
第49卷 第1期

2026年1月

计 算 机 学 报

CHINESE

JOURNAL

OF

COMPUTERS
Vol.

49 No.

1
Jan.

2026

收稿日期:2025-04-09;在线发布日期:2025-11-03。本课题得到科技创新2030重点研发课题“众核多擎弹性加速分布式训练”(No.
2022ZD0119104)资助。张贵鹏,博士研究生,中国计算机学会(CCF)会员,主要研究领域为分布式训练、异构计算。E-mail:zhang-

guipeng23z@ict.ac.cn。孙毓忠(通信作者),博士,研究员,中国计算机学会(CCF)会员,主要研究领域为云计算、操作系统。E-mail:

yuzhongsun@ict.ac.cn。

大模型训练的混合并行技术综述

张贵鹏 孙毓忠
(中国科学院计算技术研究所 北京 100190)

(中国科学院大学 北京 100049)

摘 要 在生成式人工智能的迅猛发展推动下,基于Transformer架构的大规模预训练模型呈现出参数规模的指

数级增长。面对数百亿甚至千亿级参数模型的训练需求,传统的单模态并行方法在计算效率、内存占用和通信开

销等方面面临严峻挑战,从而促使混合并行技术逐渐成为大规模分布式训练的主流范式。本文以Transformer架

构的并行化特性为研究切入点,系统地分析了数据并行、张量并行、序列并行、流水线并行及专家并行的内在机制,
揭示了不同并行策略之间的耦合关系与组合边界。通过整合算子内切分与算子间切分的数学模型,构建了混合并

行策略的统一表示框架。该框架通过分离算子切分逻辑与并行拓扑映射,为现有研究提供了可扩展的理论分析工

具。在方法论层面,基于该混合并行框架的理论推导,本文总结了基于计算图分解的自动并行搜索技术的发展路

径。最后,结合当前技术瓶颈与新兴硬件架构,本文展望了从多模态计算协同与异构集群调度等方面的未来发展

方向,为突破万亿参数模型训练的系统性挑战提供理论依据。

关键词 大模型;混合并行;自动并行;异构计算;Transformer
中图法分类号 TP316 DOI号 10.11897/SP.J.1016.2026.00109

A

Survey

on

Hybrid

Parallelism

Techniques

for

Large

Model

Training

ZHANG

Gui-Peng SUN

Yu-Zhong
(Institute

of

Computing

Technology,

Chinese

Academy

of

Sciences,

Beijing 100190)
(University

of

Chinese

Academy

of

Sciences,

Beijing 100049)

Abstract

Driven

by

the

precipitous

advancement

of

generative

artificial

intelligence,

large-scale

pre-trained

models,

particularly

those

based

on

the

Transformer

architecture,

are

exhibiting

an

exponential

increase

in

parameter

scale.

As

the

community

ventures

into

training

models

with

hundreds

of

billions

or

even

trillions

of

parameters,

conventional

uni-dimensional

parallelism

methods

encounter

formidable

challenges.

These

traditional

approaches

are

increasingly

con-
strained

by

limitations

in

computational

efficiency,

prohibitive

memory

footprints

on

individual

devices,

and

excessive

communication

overhead

across

the

hardware

cluster.

Consequently,

hy-
brid

parallelism,

which

strategically

combines

multiple

parallelization

techniques,

has

emerged

as

the

dominant

and

indispensable

paradigm

for

large-scale

distributed

training

in

contemporary

deep

learning.

This

paper

presents

a

systematic

investigation

into

the

parallelization

characteristics

in-
herent

to

the

Transformer

architecture,

which

serves

as

our

primary

research

focus.

We

conduct

an

in-depth

analysis

of

the

foundational

mechanisms

underpinning

five

key

parallelism

strategies:

data

parallelism,

tensor

parallelism,

sequence

parallelism,

pipeline

parallelism,

and

expert

paral-
lelism.

Our

examination

goes

beyond

individual

techniques

to

meticulously

uncover

the

intricate

coupling

relationships

and

delineate

the

combination

boundaries

that

exist

between

these

distinct

strategies.

This

analysis

is

crucial

for

understanding

how

different

parallelism

dimensions

can

be

synergistically

composed

or

where

they

might

conflict,

thereby

informing

the

design

of

effective

and

scalable

training

systems.

A

central

contribution

of

this

work

is

the

development

of

a

unified

representation

framework

for

hybrid

parallelism

strategies.

This

framework

is

constructed

by

in-
tegrating

the

mathematical

models

of

both

intra-operator

splitting

and

inter-operator

splitting.

A

key

innovation

of

our

framework

is

the

explicit

separation

of

the

operator-splitting

logic

from

the

parallel

topology

mapping.

This

decoupling

provides

a

flexible

and

extensible

theoretical

tool

for

analyzing

existing

research

and

designing

novel

hybrid

configurations,

as

it

allows

for

independent

reasoning

about

how

a

model

is

parallelized

and

how

that

parallel

structure

is

mapped

onto

physi-
cal

hardware.

On

a

methodological

level,

we

leverage

the

theoretical

derivations

from

our

unified

framework

to

summarize

and

chart

the

evolutionary

trajectory

of

automatic

parallelism

search

techniques.

These

techniques,

which

are

typically

based

on

computation

graph

decomposition,

aim

to

discover

optimal

hybrid

parallelism

strategies

automatically,

thus

alleviating

the

signifi-
cant

engineering

burden

of

manual

configuration.

Our

framework

provides

a

structured

lens

through

which

the

progress

and

remaining

challenges

in

this

domain

can

be

systematically

under-
stood.

Finally,

looking

ahead,

we

cast

a

forward-looking

perspective

on

future

research

direc-
tions,

taking

into

account

current

technological

bottlenecks

and

the

advent

of

emerging

hardware

architectures.

We

identify

multi-modal

computational

collaboration

and

advanced

scheduling

for

heterogeneous

clusters

as

two

of

the

most

critical

frontiers.

Addressing

these

areas

will

be

para-
mount

for

enabling

efficient

co-training

of

models

that

process

diverse

data

types

and

for

effec-
tively

utilizing

complex

computing

systems

with

varied

hardware

accelerators.

This

paper

aims

to

provide

a

robust

theoretical

foundation

to

support

these

future

endeavors,

ultimately

contributing

to

the

systemic

breakthroughs

required

to

conquer

the

challenges

of

training

trillion-parameter

models

and

beyond.

Keywords

large

model;

hybrid

parallelism;

automatic

parallelism;

heterogeneous

computing;

Transformer

1 引 言

深度学习(Deep

Learning)[1]是一种基于人工

神经网络的机器学习方法,近年来因其在图像识别、
语音识别、自然语言处理等领域取得的显著成果而

备受关注。自2012年Hinton等人提出的深度卷积

神经网络[2]在ImageNet竞赛中取得突破性成绩以

来,深度学习技术迅速发展,成为人工智能研究的核

心方向之一。
自ChatGPT[3]以1750亿参数[4]规模引爆生成

式人工智能浪潮以来,基于Transformer架构[5]的

千亿级大语言模型迅速成为全球科技竞争的战略高

地。其自注意力机制和并行处理能力使其在大规模

数据和复杂任务中表现出色,不仅在自然语言处理

领域取得了巨大成功,还被广泛应用于计算机视觉

等其他领域[6]。大模型展现出的涌现能力与泛化性

能,将模型训练规模推升至新量级。
基于规模定律(scaling

law)的研究发现,随着

模型参数规模的指数级扩展,其在各类任务上的性

能也往往呈现出相应的提升趋势[7]。当前,大规模

语言模型正处于参数急速扩张的时代,其研发与训

练成本也随着参数数量的激增而显著上升[8]。例

如,GPT-3[4]、BERT[9]、Grok-1① 等模型通常包含数

十亿甚至上千亿个参数,谷歌 PaLM-2[10]更是以

3.6万亿的参数量刷新记录。
这些模型的训练不仅要求海量数据与存储空

间,还需要极高的算力支持。在训练过程中,往往需

要动用数十到数百TeraFLOPs级别的持续运算能

力[11-12]。以OpenAI的GPT-4[13]为例,其采用混合

专家架构(MoE)[14],在实现高效参数利用的同时也

011 计 算 机 学 报 2026年

①

https://x.ai/blog/grok-os。

大幅提升了训练过程中对计算资源的需求;知名的

开源大模型Llama[15],在2048个A100

80GB

GPU
上,开发和训练了约5个月。这种参数规模的不断

膨胀和算力需求的急剧增加,直接推动了训练基础

设施范式的转变———传统的单卡训练模式已难以满

足需求,多卡分布式训练技术正逐渐成为核心基础

设施。
早期分布式训练技术大多专注于单一并行策略

的优化,每种策略都只在特定应用场景下发挥出显

著优势。例如,数据并行通过批量样本划分,实现简

单高效的线性加速,但当模型参数达到千亿规模时,
其梯度同步的通信开销激增,成为制约效率的瓶颈;
模型并行可以拆分庞大的网络结构,但设备间频繁

的参数通信往往导致计算效率降低、资源利用率不

高;流水线并行虽然能够提高设备整体利用率,但流

水线固有的“气泡”损耗又限制了训练效率的进一步

提升。这种单一策略各自为政的局面,虽然满足了

早期分布式训练的基本需求,但在模型规模持续扩

大、训练复杂性不断增加的背景下逐渐显露出明显

不足,迫使研究者开始探索多种并行策略的融合

使用。
尽管

PyTorch[16]、TensorFlow[17]、JAX①

等主

流深度学习框架已经原生支持了一些基础并行策

略,但单一策略的局限性使其无法高效应对大规模

模型训练所带来的复杂挑战。为应对这一问题,近
年来涌现出了一批专注于混合并行的分布式训练框

架,其中最具代表性的是

NVIDIA

的

Megatron-
LM②

和微软的

DeepSpeed[18]。Megatron-LM

专为

大规模

Transformer

模型设计,通过有效结合数据

并行和模型并行策略,实现了对数百亿乃至上千亿

参数规模模型的高效训练,并具备良好的集群扩展

性能;DeepSpeed

则是一套综合性的分布式训练优

化库,集成了混合精度训练、张量并行以及模型压缩

等多种优化技术,尤其是其提出的

ZeRO

冗余优化

器(Zero

Redundancy

Optimizer,ZeRO)[19],显著降

低了多

GPU

环境中的通信与存储成本。这些混合

并行框架的兴起与快速发展,正在有效解决单一并

行策略难以克服的瓶颈,成为当前大模型训练的主

流技术路径。
在当前超大规模模型训练不断升级的背景下,

国产大模型DeepSeek的突破为混合并行技术提供

了重要的实践样本。DeepSeek-V3[20]采用混合并行

架构,融合ZeRO-1数据并行、流水线并行与专家并

行(MoE)三种策略,在由2048块英伟达H800

GPU

组成的集群上完成了对一款参数规模达到6710亿

的混 合 专 家 语 言 模 型 的 训 练,全 流 程 共 消 耗 约

2.788M

H800

GPU

小时,历时约

54

天完成预训

练。相比之下,Meta

的

Llama

3.1

405B

模型在包

含

16

384

块

H100

GPU

的集群上也耗时约

54

天

完成预训练[21],但其算力规模高达数万

GPU

卡,凸
显了

DeepSeek-V3

在算力资源利用和训练成本上

的显著优势这一案例充分验证了混合并行技术在超

大规模训练场景下的工程可行性,同时也展示了国

内在大模型训练优化上的新进展。
由DeepSeek的实践案例可以看出,一个经过

精心设计的混合并行策略不仅能够显著降低训练成

本,还能大幅提升训练速度,但构建这样一套高效的

策略并非易事。大模型的并行训练面临诸多挑战:
首先,由于不同模型结构与硬件平台存在差异,每个

分布式节点的训练策略(如分配每台设备训练的层

数或对算子进行并行化拆分)往往需要手动调优;其
次,分布式节点间的通信效率对整体训练性能影响

巨大,如何实现高效的数据传输依旧是关键难题;此
外,在流水线并行中,合理排布流水线以减少“气泡

效应”,以及在异构计算环境下充分利用不同厂商硬

件特性进行任务分配,都进一步增加了大规模模型

训练的复杂性。综合来看,这些因素不仅使大模型

的并行训练充满挑战,也对系统协同优化提出了更

高要求。
当前关于大规模深度学习模型分布式训练技术

的综述研究呈现碎片化特征,既有工作或聚焦于单

一并行范式(如数据并行或流水线并行)的技术演进

分析[22],或局限于自动并行化等特定子领域[23],或
从上层视角软硬结合进行总体分析[24-26]。这些研究

虽在各自关注维度取得显著进展,但存在两个根本

性局限:(1)对混合并行策略的协同机制缺乏系统性

解构,导致策略组合的理论边界模糊;(2)混合并行

方案的设计多依赖经验性试错,缺乏普适性的理论

建模工具。特别是在Transformer架构主导的大模

型训练场景中,现有方法在应对多维并行策略耦合

时的通信-计算均衡问题仍存在显著的理论与实践

鸿沟。
为系统化解决上述局限性,本文构建了一个三

维分析体系:从基础策略的解构,到混合方案的优

化,再到自动搜索机制在混合并行中的应用。区别

于传统分类方法,本综述的创新点主要包括:

