AR R 2, a1
R KRG IFAT R GE, G &R GE 472 8, 23 XA
PIEAT R B ITAT P SIIAT L SO AT MUK KO AT
5 S WIFAT IR M AT 4 2 AR SR

Wil 25 455 R ) 52 2 1 1 i RN TR A B 2 A AL
T AT i vy R AR AL I 25 3R G B ROCR R — > 2R
B, RES Megatron-LM X A 19 43 1 2R A I 47
RGeS R R A F I TR H e E
PR XF [ AL AR HE B T R X A A A B2 R A
BRI AT AL . D 1 i DR ax 28 ) @, p R G O
RGN 7B IR G 047 BB, o an i & 4
it K Z2 B Be A HTAS 6] 09 58 N R AT SRl DL
R &

FEAG GE IR A AT Mg B 3 e, 38 B AR S
BRWAR . SR, BE & 1A R i 9 R R0 &2 = Pk
BRI , T sh Bt IF AT SR mg O X DL X 8 g K
Hffs 18], A, B3I AT HOR BE A A E 3
b T B AGEE  IR R LR G IR AT SRS L 3D X A
T2 5 B MO, i i IR AT SR M A R AR
4.1 WHRBASHESHIT

TEIRGIFAT R e R, 2 AR A Tl S T
Z PP AN EE A4 HE W Y 05 % DeepSpeed-MoE"" 4
BRI T SR XIS G B ER TR T M
25 NS T AT A0 % Fh RS B TR SEEE T BUEH AL S 8
MoE %1 i #5 20 2k . MixPipe" '™ 1 [7) 5 2 )
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Background

The research in this paper addresses the field of distribu-
ted systems for artificial intelligence, specifically focusing on
the challenge of training large-scale models based on the
Transformer architecture. With the exponential growth in
model parameters, reaching hundreds of billions or even tril-
lions, traditional single-mode parallel methods like data par-
allelism have hit a bottleneck. They face severe limitations in
computational efficiency, memory capacity, and communica-
tion overhead. Consequently, hybrid parallelism, which
combines multiple strategies such as data, tensor, sequence,
pipeline, and expert parallelism, has emerged as the domi-
nant paradigm to tackle these challenges.

Internationally, the state-of-the-art is characterized by
powerful distributed training frameworks like NVIDIA’ s
Megatron-LM and Microsoft” s DeepSpeed. These systems
have successfully enabled the training of massive models by
manually combining various parallel techniques. However,
the current understanding and application of hybrid parallel-
ism remain somewhat {ragmented and reliant on empirical,
case-by-case engineering. There is a notable lack of a unified
theoretical model to systematically analyze the intricate cou-
pling relationships between different strategies and define
their combination boundaries. This gap makes it difficult to
explore the vast design space of parallelism strategies in a
principled manner.

This survey paper addresses this theoretical gap by es-

SUN Yu-Zhong, Ph. D. , professor. His main research
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tablishing a unified framework for hybrid parallelism. It de-
constructs existing parallel strategies from the fundamental
concepts of intra-operator and inter-operator partitioning,
providing a coherent mathematical representation. This
framework serves as an extensible analytical tool to system-
atically understand, compare, and design complex hybrid
parallel configurations. Furthermore, this paper charts the
evolutionary path of automatic parallelism search techniques,
which aim to automate the discovery of optimal training
strategies, moving beyond manual tuning.

This work is a fundamental part of the Science and
Technology Innovation 2030—Major Project “Elastic Accel-
erated Distributed Training with Multi-core and Multi-en-
gine” (No. 2022ZD0119104). The project’s primary signifi-
cance lies in developing the core technologies required to
break through the systemic challenges of training future tril-
lion-parameter models, which is crucial for advancing generative
Al and maintaining competitiveness in this strategic field. Our
research group has a consistent track record in distributed sys-
tems, cloud computing, and heterogeneous computing. This
survey builds upon that expertise to provide the theoretical foun-
dation for the project. Specifically, the contributions of this pa-
per—the unified framework and the systematic analysis—form
the essential theoretical groundwork that will guide the project’s
subsequent research and development of novel, efficient, and au-

tomated distributed training systems.