1111

期 张贵鹏等:大模型训练的混合并行技术综述

①
②

http://github.com/jax-ml/jax。

https://github.com/NVIDIA/Megatron-LM。

(1)建立了基于拆分的并行策略抽象框架,用于

全面梳理现有的并行策略,明确其适用场景及优势。
(2)梳理了主流混合并行技术的演进历程,提出

了统一且灵活的混合并行数学表达,并拓展了自动

并行搜索的解空间。
(3)指出了大模型混合并行中主要的三个挑战,

包括通信-计算均衡、异构计算协同与自动并行搜

索,为未来研究提供了新的方向。

2 研究现状与挑战

当前大模型并行训练的研究已相当丰富,主流

的并行策略如图

1所示,包括数据并行、模型并行、

张量并行、流水线并行、专家并行和序列并行。
早期的深度学习主要依赖数据并行来提高训练

效率。然而,随着模型规模的急剧增长,单个计算设

备的内存已难以承载完整的模型参数,旨在切分模

型本身的模型并行技术应运而生。模型并行主要以

两种形式存在:张量并行与流水线并行。张量并行

专注于模型内部的单个算子,对大尺度矩阵运算等

操作进行切分;而流水线并行则着眼于模型的宏观

结构,将整个计算图按层或模块拆分为多个阶段。
近年来,新的模型架构和应用需求进一步丰富了并

行策略:混合专家模型的流行催生了专家并行,而大

语言模型对长序列处理能力日益增长的需求,也推

动了序列并行技术的诞生与应用。

图1 大模型训练的并行策略发展时间轴

 需要注意的是,在并行训练过程中,提升训练速

度与保持训练效率之间往往存在一定的权衡。训练

速度指的是完成模型训练所需的时间,而训练效率

则侧重于衡量计算资源的利用率和训练成本。高效

的训练不仅要求缩短训练时间,还应最大化计算资

源的利用率,尽量减少不必要的开销。因此,在实际

应用中,应根据模型结构、硬件资源和训练需求,综
合考虑不同并行策略带来的速度和效率差异,选择

最合适的方案。
以下是各并行策略的简要介绍:
(1)数据并行(Data

Parallelism[27],

DP):将一

个完整的数据批次拆分为多个子批次,分别在不同

的计算单元上进行独立计算以实现并行。
(2)模型并行(Model

Parallelism[28],

MP):将
模型自身的结构(例如层、参数矩阵)切分并部署到

多个计算单元上以实现并行。它是一类并行策略的

总称,其主要实现包括张量并行与流水线并行。
(3)张量并行(Tensor

Parallelism[29],

TP):模
型并行的实现方式之一。在进行矩阵运算时,将矩

阵(即张量)沿特定维度进行切分,使得多个计算单

元可以并行完成同一层内不同部分的计算,通常需

要额外的通信来同步结果。
(4)流水线并行(Pipeline

Parallelism[30],

PP):
模型并行的实现方式之一。将模型的计算图纵向

(通常是按层)划分为若干连续的阶段(stages),不
同阶段在不同计算单元上顺序执行。通过将训练数

据分批次(micro-batches)送入流水线,使得多个阶

段可以并行处理不同批次的数据,从而提高设备利

用率。
(5)序列并行(Sequence

Parallelism[31],

SP):
针对处理长序列数据的场景,沿输入数据的序列维

度进行拆分,各计算单元负责计算部分序列的表示,
以此实现并行,减少单设备上的内存占用和计算量。

(6)专家并行(Expert

Parallelism[32],

EP):主
要针对混合专家(MoE)模型,将不同的专家网络分

配到不同的计算设备上。在计算过程中,输入数据

会根据路由机制被导向相应的专家,并通过

All-to-
All

等通信方式聚合结果。

211 计 算 机 学 报 2026年

随着并行策略的不断演进,可用于并行训练的

方案日益增多,通常需要将多种策略组合成混合并

行[33]。传统的混合并行方案往往依赖专家依据模

型结构与硬件特性进行精细的手动优化,这不仅耗

时耗力,也难以适应不断变化的模型和硬件环境。
随着模型规模和集群规模的不断扩大,手工设计高

效的混合并行策略变得愈发棘手。
为应对这一挑战,自动并行[34]技术应运而生,

其目标是基于模型和硬件资源的特性自动生成最优

或近似最优的并行策略。然而,由于并行策略众多

且相互关联,加之设备集群规模的持续扩大,使得自

动并行策略的搜索问题变得异常复杂,往往属于

NP难问题。尤其在多种并行策略混合使用的情况

下,策略搜索空间呈指数级增长,进一步增加了优化

难度。此外,硬件异构性也使得为不同设备组合寻

找最优策略更加具挑战性。因此,自动并行系统需

要结合传统算法、启发式算法以及基于机器学习的

优化方法,逐步逼近最优解,确保在多样化的计算资

源和网络结构下均能搜索出高效的并行训练方案。
以下是大规模并行训练中面临的一些具体挑战:
(1)通信开销:在多节点并行训练中,各节点之

间需要频繁交换参数和梯度信息,这会产生额外的

通信开销。如果通信延迟较高,会导致整体训练速

度的下降,从而影响训练效率。有效的通信策略和

优化算法对于减少通信开销至关重要。
(2)负载均衡:不同计算节点的计算能力和负载

情况可能存在差异,如何合理分配计算任务以确保

各节点工作负载均衡是一个重要问题。负载不均衡

会导致某些节点成为瓶颈,降低整体计算资源的利

用率,从而影响训练效率。
(3)内存管理:随着模型参数和数据量的增加,

内存管理变得越来越重要。如何高效地利用内存资

源,避免内存溢出和过度的内存交换,也是并行训练

中需要解决的问题。内存利用率的优化直接影响训

练效率。
(4)自动并行:如何自动化设计高效的并行训练

算法,充分利用多节点和多GPU资源,提高训练速

度和训练效率,是并行训练的核心问题。有效的并

行训练算法可以减少通信开销、提高负载均衡、增强

容错性,从而实现高效的模型训练。
(5)容错:在大规模分布式训练中,节点故障是

难以避免的。如何在节点故障发生时快速恢复训练

过程,确保训练任务的连续性和结果的可靠性,是并

行训练面临的另一个重大挑战。需要设计有效的容

错机制以保证系统的鲁棒性,从而提高训练效率。
(6)异构训练:如何有效利用异构计算资源(如

CPU、GPU、TPU等)进行并行训练,充分发挥各种

计算设备的优势,提高训练速度和训练效率,是并行

训练的又一个挑战。异构计算资源的合理配置和优

化对于提高训练效率至关重要。
目前,主流的大型语言模型[4,15,35-36]几乎都采用

Transformer

架构。因此,本文主要聚焦于Transform-
er模型的并行训练方法,通过研究和优化其训练策

略,为大规模模型的训练提供有益的参考和借鉴。
同时,其他类型的模型在并行训练时也可以借鉴本

文总结的方法和思路,以实现更高效的训练效果。

3 并行策略的抽象

现代深度学习模型的训练过程可形式化描述为

对计算图G=(V,E)的迭代优化,其中顶点集V=
{vi}ni=1表示计算算子,边集E 表示算子间的数据依

赖关系(如残差连接),如图

2(a)。无论模型架构差

异如何,其本质均在执行如下循环过程[37]:

θt+1=θt-η

Δ

θ (G(x;θt))
其中,η 为学习率,而

Δ
θ 则是利用自动微分构建

的反向传播计算图。在这一过程中,正向计算图驱

动模型预测,而反向计算图用于梯度传播,为整个训

练流程中的并行策略抽象提供了理论基础。以

Transformer架构的 GPT3模型为例,其计算图包

含96个串行Transformer层,每个层内的计算可分

解为

FFN(x)=W2σ(W1x+b1)+b2,

Self-Attention(Q,K,V)=Softmax
QKT

dk V。
 在挖掘计算图G 的并行性时,并行策略可从两

个维度展开:在算子内部进行分解,或是在算子之间

进行调度。基于此,Alpa[38]首次系统性地提出了算

子内并行(intra-op)与算子间并行(inter-op)的二分

法。算子内并行针对单个算子内部进行数据或计算

的拆分,通过多个设备协同计算同一个算子,以提升

算子自身的执行速度,常见如张量并行与序列并行

均属此类;而算子间并行则是将整个计算图进行拆

分,拆分后不同的算子或算子组(如一个网络层)作
为调度单元,分配至不同设备并行执行,其典型代表

是流水线并行。这两种模式达成并行的本质区别在

于:算子内并行通过多设备同时执行同一个算子或

算子组实现,算子间并行通过多设备同时执行不同

3111

期 张贵鹏等:大模型训练的混合并行技术综述

的算子或算子组实现。
算子内并行与算子间并行二分法的核心价值在

于其抽象与简化能力。它将复杂多样的并行技术统

一归纳为两个正交且互补的基础维度。这种分类降

低了理解、描述和设计大规模混合并行策略的复杂

性。下文将基于此理论框架,一方面深入剖析并行

的本质,即如何通过不同层面的拆分诱导并行性,另
一方面系统探讨两类并行之间的耦合关系,为理解

和设计更高效的混合并行方案提供基础。
并行性的根源在于计算图与算子的拆分,但由

于数据依赖性的存在,单纯的算子内或算子间拆分

并不总能直接带来相应的并行性。例如,算子内拆

分往往需要结合通信原语才能形成真正的算子内并

行;而计算图拆分由于目前的模型架构呈串行特征,
缺乏天然并行的算子,只有在结合算子内拆分并形

成流水线的情况下,才能真正实现算子间并行。因

此,本文会将拆分与并行两个概念分离,并从拆分的

角度出发,分析不同拆分方法如何直接或间接地带

来并行性。
首先是算子内拆分与算子内并行[19,29,39],如图

2(b),该方法旨在挖掘算子内部的并行性。通过将

每个算子拆分,来提升算子的计算速度。例如,对于

Transformer

中的前馈神经网络层(Feed

Forward

Neural

Network

layer,

FFN)中的某一GEMM∈
V,输入部分涉及三个维度:[数据批次大小(B),序
列长度(S),隐藏层维度(H)],而模型部分涉及两

个维度:[隐藏层维度1(H1),隐藏层维度2(H2)]。
其算子内切分可建模为:

Tk:B×S×H →􀰒
k

i=1

B/kb×S/ks×H/kh,

其中,切分因子 (kb,ks,kh)分别对应数据、序列和

张量维度的拆分。虽然这三维切分在理论上可能不

能直接实现完全并行,但在引入必要的通信操作后,
便可分别对应数据并行、序列并行和张量并行策略,
从而实现整体并行效率的提升。

其次 是 基 于 计 算 图 拆 分 实 现 的 流 水 线 并

行[40-44],如图

2(c),这一方法旨在挖掘整个计算图

的全局并行性。具体做法是将完整的计算图分解为

多个存在计算依赖关系的子图,同时结合对算子内

部的拆分,使得一些依赖关系不再严格,从而实现流

水线式的调度。以Transformer为例,通过对数据

并行(DP)维度进行切分后,某些算子之间不再存在

严格的前后依赖,即在一个数据批次中,每条数据在

经过某个算子后,其后续计算可以独立于其他数据

进行。基于这一特点,目前的流水线并行策略往往

将一个完整的批次划分为多个微批次,通过在不同

流水线阶段并行处理不同微批次来提高整体计算

效率。

图2 计算图及其并行划分

上述并行性抽象不仅为理解各类并行策略提供

了明确的理论框架,也为进一步的优化设计奠定了

基础。接下来的讨论中,所有并行策略的分析都将

基于这一系列抽象展开,逐步解析当前主流方法的

优劣与适用场景。

3.1 算子内拆分与算子内并行

 算子内拆分根据依赖关系的保持程度可分为严

格依赖与非严格依赖两类。在严格依赖的算子内拆

分过程中,原有计算图中的算子间依赖关系保持不

变。这意味着,所有依赖于该算子的其他算子仍需

等待所有子算子的计算完成,确保依赖关系的严格

性。非严格依赖的算子内拆分不同于严格依赖的算

子内拆分,其核心在于算子拆分后部分解除了前后

算子之间的依赖关系。例如,在沿数据批次维度进

行拆分时,后续算子可以在不必等待当前算子的所

有子算子计算完成的情况下开始执行。
通常,算子内拆分可直接实现算子内并行。对

于严格依赖型拆分,只需在必要处插入通信操作以

协调数据传输,而非严格依赖型拆分则能天然实现

并行执行,无需额外操作。值得注意的是,某些情况

下的算子内拆分(如因果掩码的序列维度拆分)虽然

不能直接带来并行性,但其非严格依赖特性可以与

后续的计算图拆分相结合,从而支持流水线并行。

3.1.1 严格依赖的算子内拆分

(1)参数矩阵拆分与张量并行

张量并行是大模型时代的重要产物,其核心竞

争力在于其天然将模型参数 W ∈Rm×n 分解为

{Wi}ki=1 并分布到多个设备,从而解决了单一设备

存储超大模型参数的难题。其基本思想是将矩阵乘

411 计 算 机 学 报 2026年

图3 张量并行

法等计算操作拆分成多个较小的矩阵乘法:例如,可
沿模型参数矩阵的行或列进行切分,在多个处理单

元上并行计算,最后汇总各单元的计算结果。该过

程可形式化描述为

W =􀱇
k

i=1
Wi,Wi ∈Rm/k×n

or

Wi ∈Rm×n/k,

Y=∪
k

i=1
XiWi, Xi= (X)。

其中, 表 示 输 入 张 量 切 分 操 作,如 Scatter、

Broadcast,∪ 表示计算结果聚合操作,如All-Gath-
er、All-Reduce。

当沿行维度切分W 时,如图

3(a),在这一过程

中,Wi ∈Rm/k×n 预先分布式储存在不同的设备上,

Xi ∈Rb×s×m/k 需要通过

Scatter

操作将输入数据切

片并分发到所有计算单元,每个设备计算局部结果

Yi=XiWi ,计算完成后通过

All-Reduce

操作来整

合结果。

Y=All-Reduce∑
k

i=1
XiWi 。

 当沿列维度切分W 时,如图3(b),在这一过程

中,Wi ∈Rm×n/k 预先分布式储存在不同的设备上,

Xi=X 需要通过

Broadcast

操作将输入数据完整地

分发到所有计算单元,每个设备计算局部结果Yi =
XiWi ,计算完成后通过

All-Gather

操作来整合结果。

Y=All-Gather∑
k

i=1
XiWi 。

 朴素的切分策略引入了额外的通信开销,包括

Scatter、Broadcast、All-Gather和 All-Reduce等操

作,这些通信过程可能成为训练效率的瓶颈。Meg-
atron-LM[29]通过优化

Transformer

的注意力层和

前馈神经网络层,显著降低了通信开销。在多层感

知器(MLP)层中,权重首先沿列切分,然后再沿行

切分。这种方法天然地避免了列切分后所需的

All-

Gather

操作以及行切分前的

Scatter

操作,从而减

少了通信负担,提高了并行计算的效率。对于注意

力层,其多头注意力机制本身具备良好的并行性,可
以在多个处理单元上直接进行并行计算。在从子空

间到隐藏层的映射过程中,每个头对应的输入数据

已经自然切分,使得参数矩阵可以直接沿行切分,无
需额外的通信操作。整体流程如图

4(a),其中f 表

示在 前 向 时 进 行 Broadcast,反 向 时 进 行 All-re-

duce,f
-

则是将f 的两次通信操作取反。
(2)输入序列维度拆分与序列并行

大型语言模型(LLM)在训练过程中常常因序

列过长而导致显存溢出(OOM)问题。为了解决这

一难题,序列并行(SP)技术应运而生,其核心思想

是沿序列维度对输入数据进行切分。
由于注意力机制(attention)的计算依赖于整个

序列信息,Korthikanti

等人[39]最初仅将序列并行

技术应用于那些在序列维度不存在计算依赖的算子

(例如

Dropout

层和

LayerNorm

层),并将其作为

Megatron

张量并行的扩展。这一方法不仅进一步

挖掘了更多算子的内部并行性,还将每个

Trans-
former

层的通信需求从原先的两次

Broadcast

和两

次

All-Reduce

优化为两次

All-Gather

和两次

Re-
duce-Scatter,其整体流程如图

4(b)所示,其中

g

表

示在前向时进行 Reduce-Scatter,反向时进行 All-
Gather,g-

则是将

g

的两次通信操作取反。但这种

方案将序列并行的维度与张量并行的维度耦合在一

起,从而限制了序列并行的扩展性。
为了解决

Attention

算子在序列维度上无法直

接并行计算的问题,Hao

Liu

等人提出了一种新的

Attention

算法———Block-wise

Attention[45]。该算

法本质上是

flash-attention[46-47]

的分布式版本,并
得益于

online

softmax

算法[48],将

Attention

的空

间复杂度从

O(s2)

降低到

O(s),从而可以在序列

维度上实现并行计算,极大地提升了序列并行的效

率。在此基础上发展出的

Ring-Attention

算法[49]

更进一步优化了计算与通信的重叠。其核心算法描

述如下:

Attn(Qi,Kj,Vj)=
e

QiK
T
j-max(QiK

T
j
)

∑e
QiK

T
j-max(QiK

T
j
)
,

maxi=max(max(QiKT
1),…,max(QiKT

B)),

Attn(Qi,K,V)= e
QiK

T
j-max

i
Attn(Qi,Kj,Vj)

Bkv
j=1。

其中,Qi
 表示第

i

个

Query

向量,Kj 与Vj 分别为

5111

期 张贵鹏等:大模型训练的混合并行技术综述

第

j

个

Key

和

Value

向量,Bkv
 为

Key

与

Value的分

块数。
基于

ring-attention

技术,Megatron-LM

项目

进一步开发了上下文并行(Context

Parallel,CP)。
作为对

Megatron

SP

的扩展,不同于其

SP

仅适用

于

Dropout

层和

LayerNorm

层的方案,CP

同时也

可扩展至

Attention

层和前馈神经网络层(FFN),
从而成为与张量并行(TP)正交的一种并行维度。
其整体流程如图

4(c)所示,其中

h

表示在前向时不

用进行通信操作,反向时需要进行All-Gather。

图4 张量并行与序列并行示意图

 与此同时,Deepspeed

团队在序列并行策略上

也提 出 了 自 己 的 解 决 方 案———DeepSpeed-Ulys-

ses[50]。该方法核心在于沿序列维度对输入数据进

行划分,然后利用高效的

all-to-all

集合通信来交换

QKV

矩阵。在进行

attention

计算前,每个

GPU

通过

all-to-all

通信交换数据,以获得完整序列中不

同

attention

head

的子集;计算完成后,再次利用

all-to-all

通 信 将 结 果 按 序 列 维 度 重 新 划 分。与

ring-attention

相比,这种设计显著降低了通信开

销。理论分析表明,当通信量与序列长度及

GPU

数量成正比时,该方法能保持通信开销恒定,从而有

望扩展到百万级

token

的序列长度。实验结果也表

明,该方法能以超过现有最佳方案

2.5

倍的速度训

练

4

倍更长序列长度的模型,并且具有良好的通用

性和易集成性。不过,该方案也存在一定局限性,即

序列并行维度的大小必须能被

head

数量整除,在

GQA(Grouped-Query

Attention)[51]

方案下,head

数量的限制问题更为严苛。
实际上,ring-attention

与

Ulysses

两种方案本

质上是正交的,已有部分工作尝试将二者结合[52],
以进一步提升模型训练效率。

(3)专家拆分与专家并行

专家并行[53-57](Expert

Parallelism,

EP)是一种

专为稀疏专家模型[14,58](Mixture-of-Experts,MoE)设
计的并行策略,其核心思想在于将模型中的各个专

家模块分布到多个计算设备上,从而实现资源的高

效利用。在这种架构下,每个专家仅负责处理输入

数据的一个子集,即在整个训练过程中只有部分专

家被激活,从而显著降低了单个设备的计算负担。
其核心原理可概括为

611 计 算 机 学 报 2026年

(x)=∑
E

i=1
Gi(x)Ei(x),Ei∈{Devicek}Kk=1。

其中,Gi(x)为门控网络生成的稀疏激活权重,Ei 为

分布式部署的专家模块。该架构通过All-to-All通信

实现跨设备数据交换,在4096卡集群中可支持万亿级

参数训练[59]。然而,该技术仍面临以下关键挑战:

①通信开销与扩展性瓶颈

All-to-All通信机制虽能保证数学等价性,但其

通信复杂度随设备规模呈超线性增长。以设备集群

数量K 为例,传统All-to-All的通信时延为

Tcomm=αlogK +
2SB
Kβ
。

其中,α 为网络延迟,β 为带宽,S 为序列长度,B
为批尺寸。当K=4096时,通信开销可占总训练时

间的38%以上。近期研究提出分层 All-to-All策

略,通过节点内 NVLink聚合与节点间InfiniBand
传输的协同优化。如DeepSeek开源的DeepEP[60],
与

DeepSeek-V3[20]

论文中提出的组限制门控算法

保持一致,DeepEP

提供了一组针对非对称域带宽

转发进行了优化的内核,例如将数据从

NVLink

域

转发到

RDMA

域。这些内核提供高吞吐量,使其

适用于训练和推理预填充任务。

②动态负载均衡困境

尽管EP通过门控网络实现专家选择的动态调

整,但局部负载均衡(Micro-batch

Level)会导致专

家特异化受限。阿里云团队在训练Qwen系列模型

时研究发现[61],当单个微批次数据来源单一时(如
全为代码数据),传统负载均衡损失函数会强制均匀

分配输入,抑制专家领域特化能力。其提出的全局

均衡方法(Global

Load

Balance)通过在128个连续

微批次上统计专家激活频率,使领域特异性专家比

例提升47%,同时在BigBench基准上降低困惑度

(PPL)达15%。

3.1.2 非严格依赖的算子内拆分

(1)数据批次维度拆分与数据并行

数据并行(Data

Parallelism,DP)[62]的核心思

想是将整个数据集拆分成多个批次,并在不同的计

算单元上运行相同的模型副本。每个计算单元负责

处理其中一部分数据,独立完成前向传播和反向传

播操作。反向传播结束后,各计算单元会通过

All-
Reduce

操作汇总梯度,以确保模型参数的一致性。
数据并行因其实现简单且能充分利用多设备的计算

资源,特别适合处理大规模数据集。但在大规模集

群中,All-Reduce

操作可能成为显著的性能瓶颈。

传统的数据并行方式存在存储冗余问题,如模

型参数和优化器状态会被重复存储多份,而

ZeRO-
DP[19]

则在此基础上进行了改进。ZeRO

提供了三个

递进的优化阶段:ZeRO-1

仅对优化器状态进行分片,
在使用

Adam

等高阶优化器时,这部分通常是模型参

数量的数倍;ZeRO-2

在此基础上,进一步对梯度进行

分片;而

ZeRO-3

则实现了最彻底的优化,将模型参

数本身也进行分片。这三个阶段为不同规模的模型

和硬件环境提供了从显著到极致的显存优化选择,但
其显存收益伴随着不同程度的通信开销。

在通信层面,ZeRO

各阶段的开销差异显著。

ZeRO-1

的优势在于,它仅在优化器状态更新时才

涉及本地状态的计算,在训练的前向和反向传播过

程中不引入任何额外的通信。相比之下,ZeRO-2

在反向传播时,会通过梯度分桶技术,在每个梯度桶

计算完成后立即触发一次

Reduce-Scatter

操作来代

替传统数据并行的

All-Reduce,该方案不会增加通

信量,但通信频率和复杂度有所提升。而

ZeRO-3

则需要在每个计算层的前后都进行

All-Gather

操

作来重组完整的模型参数,这带来了密集的通信需

求。不同模型根据其训练框架和并行策略,会选择

不同的

ZeRO

阶段,但在混合并行场景下,为了不

让

ZeRO

的通信开销与原有的并行策略冲突,Ze-
RO-1

往往是一个稳妥的选择[15,20,35]。
(2)不构成序列并行的序列维度拆分

Token-level

拆分是一种沿序列维度进行的特

殊拆分方式,适用于自注意力计算仅依赖于先前位

置的

Transformer

模型,如GPT系列模型[3-4],这些

模型采用解码器结构,使用因果掩码(causal

mask-
ing)确保每个位置的输出仅依赖于当前位置及之前

的位置。准确地说,对于输入隐藏状态序列

(h1,

h2,…,ht),自注意力层

SelfAtt(ht)

的计算仅取决

于先前位置

(h1,h2,…,ht-1)

的隐藏状态,并且前

馈层

FFN(ht)

的计算仅取决于

ht
 本身。不同于之

前讨论的序列并行和上下文并行,由于自注意力的

计算依赖于序列中的所有Token,导致后续算子必

须等待当前算子的所有子算子完成计算。然而,对
于这种特殊的模型,得益于其仅依赖于先前位置的

特性,沿序列维度拆分后,计算图内的各算子可以在

不等待前一个算子全部完成的情况下继续执行。

3.2 计算图拆分与流水线并行

 计算图拆分是指将模型划分为多个阶段,并在

不同的计算设备上执行。具体来说,模型的前向传

播和反向传播过程被划分为多个子图,每个子图在

7111

期 张贵鹏等:大模型训练的混合并行技术综述

不同的计算设备上并行执行,从而扩展模型的规模。
计算图拆分不仅能够有效分散计算任务,还能显著

减轻单个设备的内存压力。通过将模型划分为多个

子图,单个设备只需存储并处理一部分计算图,从而

避免了将整个模型加载到单一设备内存中的需求,
特别是在处理超大规模模型时,能够有效避免内存

溢出的问题。然而,单纯的算子间拆分并不能实现

真正的并行性。如图

5(a)所示,如果仅将模型的不

同层分配到不同的计算设备上,由于算子间的依赖

性,往往会导致每个时刻只有一个设备在计算,从而

造成计算资源的浪费并降低并行效率。
为了有效发掘算子间的并行性,计算图拆分后

需要结合非严格依赖的算子内拆分,以实现流水化。
当前主流的流水线并行通常基于数据批次维度拆

分。在首次提出流水线并行的GPipe[40]中,通过将

一个数据批次拆分为多个微批次,不同的微批次在

所有计算设备上并行计算,从而能够在每一步训练

过程中达到近似流水线并行的效果。GPipe的流水

线结构如图

5(b)所示。通过这种方式,计算图拆分

与流水线并行相结合,可以在不显著增加内存负担

的情况下,实现更高效的并行计算。需要注意的是,
本文仅讨论同步的流水线并行,异步流水线(如将多

步训练流水化而不进行梯度同步)由于存在数学不

等价的问题,因此不在本文讨论范围内。

图5 流水线并行

流水线中的各个计算阶段之间存在数据依赖

性,导致某些设备在等待其他设备完成计算时处于

空闲状态,无法有效利用计算资源,这些阶段性的空

闲时间即为

Bubble。目前有关流水线并行的研究

重点在于如何最小化

Bubble

的数量和持续时间,
同时降低显存的占用。例如,通常采用异步通信方

式,以减少通信开销,即每个计算设备在完成自身微

批次的计算后,立即进行通信并启动下一个微批次

的计算。这样能够在一定程度上重叠通信和计算过

程,从而进一步减少流水线中的

Bubble,提升整体

并行效率。

Narayanan

等 人 在

PipeDream[41]

中 提 出 的

1F1B

思想,通过重排流水线来尽早进行反向计算,
从而形成一个前向过程和一个反向过程交错进行的

流水线结构。虽然这种方法并未缩短

Bubble

的持

续时间,但提前进行反向过程意味着可以更早地释

放前向过程产生的激活值,使得这种流水线在峰值

显存占用方面表现更为优异,目前

1F1B

流水线已

经被广泛应用于各种策略之中[42]。
此外,流水线并行还有 许 多 优 化 工 作,例 如

GEMS[63]、CHIMERA[64]提出双发射流水线,ZE-
RO-BUBBLE[43]创新性地提出了将反向过程中的

模型参数梯度计算和激活值梯度计算分离,进一步

重排流水线,减少bubble。同时,他们还提出每个

计算设备持有两块子图,让整个训练在流水线上以

V形方式进行,解决了1F1B策略可能导致的显存

利用率不均问题的同时几乎消除了流水线Bubble。
同时,流水线结合offload[65]、Checkpoint等技术也

能解决流水线并行的显存问题。
除了沿着数据批次维度拆分,还可以沿着

To-
ken

维度拆分。TeraPipe[44]很好地利用了 Trans-
former的特性,即较长的序列需要较长的计算时

间。不是以微批为单位将数据馈送到管道,而是沿

着令牌轴(即序列轴)不均匀地分割序列数据,然后

将它们馈送到管道中,其中每次分割具有相似的执

行时间。

3.3 并行计算与通信

 不论是通过拆分算子或是拆分计算图,将训练

任务并行化后,均不可避免会引入额外的通信。通

信开销通常是并行训练的主要瓶颈之一,尤其在大

规模分布式训练中,通信延迟和带宽的限制可能会

显著影响整体训练效率。Flux[66]中提到,在使用

PCIe

设备进行训练时,张量并行引入的通信时长占

整个训练过程的

40%~60%。因此,在设计并行计

811 计 算 机 学 报 2026年

算架构时,需要充分考虑通信开销,并采取相应的优

化策略来降低通信成本。
在进行算子内并行时,往往需要引入额外的集

合通信操作,以确保各个计算单元之间的数据一致

性和正确性。这些通信操作包括但不限于

Scatter、

Broadcast、All-Gather

和

All-Reduce

等。每种通信

操作都有其特定的开销和适用场景。例如,Scatter

操作用于将数据从一个设备分发到多个设备,而

All-Gather

则用于将各个设备上的数据聚合到一

起。在流水线并行中,通信开销则是阶段之间的

P2P通信。每个阶段的计算结果需要通过通信操作

传递给下一个阶段。
在优化通信开销时,可以从两方面入手:(1)优

化通信算子本身的速度与效率;(2)重叠计算与通

信,掩盖通信开销。前者主要是通过改进集合通信

算法、数据压缩与编码等方式来减少通信延迟和带

宽占用;后者则是通过异步通信、算子融合等方式来

减少通信对计算的阻塞影响。具体如下:
(1)集合通信算法优化:通过改进集合通信算法

(如使用更高效的

All-Reduce

算法)来减少通信延

迟和带宽占用。为降低通信延迟和带宽占用,研究

者提出 了 多 种 优 化 的

AllReduce

算 法。经 典 的

Ring

AllReduce

通过将节点组织成环形拓扑,采用

Reduce-Scatter

和

AllGather

两个阶段,实现了带

宽最优的通信模式,已被广泛应用于

Horovod

等框

架中[67]。Hierarchical

AllReduce

则将节点划分为

多个组,先在组内进行

AllReduce,再在组间进行通

信,最后将结果广播回各组,显著减少了通信步骤,
提升了大规模集群的训练效率[68]。此外,2D-Torus

AllReduce

利用二维网格拓扑,在两个维度上并行

执行通信操作,进一步降低了通信开销,适用于超大

规模分布式系统[69]。近年来,针对特定挑战的优化

算法也不断涌现。例如,StragglAR

通过在存在慢

节点(straggler)时,先 对 其 余 节 点 执 行

Reduce-
Scatter,再在慢节点同步后完成

AllReduce,显著提

升了训练速度[70]。GenTree[71]

则通过引入新的时

间成本模型,设计出适用于树状拓扑的

AllReduce

计划生成算法,在实际测试中实现了

1.22×至1.65
×的加速。此外,利用深度强化学习自动生成适应

不同网络拓扑的

AllReduce

调度策略,也成为提升

通信效率的新方向[72]。
(2)数据压缩与编码:在大规模分布式训练中,

通信带宽常成为性能瓶颈。为缓解此问题,研究者

提出了多种通信压缩技术,包括梯度量化(如

QS-

GD[73]

和

signSGD[74])、梯度稀疏化(如

Deep

Gradi-
ent

Compression[75])、误 差 补 偿 机 制 (如

MEM-
SGD[76])以及低秩近似(如

PowerSGD[77])。近年

来,新的方法如

ACP-SGD[78]

、MiCRO[79]、TAGC[80]

和

QSDP[81]

等进一步提升了训练效率和可扩展性。
这些技术的结合显著推动了大规模分布式深度学习

的效率和可行性。
(3)算子融合:将计算与通信算子进行融合,微

软提 出 的

CocoNet[82],最 早 提 出 异 步 张 量 并 行

(Async

Tensor

Parallelism)的工作,作者提供了一

种通用

Kernel

融合的范式,能够自动生成集合通信

与常见计算操作(如

GEMM

和卷积)之间的融合

Kernel。Flux[66]在常规算子融合的基础上更进一

步,基于 Warps异步执行,通过将内存写回操作替

换为通信操作,在不降低算子效率的前提下将绝大

部分所需的通信融入并隐藏在计算中,从而实现了

更高效的异步通信。
(4)流水线通信重叠:通过设计流水线调度策略

(如

1F1B),可以显式地重叠计算与通信。在前向

计算过程中,系统可以异步发送输出激活值;在反向

计算阶段,则可以异步接收上游梯度,从而将通信隐

藏在计算过程中,大幅减少流水线空泡。例如,

PipeDream

展示了通过异步转发激活值和梯度实现

计算与通信的重叠,并且比数据并行减少高达

95%

的通信开销[41,83]。当结合

Offload

策略时,通过合

理的流水线阶段安排,可以在计算前提前预取激活,
实现通信–计算的掩盖。以

SSD

为目标的激活

of-
fload

系统

SSDTrain(又称

TBA)就是一个典型示

例,它通过

I/O

与

GPU

计算完全并行实现激活预

取,从而减轻显存压力且不损失训练性能[84]。另有

FlashFlex[85]

等系统将激活异步

offload

至

CPU

或

SSD,并通过与计算同步的传输机制有效覆盖通信

延迟。因此,结合异步通信和激活预取/加载技术的

流水线调度,能够将通信隐藏于计算之下,以此提升

大模型训练的整体效率。

3.4 其他相关技术

 (1)Offload技术[86-87]:大模型训练中的

Off-
load

技术是一种通过将部分计算数据(如模型参

数、梯度、优化器状态)从 GPU 显存临时转移到

CPU内存或硬盘,以缓解GPU显存不足的优化方

法。其核心原理是在训练过程中动态管理存储资

源:当GPU显存满载时,将暂时不用的数据卸载到

内存或磁盘,待需要时再加载回显存,从而突破单卡

显存限制训练超大模型。这种方法常与流水线并行

9111

期 张贵鹏等:大模型训练的混合并行技术综述

结合使用,通过将模型分阶段分配到不同设备的同

时,利用Offload技术进一步降低各阶段的显存压

力,并通过异步预取数据、重叠通信(如CPU-GPU
数据传输)与计算(如GPU的前向/反向传播)来减

少空闲等待时间,从而优化整体效率。
(2)重计算技术[88-89]:又称Checkpoint技术,是

一种通过以计算换显存的大模型训练优化方法,核
心思想是在反向传播时动态重新计算前向传播中的

中间激活值,而非全程存储。具体来说,在前向过程

中,仅选择性保留部分关键层的激活结果(即设置检

查点),其余中间结果在使用后立即释放显存;当反

向传播需要这些数据时,再根据检查点临时重算对

应的中间结果。例如,将神经网络划分为若干段,每
段仅保留输入输出,反向时逐段重算内部激活。这

种技术可显著降低显存占用,但在全量重计算的情

况下会引入约30%的额外计算开销,适用于显存紧

张但算力相对充足的场景,常与 Offload、ZeRO等

并行策略结合,在训练超大规模模型时实现显存与

计算效率的平衡。
(3)异步训练[62,90]:在分布式集群中,各工作节点

独立计算本地梯度后,无需等待其他节点同步,而是

以异步方式将梯度推送至参数服务器,从而更新全局

模型参数。在这种模式下,不同节点可能基于不同版

本的模型参数计算梯度(即“过时梯度”),这会导致全

局模型更新时存在版本不一致性。虽然异步更新能

显著减少同步等待时间、提升硬件利用率并加快训练

速度,但梯度冲突和参数过时所引入的噪声可能会影

响模型收敛的稳定性。为平衡训练效率与模型一致

性,实践中常通过限制版本延迟阈值、动态调整学习

率或引入延迟补偿机制(如

Stale

Synchronous

Paral-
lelism,

SSP[91])来加以调控。该技术尤其适用于数据

吞吐量大、通信成本高的场景,但在实际应用中需在

训练速度和模型一致性之间做出谨慎权衡。有研究

表明,大模型对延迟更加敏感[92]。

4 混合并行技术的演进脉络

混合并行技术的演进始终围绕三个核心命题

展开:
(1)大模型的可训练性:主要聚焦于如何突破显

存限制,使得超大规模模型的训练成为可能。
(2)系统效率的提升:在实现模型可训练性的基

础上,进一步探讨如何在资源受限的环境下优化资

源利用率,以加快训练过程。

(3)自动化探索:研究如何借助程序化和自动化

手段,系统性地搜索并构建更优的混合并行执行

方案。
早期研究通过针对特定的模型结构组合特定的

并行策略,使大型模型能够在分布式系统中进行训

练。随着模型规模的扩大和模型变种的增多,出现了

更强大的混合并行系统,随着系统持续更新,会对数

据并行、张量并行、序列并行、专家并行和流水线并行

等主流并行策略进行部分甚至全部的支持[18,93-95]。
随着模型的复杂性增加和计算设备的多样化,

如何提高大型模型训练系统的效率成为一个重要课

题。尽管像

Megatron-LM

这样的分布式混合并行

系统功能强大,支持所有主流并行策略,但它们主

要针对同构集群设计,未对异构集群或层间异构

模型进行优化。为了解决这些问题,新型混合并

行系统提出了新的混合并行思路,例如允许各个

流水线阶段使用不同的算子内并行策略,以适应

异构设备[93,96]。
在传统的混合并行策略设计中,通常依赖领域

专家的经验。然而,随着模型规模的扩大和复杂性

的增加,手动设计并行策略已难以应对指数级增长

的解空间。为此,自动并行技术应运而生,利用自动

化工具和算法,探索更优的混合并行策略,减少对人

工经验的依赖,提高并行策略的搜索效率。

4.1 部分策略组合的混合并行

 在混合并行发展早期,学术界和工业界提出了

多种仅结合部分策略的方案:DeepSpeed-MoE[59]将
数据并行与专家并行相结合,通过在每个专家子网

络内部并行化路由和梯度更新,实现了数百亿参数

MoE

模型的高效训练。MixPipe[97]在同步数据并

行训练中引入双向流水线并行,通过灵活注入微批

次到正反两个流水线来提升设备利用率和吞吐。也

有一些工作结合数据并行与模型并行[98]。早期的

Mesh-TensorFlow[99]

框架则通过在多维计算网格

上对张量维度进行切分,将数据并行与模型并行统

一到同一编程接口中,为超大规模

Transformer

的

预训练奠定了基础。

4.2 强一致性的同构流水线

 经过多年的技术迭代与演进,以

Megatron-
LM

和

DeepSpeed[100]为代表的现代分布式训练框

架已日臻成熟。这些系统通过持续的架构升级,目
前已能够全面支持包括数据并行、张量并行、序列并

行、专家并行、流水线并行在内的所有主流并行策

略。但这些系统通常要求所有并行策略在设备全局

021 计 算 机 学 报 2026年

正交生效,这意味每种策略都会作用于所有训练设

备之上,无法实现例如前一个流水线阶段使用张量

并行而后一阶段使用数据并行这样的异构配置。
为了精确描述这种并行结构,定义所有算子内并

行维度的集合为Pintra= {DP,TP,EP,SP,…},其
中DP,TP,EP,SP 分别代表数据、张量、专家和序

列并行维度。该集合是可扩展的,允许未来包含其

他算子内并行策略。混合并行策略实际应用的算子

内并行策略 intra⊆Pintra。对于任意一个算子内并

行维度 intra⊆Pintra,定义其并行度为 Np,对应的

设备索引集为Dp ={0,1,…,Np -1}。
因此,算子内并行策略共同构成的设备拓扑子

空间 intra
 可以通过这些索引集的笛卡尔积来定义。

这个拓扑子空间可以被理解为一个多维设备网格。
在此网格中,每个设备都由一个唯一的坐标向量

dintra∈ intra
 标识。该向量可以表示为一个由并行

维度

dintra∈ intra
 索引的族,其明确了设备在各个算

子内并行维度中的角色:

intra= 􀰒
p∈ intra

Dp,

dintra=(dp)p∈ intra
,dp ∈Dp。

 在此基础上,引入流水线并行维度并设其并行

度为

NPP,对应的阶段索引集为

DPP ={0,1,…,

NPP-1}。在一个同构流水线配置中,每个流水线

阶段都采用完全相同的算子内并行拓扑,即共享同

一个 intra。因此,可以得出同构流水线的全局设备

拓扑空间

isσ
 的数学表达:

isσ =DPP× intra,

d=(dPP,dintra)。

isσ
 是算子内拓扑子空间

intra
 与流水线阶段索引

集

DPP
 的笛卡尔积。通过这种正交分解,系统中的

任何一个设备都可以通过一个全局唯一的复合坐标

(dPP,dintra)

进行寻址。

4.3 阶段解耦的异构流水线

 4.2节所述的主流分布式训练框架在流水线并

行的设计上遵循严格的强一致性同构范式。具体而

言,该范式要求流水线中的每一个阶段必须继承完

全一致的算子内并行配置,甚至要求其硬件拓扑与

通信带宽也保持高度一致。这种设计虽然降低了并

行策略生成与通信管理的复杂度,但其高效运行往

往建立在一个强假设之上:即整个训练集群是由规

格完全统一的计算设备所构成的理想同构环境。
然而,实际应用中,计算集群往往由性能各异的

异构设备组成,如不同型号的

GPU、CPU,以及其他

加速器。在这种环境下,传统的均匀划分策略可能

导致计算资源利用率不均衡,进而影响整体训练效

率。为应对这些挑战,新型混合并行系统如

Flag-
Scale[93]

和

InternEvo[96]

提出了创新的并行策略。
这些系统允许在不同的流水线阶段采用不同的算子

内并行策略,以适应异构设备的特性,从而优化资源

利用率并提升训练性能。
本节的数学表述将沿用前一节已定义的符号体

系,如并行维度集

Pintra
 与流水线阶段索引集

DPP。
在阶段解耦的异构流水线系统中,每个流水线

阶段

k∈DPP
 都可以拥有独立的算子内并行配置。

这包括 该 阶 段 所 采 用 的 并 行 策 略 集 合
 ()
intra ⊆

Pintra,以及每种并行策略的并行度

N(k)
p 。对于其

内部的任一并行维度

p∈
()
intra,其并行度记为

N(k)
p

。相应的设备索引集与拓扑子空间定义如下:

D(k)
p ={0,1,…,N(k)

p -1},
()
intra= 􀰒

p∈
()
intra

D(k)
p 。

其中, ()
intra

 表示第

k

个流水线阶段内,用于执行其

算子的设备网格拓扑。
全局设备拓扑空间

hetero
 是所有阶段拓扑子空

间的不相交并集,每个设备通过一个复合坐标进行

唯一标识:

hetero=
k∈DPP

{k}×
()
intra ,

d=(dPP,dintra),dPP∈DPP,dintra∈
(dP)
intra。

 此处的坐标

d

是一个序对。其第一项

dPP
 指明

了设备所在的流水线阶段;第二项

dintra 是一个依赖

于

dPP
 的向量,给出了设备在该阶段内部并行网格

中的具体位置。
由于相邻流水线阶段

(k)

和

(k+1)

的算子内

并行拓扑与张量分片方式可能不同,因此在它们之

间传递数据时,必须进行一次张量重映射操作。该

操作可被形式化为一个变换函数
 (→ +1),它将前

一阶段输出的分布式张量映射到后一阶段所需的张

量形态:
(→ +1):V(k)→V(k+1)。

 这里,V(k)

代表在拓扑
 ()
intra

 上、呈分布式形态

的张量空间。若具体到张量的逻辑形状

(logical

shape),该变换可表示为
(→ +1):R

σk →R
σk+1。

其中,σk
 和

σk+1
 分别代表阶段

k

的输出张量与阶段

k+1

的输入张量的逻辑维度,例如

(B,S,H)。

1211

期 张贵鹏等:大模型训练的混合并行技术综述

4.4 自动并行

 自动并行是指通过程序化手段自动生成并应用

于深度学习训练的一组并行策略。自动并行的研究

贯穿了并行策略发展的全过程,从单一策略的自动

化着手,例如vPipe[101]通过在线算法优化算子间划

分策略,有效平衡1F1B流水线的显存不均问题;

AdaPipe[102]则利用不均匀重计算和更细粒度的分

层策略,通过两级动态优化算法实现流水线的自动

优化。
然而,由于并行策略的多样性以及每个策略维

度存在的大量划分粒度,自动混合并行被公认为一

个NP难问题[103-106]。当前有关混合并行的研究通

常采用先验规则来缩小搜索空间,如通过剪枝、采样

等方式降低复杂度。例如,Metis[107]利用异构GPU
设备的特性,将策略搜索分解为流水线阶段划分和

算子内并行策略划分两个独立阶段,同时通过启发

式方法结合数据并行与张量并行,有效减少了搜索

空间复杂度。
在求解方法上,自动并行的搜索算法主要分为

两大类:机器学习驱动和传统算法驱动(如动态规

划、整数线性规划)。这些方法在评估并行策略时,
通常基于性能分析(Profiling)或精确的代价模型,
对并行策略的计算时间、显存占用、通信开销等多个

维度进行综合评估,从而找到在特定硬件环境下的

最优或近似最优解。目前主流的自动并行方法见

表

1。

表1 不同自动并行策略搜索方法的比较

名称 支持的策略 搜索方法 评估方法

HDP[111] MP LSTM

RL Profiling
GDP[108] MP Transformer

RL Profiling
HeterPS[124] DP+PP BRKGA

和

GNN+RL 基于代价模型的Profiling
FlexFlow[109] TP MCMC 基于代价模型的Profiling
Automap[110] TP MCTS

和交互网络 代价模型

vPipe[101] PP 动态规划

(KL) Profiling
PipeDream[41] MP 动态规划 基于代价模型的Profiling
DAPPLE[42] DP+PP 动态规划+ILP Profiling
OptCNN[114] MP 动态规划

(图消除与再生) 代价模型

AccPar[116] TP 动态规划 代价模型

Alpa[38] TP+PP ILP+动态规划 代价模型

Piper[115] TP+PP 2

级动态规划 代价模型

TensorOpt[117] DP+PP 动态规划 Profiling
Galvatron[119] DP+MP+SP+SDP 决策树+动态规划 Profiling+代价模型

Galvatron-BMW[120] DP+MP+SP+SDP 决策树+动态规划 Profiling+代价模型

UniAP[123] DP+TP+PP+SDP MIQP Profiling+代价模型

AutoOP[121] DP+MP+PP MIP Profiling+代价模型

Mist[122] DP+MP 分层

MILP+双目标优化 Profiling+代价模型

注:

MP:

模型并行;DP:

数据并行;TP:

张量并行;PP:

流水线并行;SDP:

分片数据并行;SP:

序列并行;ILP:

整数线性规划;MIP:

混合整数

规划;MIQP:

混合整数二次规划;MILP:

混合整数线性规划;MCTS:

蒙特卡洛树搜索;KL:

Kullback-Leibler

散度。

 在机器学习驱动的策略搜索领域,GDP[108]、

FlexFlow[109]

和

Automap[110]

是三种具有代表性的

方法。GDP

结合了图神经网络(GNN)与

Trans-
former

模型,通过预训练和微调的方式,能够一次

性为 整 个 计 算 图 生 成 并 行 方 案。在 处 理

8

层

Transformer

模型时,GDP

的速度比

HDP[111]

快了

16.7

倍,并且支持超过五万个节点的大规模图结

构。FlexFlow

则采用随机马尔可夫链蒙特卡洛

(MCMC)算法[112],探索最优的划分策略,以确定神

经网络中各操作的并行配置。尽管FlexFlow在灵

活性方面表现出色,但在处理大规模模型时,策略搜

索所 需 的 时 间 较 长。相 比 之 下,Automap

基 于

MHLO(MLIR[113]编码的

XLA

HLO),结合搜索与

学习的方法,利用蒙特卡洛树搜索(MCTS)和机器

学习的交互网络,通过缩减搜索空间并优化策略传

播,实现了高效的并行策略搜索。
在基于传统算法的策略搜索方法中,OptC-

NN[114]、Piper[115]

和 AccPar[116]

是三个具有代表性

的方案。OptCNN

提出了一种逐层并行的策略。
该方法通过构建模型的计算图和集群的设备图,并
利用动态规划算法为每一层确定最优的划分维度,
从而实现自动并行化。Piper来自Fiddle项目①,采

221 计 算 机 学 报 2026年

①

https://www.microsoft.com/en-us/research/project/fid-
dle/。

用了两级动态规划的方法来搜索张量并行和管道并

行策略。其外层动态规划算法会生成数百个

NP

难

度的背包子问题,这些子问题用于计算给定超参数

下子图的吞吐量。为了加速求解过程,Piper

引入

了“bang-per-buck”启发式方法,显著降低了计算

复杂度,使 其 能 够 在2048个 设 备 上 为64层 的

BERT

模型在仅2小时内完成策略搜索。Tenso-
rOpt[117]提出了一个名为

Frontier

Tracking

(FT)

的算法能够同时考虑多个目标,寻找这些目标之

间的帕累托最优解(Pareto-optimal),即成本边界

(Cost

Frontier)。该方法基于动态规 划,以 高 效

地探索和生成内存消耗与执行时间之间不同权

衡下的并行策略。
近年来,研究者们在传统算法驱动的自动并行

领域取得了进一步的进展,开发出了一系列更为先

进和全面的系统。Galvatron[118-119]通过决策树分解

搜索空间并结合动态规划进行策略优化,以自动识

别最高效的混合并行策略。作为其扩展,Galva-
tron-BMW[120]进一步提升了性能,它将激活检查点

(CKPT)也视为一个特殊的并行维度进行联合优

化,并提出了一种专注于平衡内存和计算工作负载

的双目标优化工作流。Ruifeng

She

等人提出了一

种基于混合整数规划(MIP)的算子级并行规划方

法[121],通过将并行策略规划建模为调度优化问题,
针对包含多分支结构(如

MoE)的深度神经网络自

动生成优于专家设计方案的算子级分布策略。此

外,Mist

系统[122]在大型语言模型的分布式训练中,
通过引入“重叠+不平衡意识”的混合整数线性规划

与双目标约束优化方法,实现了并行方式、激活检查

点、内存卸载及冗余消除等技术的协同调优。另一

项创新方法是

UniAP[123],它首次提出使用混合整

数二次规划(MIQP)来统一优化层间与层内并行,
以寻找全局最优的训练吞吐量。这些先进系统通常

都包含性能分析器来构建精确的代价模型,并特别

考虑了计算与通信重叠时的性能影响。

5 混合并行新范式

尽管目前已有众多混合并行方案,但各个方案

都有自己的侧重点,不管是应用的技术或是对混合

并行策略组合的定义,比如 Megatron-LM 将DP定

义为 Micro

batch大小不变,在Batch维度进行拓

展;而InternEvo则定义为在 Micro

Batch维度上进

行切分。Megatron

将所有并行策略定义为正交且

均匀的空间,而

FlagScale

则将各个流水线阶段视

为一个个不同的分组,每个分组内可以应用不同的

算子内并行策略。这些定义的不同导致了我们在描

述混合并行策略时没有一个统一的标准,急需一个

能囊括现有所有混合并行技术的新范式来描述混合

并行策略。
同时,目前主流的混合并行策略还不够灵活,往

往只能表达某些并行策略的组合,且各个并行维度

之间只是简单的叠加相乘的关系,面向异构或者更

复杂的Transformer模型变种的时候传统的混合并

行策略表达能力欠佳。基于此,本文提出一种更灵

活的混合并行策略表示方式,相关符号见表

2。

表2 参数符号表

符号 描述

D = , 设备图,表示硬件拓扑结构

设备节点集合

Devicei 第

i

个计算设备

连接集合

Linki,j Devicei 和

Devicej 间的通信连接

设备子集, ⊆
G = ,ε 计算图,表示模型的计算流程

subG 计算子图,表示

G

的一部分

算子集合

Opk 第

k

个算子

ε 依赖关系集合

算子子集, ⊆
o 算子内并行划分后的子算子集合

Aop 算子内并行策略

pp 流水线阶段划分的

subG

集合

Apipe 流水线阶段划分策略

pp 流水线排布策略

A 混合并行策略,A = (Apipe,pp)

5.1 混合并行系统的数学定义

 (1)算子内并行划分

op

对于某个算子

Op,其算子内并行划分

op
 是根

据特定的算子内并行策略

Aop
 划分后的子算子

集合:

op ={subOp1,subOp2,…,subOpK}。

 其具有以下性质:

①设备映射:每个子算子

subOpk 映射到一台

设备

Devicek ∈ :

∀k∈ {1,2,…,K}, subOpk →Devicek。

 ②完整性:所有子算子全部计算完毕,才能认为

原算子

Op

的计算完成。
(2)算子内并行策略

Aop

算子内并行策略

Aop
 描述如何使用划分函数

f

对算子进行划分,划分函数的定义见算法1,包括:

3211

期 张贵鹏等:大模型训练的混合并行技术综述

①划分维度选择:选择划分的维度及其先后

顺序。

②递归划分规则:每次划分后,确定哪些子算子

需要进一步划分。

③设备映射策略:划分完成后,如何将子算子映

射到设备子集

上。
策略的输入可以是单个算子Op

或计算图

G 。
如果输入是

G ,则对

G

中的所有算子执行相同的划

分函数

f。

算法

1.划分函数

f
输入:算子

Op,设备子集

D
输出:算子内并行划分

op

1.

初始化算子内并行划分: op = {Op}

2.

初始化待划分算子集合: stage = {Op},设定初始划分维

度

d
3.

WHILE

stage≠ ,

DO
a.

对于

stage
 中的每个算子,沿维度

d

切分成

K

份,得
到新的子算子集合

speit= {subOp1,subOp2,…,subOpK}

 b.

用

speit
 替换

op
 中的

stage

c.

清空

stage

d.

确定下一个划分维度

d,将需要进一步划分的子算

子添加到

stage

4.

将

op
 中的每个子算子映射到一台设备

Devicek ∈D
5.

返回最终的算子内并行划分集合

op

(3)流水线阶段划分

pipe

对计算图

G

进行流水线阶段划分,得到计算子

图集合

pipe={subG1,subG2,…,subGQ}

满足以下

性质:

①连通性:每个子图

subGi 包含的算子集合

i

⊆

在

G

中诱导的子图是连通的。

②覆盖性:

∪
Q

i=1
i= 。

 ③不相交性:

∀i≠j, i ∩ i=Ø。
 ④设备与策略映射:每个子图

subGi
 映射到一

个设备子集

i⊆ ,并指定相应的算子内并行策略

Ai
op 。
(4)流水线阶段划分策略

Apipe

该策略描述如何对计算图进行流水线阶段划分:

①阶段数 确 定:决 定 将 计 算 图 划 分 为

Q

个

阶段。

②划分位置选择:选择计算图中的划分点,将其

分割为若干子图。

③设备映射:为每个子图

subGi
 分配设备子集

i 。

④算子内并行策略制定:为每个子图指定相应

的算子内并行策略

Ai
op 。

(5)流水线排布策略

pipe

流水线排布策略

pipe
 描述了流水化后整个计

算过程的流水线排布:

pipe={C1,C2,…,CR}。
其中,每个约束

Cr
 表示子图之间的依赖关系:

Cr:subGa →subGb,
表示子图

subGa
 的计算必须在子图

subGb 之前完

成。这些约束确保了流水线的正确执行顺序。
(6)混合并行策略

A
综合以上,混合并行策略

A

包含两部分:流水

线阶段划分策略

Apipe
 和流水线排布

pipe,其中

Apipe

又包含各子图的算子内并行策略

Ai
op :

A=(Apipe,pipe)=(Apipe({Ai
op}Qi=1),pipe)。

该策略全面描述了如何对计算图进行划分、映射和

执行,以实现混合并行的目的。
根据上述定义,A

具有强大的表达能力,几乎

可以表示所有目前已有的混合并行策略。当

Apipe

 划分阶段数为1时,表明不使用流水线并行变成一

个纯算子内并行;当Apipe
 给每个子图只映射一台设

备时,则变成了一个纯粹的流水线并行不包含算子

内并行。同时

pp
 能表达流水线使用

1F1B,3F1B,

Chinema

等等排布方式。

5.2 基于新范式的混合并行扩展策略空间

 目前,即便是最先进的混合并行方法所能组合

出的策略在灵活性方面仍显不足,尤其是在异构计

算环境下。例如,当前主流的混合并行方法通常将

流水线并行与算子内并行相结合。以一种常见的混

合并行策略表达方式

TPa-DPb-PPc
 为例,根据

本文的定义,这相当于将模型划分为

c

个流水线阶

段,每个阶段内的每个子部分

subG

映射到

a×b

台

设备的子集上进行算子内并行。并且每个子部分的

并行操作顺序为先张量并行后数据并行。在完成张

量并行划分后,对所有部分统一进行数据并行划分。
尽管拿目前相对先进的

alpa

策略来说,虽然他能同

时解决Apipe 和Aop 的划分,但是其在Aop 的划分上

也加了沿各维度均等划分的约束。
然而,这种混合并行策略的划分方式往往预先

隐含了诸多约束,例如:
(1)每个

subG

通常映射相同数量、相同类型的

设备,甚至采用相同的

Aop。

421 计 算 机 学 报 2026年

(2)每个

subG

所映射的设备集群D 通常没有

交集,也就是说每台设备往往只专注于计算一块计

算子图

subG 。
目前一些手工设计的新方案已经部分突破了这

些限制。例如,对于 T5模型[125],由于Embedding
层过大,该算子会被映射到所有设备上进行计算。

Megatron-LM设计了交错流水线[126],每相隔一定

数量的subG 会映射到同一个设备集群D ,并支持

不同算子使用不同的TP维度。这些新设计通常通

过手动调整部分策略来解除混合并行策略的部分约

束,从而获得了显著的性能提升。然而,实际上仍有

许多隐含的约束尚未被解除,这限制了策略空间的

进一步优化拓展。
例如,当我们放宽各个

subGi
 必须采用相同算子

内并行策略的约束时,可以推导出一种优化后的混合

并行策略扩展方案。由于异构设备之间的计算性能

存在差异,可能会使得

subG1
 采用

m

台

A

型设备进

行

TP

并行,而

subG2
 则利用

n

台

B

型设备进行

DP

并行。这样的策略灵活地协调了流水线中各子图的

计算时长,从而实现了更优的流水线排布效率。
再如,当我们放宽算子内并行策略必须形成笛

卡尔积空间的限制时,可以获得另一种混合并行策

略扩展解。以某个

subG

映射到两台

A

型设备和一

台

B

型设备为例,现有的自动并行搜索策略通常只

能沿某一维度将其划分为三部分。然而,在异构场

景下,设备

A

与设备

B

之间的通信性能可能难以满

足

TP

和

CP

的要求,而采用纯

DP3

划分则会导致

模型存储多份参数,从而浪费显存。基于本文提出

的策略定义,可以先沿

DP

维度将

subG

划分为两

部分:将其中一部分分配给设备

B,另一部分再沿

TP

维度细分为两份,分配给设备

A。这样的策略

在同构场景下或许显得冗余,但在异构环境中则是

一种切实且必要的优化手段。
总体而言,现有的混合并行方案在处理异构环

境时仍存在诸多局限,主要体现在策略的预设约束

和灵活性不足上。基于上文的混合并行新范式,我
们能扩展出更为灵活的混合并行策略空间,允许在

异构设备上进行更复杂的划分和映射。通过解除现

有方案中的隐含约束,我们可以实现更高效的流水

线排布和算子内并行策略,从而提升整体计算性能。

5.3 基于新范式的自动并行

 由于混合并行策略繁多,且每个策略维度都有

相当多的划分粒度,自动混合并行是一个 NP难的

问题。基于上文的定义,自动混合并行往往需要解

决三个问题:
(1)确定计算图的划分与映射

Apipe,
(2)制定算子内并行策略

Aop,
(3)流水化与流水线重排

pipe。
现有的自动并行方案往往只挑选部分问题进行

解决,同时会先验性地增加一系列约束条件限制解

空间。比如vPipe[101],不考虑算子内并行策略,将流

水线排布确定为1F1B,只讨论计算图的划分策略。
目前大部分自动并行策略往往都将 pipe 固定,

比如限制为

1F1B

流水线,或者干脆不讨论

pipe,仅
给出

pipe
 的约束为尽可能均等化每个计算子图的

计算时间。但也有一些工作在讨论有关流水线重排

的问题,比如

Tessel[127],其通过灵活的调度搜索机

制,自动寻找适合不同操作符放置策略的高效流水

线。Tessel

的关键创新在于利用重复执行模式

(repetend)的发现,将复杂的调度问题分解为较小

规模的搜索空间,从而在不牺牲性能的情况下,大幅

减少调度的搜索时间。相比于传统的预定义调度方

式,Tessel

不仅能够优化经典的1F1B调度,还能够

探索出在多种模型和计算需求下更加灵活且高效的

调度方案。

6 后续研究方向

6.1 面向异构设备的训练系统优化

 针对当前国内异构计算环境的特点,需重点突

破异构设备间的协同优化问题。首先需设计高效的

异构通信协议,解决国产

GPU

与不同架构

AI

芯片

之间的跨设备通信瓶颈,特别是处理

PCIe/NVLink

异构互联场景下的带宽不对称问题[128];其次应构

建大规模异构集群拓扑感知系统,建立基于

RD-
MA/RoCE

的多级通信拓扑建模,并开发面向

NU-
MA

架构的通信优化算法[129-130]。在算子优化层

面,需建立异构设备能力画像系统,通过动态性能分

析确定各设备擅长的算子类型,并设计基于设备特

性的算子自动分配器[131-132]。此外,还需解决国产

芯片与

NVIDIA

GPU

在计算精度、指令集等方面

的差异问题,构建统一的量化训练框架[133]。

6.2 更灵活的混合并行策略制定

 如4.3节所述,现有的混合并行策略在灵活性方

面存在不足,尤其在异构计算环境下表现尤为明显。
未来的研究应致力于制定更加灵活的策略,充分考虑

异构计算设备的计算和通信特性。例如,可以引入动

态策略生成方法,根据实际的设备性能和任务负载自

5211

期 张贵鹏等:大模型训练的混合并行技术综述

适应地调整并行策略,而不再拘泥于固定的张量并行

或数据并行组合。这样的灵活性有助于提高系统对

复杂环境的适应能力,最大化并行效率。

6.3 面向异构集群的并行策略搜索

 大部分现有研究都是基于同构集群进行的,这
些设备由于计算和通信能力相近,策略制定和搜索

过程中可以通过先验约束缩小解空间。然而,异构

集群中的设备计算能力和通信能力存在差异,传统

的约束条件将不再适用,导致解空间进一步扩大。
因此,未来的研究需要针对异构集群开发新的策略

搜索算法,充分考虑设备拓扑结构、通信带宽、计算

能力等硬件特性。这将为提高异构集群的训练效率

和并行策略的适应性提供更好的解决方案。

6.4 更全面的自动混合并行策略搜索

 目前的自动混合并行方案由于问题复杂性而产

生庞大的解空间,通常仅针对第四章中提到的部分

问题进行讨论。这限制了混合并行策略的优化,无
法实现全局最优解。未来的研究可以尝试将Apipe、

Aop
 和 pipe 三方面的因素结合在一起进行联合优

化。例如,当前的Apipe划分策略常常受限于 pipe的

先验约束,导致代价模型被设定为尽可能均衡计算

子图的计算和通信时长。然而,如果我们能够打破

这一先验限制,通过重排 pipe,可能会发现这种约

束并非必要,进而扩大搜索的优化空间,从而寻找到

更具全局优化潜力的策略。

参 考 文 献

[1] LeCun

Y,

Bengio

Y,

Hinton

G.

Deep

learning.

Nature,

2015,

521(7553):

436-444
[2] Krizhevsky

A,

Sutskever

I,

Hinton

G

E.

ImageNet

classifica-

tion

with

deep

convolutional

neural

networks//Proceedings

of

the

Advances

in

Neural

Information

Processing

Systems.

Lake

Tahoe,

USA,

2012:

84-90
[3] Liu

Y,

Han

T,

Ma

S,

et

al.

Summary

of

ChatGPT-related

re-

search

and

perspective

towards

the

future

of

large

language

models.

Meta-radiology,

2023,

1(2):

100017
[4] Brown

T,

Mann

B,

Ryder

N,

et

al.

Language

models

are

few-

shot

learners//Proceedings

of

the

Advances

in

Neural

Informa-

tion

Processing

Systems.

Virtual,

2020:

1877-1901
[5] Vaswani

A,

Shazeer

N,

Parmar

N,

et

al.

Attention

is

all

you

need//Proceedings

of

the

Advances

in

Neural

Information

Pro-

cessing

Systems.

Long

Beach,

USA,

2017:

6000-6010
[6] Dosovitskiy

A,

Beyer

L,

Kolesnikov

A,

et

al.

An

image

is

worth

16x16

words:

Transformers

for

image

recognition

at

scale//Proceedings

of

the

International

Conference

on

Learning

Representations.

Virtual,

Austria,

2020:

611-632
[7] Kaplan

J,

McCandlish

S,

Henighan

T,

et

al.

Scaling

laws

for

neural

language

models.

arXiv

preprint

arXiv:2001.08361,

2020
[8] Tripp

C

E,

Perr-Sauer

J,

Gafur

J,

et

al.

Measuring

the

energy

consumption

and

efficiency

of

deep

neural

networks:

An

em-

pirical

analysis

and

design

recommendations.

arXiv

preprint

arXiv:2403.08151,

2024
[9] Devlin

J,

Chang

M-W,

Lee

K,

et

al.

BERT:

Pre-training

of

deep

bidirectional

transformers

for

language

understanding//

Proceedings

of

the

2019

Conference

of

the

North

American

Chapter

of

the

Association

for

Computational

Linguistics:

Hu-

man

Language

Technologies.

Minneapolis,

Minnesota,

2019:

4171-4186
[10] Anil

R,

Dai

A

M,

Firat

O,

et

al.

PaLM

2

technical

report.

arXiv

preprint

arXiv:2305.10403,

2023
[11] Strubell

E,

Ganesh

A,

McCallum

A.

Energy

and

policy

con-

siderations

for

deep

learning

in

NLP//Proceedings

of

the

57th

Annual

Meeting

of

the

Association

for

Computational

Lin-

guistics.

Florence,

Italy,

2019:

3645-3650
[12] Schwartz

R,

Dodge

J,

Smith

N

A,

et

al.

Green

AI.

arXiv

preprint

arXiv:1907.10597,

2019
[13] OpenAI,

Achiam

J,

Adler

S,

et

al.

GPT-4

technical

report.

arXiv

preprint,

2024
[14] Shazeer

N,

Mirhoseini

A,

Maziarz

K,

et

al.

Outrageously

large

neural

networks:

The

sparsely-gated

mixture-of-experts

layer//Proceedings

of

the

International

Conference

on

Learn-

ing

Representations.

Toulon,

France,

2017:

878-897
[15] Touvron

H,

et

al.

LLaMA:

Open

and

efficient

foundation

language

models.

Arxiv

Preprint

Arxiv:2302.13971,

2023
[16] Paszke

A,

et

al.

PyTorch:

An

imperative

style,

high-per-

formance

deep

learning

library.

Arxiv

Preprint

Arxiv:

1912.01703,

2019
[17] Abadi

M,

et

al.

TensorFlow:

a

system

for

large-scale

ma-

chine

learning.

Arxiv

Preprint

Arxiv:1605.08695,

2016
[18] Rasley

J,

Rajbhandari

S,

Ruwase

O,

et

al.

DeepSpeed:

sys-

tem

optimizations

enable

training

deep

learning

models

with

over

100

billion

parameters//Proceedings

of

the

26th

ACM

SIGKDD

International

Conference

on

Knowledge

Discovery

&

Data

Mining.

New

York,

USA,

2020:

3505-3506
[19] Rajbhandari

S,

Rasley

J,

Ruwase

O,

et

al.

ZeRO:

Memory

optimizations

toward

training

trillion

parameter

models//Pro-

ceedings

of

the

International

Conference

for

High

Perform-

ance

Computing,

Networking,

Storage

and

Analysis.

Atlan-

ta,

USA,

2020:

1-16
[20] DeepSeek-AI,

Liu

A,

Feng

B,

et

al

.

DeepSeek-V3

Technical

Report.

arXiv

preprint

arXiv:2412.19437,

2024
[21] Grattafiori

A,

Dubey

A,

Jauhri

A,

et

al.

The

llama

3

herd

of

models.

arXiv

preprint

arXiv:2407.21783,

2024
[22] Langer

M,

He

Z,

Rahayu

W,

et

al.

Distributed

training

of

deep

learning

models:

A

taxonomic

perspective.

IEEE

Trans.

Parallel

Distrib.

Syst.,

2020,

31(12):

2802-2818

621 计 算 机 学 报 2026年

[23] Liang

P,

Tang

Y,

Zhang

X,

et

al.

A

survey

on

auto-parallelism

of

large-scale

deep

learning

training.

IEEE

Transactions

on

Paral-

lel

and

Distributed

Systems,

2023,

34(8):

2377-2390
[24] Zhang

Z-X,

Wen

Y-B,

Lyu

H-Q,

et

al.

AI

computing

sys-

tems

for

large

language

models

training.

Journal

of

Computer

Science

and

Technology,

2025,

40(1):

6-41
[25] Mayer

R,

Jacobsen

H-A.

Scalable

deep

learning

on

distribu-

ted

infrastructures:

challenges,

techniques,

and

tools.

ACM

Computing

Surveys,

2021,

53(1):

1-37
[26] Verbraeken

J,

Wolting

M,

Katzy

J,

et

al.

A

survey

on

dis-

tributed

machine

learning.

ACM

Computing

Surveys,

2020,

53(2):

30:1-30:33
[27] Shallue

C

J,

Lee

J,

Antognini

J,

et

al.

Measuring

the

effects

of

data

parallelism

on

neural

network

training.

Journal

of

Machine

Learning

Research,

2019,

20(112):

1-49
[28] Chen

C-C,

Yang

C-L,

Cheng

H-Y.

Efficient

and

robust

par-

allel

DNN

training

through

model

parallelism

on

multi-GPU

platform.

Arxiv

E-prints,

2018:

arXiv:1809.2839
[29] Shoeybi

M,

Others.

Megatron-LM:

training

multi-billion

pa-

rameter

language

models

using

model

parallelism.

Arxiv

Pre-

print

Arxiv:1909.08053,

2020
[30] Narayanan

D,

Phanishayee

A,

Shi

K,

et

al.

Memory-effi-

cient

pipeline-parallel

DNN

training//Proceedings

of

the

38th

International

Conference

on

Machine

Learning.

Virtual,

2021:

7937-7947
[31] Li

S,

Xue

F,

Baranwal

C,

et

al.

Sequence

parallelism:

Long

sequence

training

from

system

perspective//Proceedings

of

the

61st

Annual

Meeting

of

the

Association

for

Computation-

al

Linguistics.

Toronto,

Canada,

2023:

2391-2404
[32] Cai

W,

Jiang

J,

Qin

L,

et

al.

Shortcut-connected

expert

par-

allelism

for

accelerating

mixture-of-experts.

Arxiv

E-prints,

2024:

arXiv:2404.5019
[33] Singh

S,

Ruwase

O,

Awan

A

A,

et

al.

A

hybrid

tensor-ex-

pert-data

parallelism

approach

to

optimize

mixture-of-experts

training//Proceedings

of

the

37th

ACM

International

Confer-

ence

on

Supercomputing.

New

York,

USA,

2023:

203-214
[34] Lai

Z,

Li

S,

Tang

X,

et

al.

Merak:

An

efficient

distributed

DNN

training

framework

with

automated

3D

parallelism

for

giant

foundation

models.

IEEE

Transactions

on

Parallel

and

Distributed

Systems,

2023,

34(5):

1466-1478
[35] Bai

J,

Bai

S,

Chu

Y,

et

al.

Qwen

technical

report.

arXiv

pre-

print

arXiv:2309.16609,

2023
[36] Glm

T,

Zeng

A,

et

al.

ChatGLM:

A

family

of

large

language

models

from

GLM-130B

to

GLM-4

all

tools.

2024
[37] Rumelhart

D

E,

Hinton

G

E,

Williams

R

J.

Learning

repre-

sentations

by

back-propagating

errors.

Nature,

1986,

323
(6088):

533-536
[38] Zheng

L,

Li

Z,

Zhang

H,

et

al.

Alpa:

Automating

inter-

and

intra-operator

parallelism

for

distributed

deep

learning//Pro-

ceedings

of

the

16th

USENIX

Symposium

on

Operating

Sys-

tems

Design

and

Implementation.

Carlsbad,

USA,

2022:

559-578
[39] Korthikanti

V,

Others.

Reducing

activation

recomputation

in

large

transformer

models.

arxiv

preprint

arxiv:2205.05198,

2022
[40] Huang

Y,

Cheng

Y,

Bapna

A,

et

al.

GPipe:

efficient

train-

ing

of

giant

neural

networks

using

pipeline

parallelism//Pro-

ceedings

of

the

Advances

in

Neural

Information

Processing

Systems.

Vancouver,

Canada,

2019:

103-112
[41] Narayanan

D,

Harlap

A,

Phanishayee

A,

et

al.

PipeDream:

Generalized

pipeline

parallelism

for

DNN

training//Proceed-

ings

of

the

27th

ACM

Symposium

on

Operating

Systems

Principles.

Huntsville,

Canada,

2019:

1-15
[42] Fan

S,

Rong

Y,

Meng

C,

et

al.

DAPPLE:

A

pipelined

data

parallel

approach

for

training

large

models//Proceedings

of

the

26th

ACM

SIGPLAN

Symposium

on

Principles

and

Prac-

tice

of

Parallel

Programming.

New

York,

USA,

2021:

431-

445
[43] Qi

P,

Wan

X,

Huang

G,

et

al.

Zero

bubble

(almost)

pipe-

line

parallelism//Proceedings

of

the

Twelfth

International

Conference

on

Learning

Representations.

Kigali,

Rwanda,

2023:

47619-47635
[44] Li

Z,

Zhuang

S,

Guo

S,

et

al.

TeraPipe:

Token-level

pipe-

line

parallelism

for

training

large-scale

language

models//

Proceedings

of

the

38th

International

Conference

on

Machine

Learning.

Virtual

Event,

2021:

6543-6552
[45] Liu

H,

Abbeel

P.

Blockwise

parallel

transformers

for

large

context

models//Proceedings

of

the

Thirty-seventh

Confer-

ence

on

Neural

Information

Processing

Systems.

New

Orle-

ans,

USA,

2023:

8828-8844
[46] Dao

T,

Fu

D,

Ermon

S,

et

al.

FlashAttention:

Fast

and

memory-efficient

exact

attention

with

IO-awareness//Pro-

ceedings

of

the

Advances

in

Neural

Information

Processing

Systems.

New

Orleans,

USA,

2022:

16344-16359
[47] Dao

T.

FlashAttention-2:

faster

attention

with

better

paral-

lelism

and

work

partitioning.

arXiv

preprint,

2023
[48] Milakov

M,

Gimelshein

N.

Online

normalizer

calculation

for

softmax.

2018
[49] Liu

H,

Zaharia

M,

Abbeel

P.

RingAttention

with

blockwise

transformers

for

near-infinite

context//Proceedings

of

the

Twelfth

International

Conference

on

Learning

Representa-

tions.

Vienna,

Austria,

2023:

56456-56473
[50] Jacobs

S

A,

Tanaka

M,

Zhang

C,

et

al.

DeepSpeed

ulysses:

System

optimizations

for

enabling

training

of

extreme

long

se-

quence

transformer

models.

Arxiv

Preprint

Arxiv:2309.14509,

2023
[51] Ainslie

J,

Lee-Thorp

J,

de

Jong

M,

et

al.

GQA:

Training

generalized

multi-query

transformer

models

from

multi-head

checkpoints//Proceedings

of

the

2023

Conference

on

Empiri-

cal

Methods

in

Natural

Language

Processing.

Singapore,

2023:

4895-4901
[52] Fang

J,

Zhao

S.

USP:

a

unified

sequence

parallelism

ap-

7211

期 张贵鹏等:大模型训练的混合并行技术综述

proach

for

long

context

generative

AI.

arXiv

preprint

arXiv:

2405.07719,

2024
[53] Hwang

C,

Cui

W,

Xiong

Y,

et

al.

Tutel:

Adaptive

mixture-

of-experts

at

scale//Proceedings

of

the

Machine

Learning

and

Systems.

Miami,

USA,

2023:

269-287
[54] Fedus

W,

Zoph

B,

Shazeer

N.

Switch

transformers:

Scaling

to

trillion

parameter

models

with

simple

and

efficient

sparsi-

ty.

Journal

of

Machine

Learning

Research,

2022,

23(120):

1-39
[55] Lepikhin

D,

Lee

H,

Xu

Y,

et

al.

GShard:

Scaling

giant

models

with

conditional

computation

and

automatic

shar-

ding//Proceedings

of

the

International

Conference

on

Learn-

ing

Representations.

Virtual

,

Austria,

2020:

14225-14248
[56] He

J,

Qiu

J,

Zeng

A,

et

al.

FastMoE:

A

fast

mixture-of-ex-

pert

training

system.

arXiv

preprint

arXiv:2103.13262,

2021
[57] Gale

T,

Narayanan

D,

Young

C,

et

al.

MegaBlocks:

Effi-

cient

sparse

training

with

mixture-of-experts//Proceedings

of

the

Machine

Learning

and

Systems.

Miami,

USA,

2023:

288-304
[58] Jacobs

R

A,

Jordan

M

I,

Nowlan

S

J,

et

al.

Adaptive

mixtures

of

local

experts.

Neural

Computation,

1991,

3(1):

79-87
[59] Rajbhandari

S,

Li

C,

Yao

Z,

et

al.

DeepSpeed-MoE:

Advan-

cing

mixture-of-experts

inference

and

training

to

power

next-

generation

AI

scale//Proceedings

of

the

39th

International

Conference

on

Machine

Learning.

Baltimore,

USA,

2022:

18332-18346
[60] Zhao

C,

Zhou

S,

Zhang

L,

et

al.

DeepEP:

An

efficient

ex-

pert-parallel

communication

library.

GitHub,

2025
[61] Qiu

Z,

Huang

Z,

Zheng

B,

et

al.

Demons

in

the

detail:

On

implementing

load

balancing

loss

for

training

specialized

mix-

ture-of-expert

models//Proceedings

of

the

63rd

Annual

Meeting

of

the

Association

for

Computational

Linguistics.

Vienna,

Austria,

2025:

5005-5018
[62] Dean

J,

Corrado

G,

Monga

R,

et

al.

Large

scale

distributed

deep

networks//Proceedings

of

the

Advances

in

Neural

Infor-

mation

Processing

Systems.

Lake

Tahoe,

USA,

2012:

1223-

1231
[63] Jain

A,

Awan

A

A,

Aljuhani

A

M,

et

al.

GEMS:

GPU-ena-

bled

memory-aware

model-parallelism

system

for

distributed

DNN

training//Proceedings

of

the

International

Conference

for

High

Performance

Computing,

Networking,

Storage

and

Analysis.

Virtual,

2020:

1-15
[64] Li

S,

Hoefler

T.

Chimera:

Efficiently

training

large-scale

neural

networks

with

bidirectional

pipelines//Proceedings

of

the

International

Conference

for

High

Performance

Compu-

ting,

Networking,

Storage

and

Analysis.

St.

Louis,

USA,

2021:

1-14
[65] Wan

X,

Qi

P,

Huang

G,

et

al.

PipeOffload:

Improving

scal-

ability

of

pipeline

parallelism

with

memory

optimization//

Proceedings

of

the

Forty-second

International

Conference

on

Machine

Learning.

Vancouver,

Canada,

2025:

61942-61955

[66] Chang

L-W,

Bao

W,

Hou

Q,

et

al.

FLUX:

Fast

software-

based

communication

overlap

on

gpus

through

kernel

fusion.

arXiv

preprint

arXiv:2406.06858,

2024
[67] Tu

J,

Zhou

J,

Ren

D.

An

asynchronous

distributed

training

algorithm

based

on

gossip

communication

and

stochastic

gra-

dient

descent.

Computer

Communications,

2022,

195:

416-

423
[68] Jia

X,

Song

S,

He

W,

et

al.

Highly

scalable

deep

learning

training

system

with

mixed-precision:

training

ImageNet

in

four

minutes.

2018
[69] Wang

G,

View

Profile,

Lei

Y,

et

al.

Communication-effi-

cient

ADMM-based

distributed

algorithms

for

sparse

train-

ing.

Neurocomputing,

2023,

550(C):126456
[70] Devraj

A,

Ding

E,

Kumar

A

V,

et

al.

Accelerating

AllRe-

duce

with

a

persistent

straggler.

arXiv

preprint

arXiv:

2505.23523,

2025
[71] Xiong

D,

Chen

L,

Jiang

Y,

et

al.

Revisiting

the

time

cost

model

of

AllReduce.

2024
[72] Wei

Y,

Liu

M,

Wu

W.

AllReduce

scheduling

with

hierarchi-

cal

deep

reinforcement

learning.

arXiv

preprint

arXiv:

2503.21013,

2025
[73] Alistarh

D,

Grubic

D,

Li

J,

et

al.

QSGD:

Communication-

efficient

SGD

via

gradient

quantization

and

encoding//Pro-

ceedings

of

the

Advances

in

Neural

Information

Processing

Systems.

Long

Beach,

USA,

2017:

1707-1718
[74] Bernstein

J,

Wang

Y-X,

Azizzadenesheli

K,

et

al.

signSGD:

Compressed

optimisation

for

non-convex

problems//Proceed-

ings

of

the

35th

International

Conference

on

Machine

Learn-

ing.

Stockholm,

Sweden,

2018:

560-569
[75] Lin

Y,

Han

S,

Mao

H,

et

al.

Deep

gradient

compression:

Reducing

the

communication

bandwidth

for

distributed

train-

ing.arXiv

preprint

arXiv:1712.01887,2020
[76] Stich

S

U,

Cordonnier

J-B,

Jaggi

M.

Sparsified

SGD

with

memory//Proceedings

of

the

Advances

in

Neural

Information

Processing

Systems.

Montr􀆧al,

Canada,

2018:

4452-4463
[77] Vogels

T,

Karimireddy

S

P,

Jaggi

M.

PowerSGD:

Practical

low-rank

gradient

compression

for

distributed

optimization//

Proceedings

of

the

Advances

in

Neural

Information

Process-

ing

Systems.

Vancouver,

Canada,

2019:

14269-14278
[78] Zhang

L,

Zhang

L,

Shi

S,

et

al.

Evaluation

and

optimization

of

gradient

compression

for

distributed

deep

learning//Pro-

ceedings

of

the

2023

IEEE

43rd

International

Conference

on

Distributed

Computing

Systems.

Hong

Kong,

China,

2023:

361-371
[79] Yoon

D,

Oh

S.

MiCRO:

Near-zero

cost

gradient

sparsifica-

tion

for

scaling

and

accelerating

distributed

DNN

training//

Proceedings

of

the

2023

IEEE

30th

International

Conference

on

High

Performance

Computing,

Data,

and

Analytics.

Goa,

India,

2023:

87-96
[80] Polyakov

I,

Dukhanov

A,

Spirin

E.

TAGC:

Optimizing

gra-

dient

communication

in

distributed

transformer

training//

821 计 算 机 学 报 2026年

Proceedings

of

the

5th

Workshop

on

Machine

Learning

and

Systems.

Rotterdam,

The

Netherlands,

2025:

254-260
[81] Markov

I,

Vladu

A,

Guo

Q,

et

al.

Quantized

distributed

training

of

large

models

with

convergence

guarantees//Pro-

ceedings

of

the

40th

International

Conference

on

Machine

Learning.

Honolulu,

USA,

2023:

24020-24044
[82] Jangda

A,

Huang

J,

Liu

G,

et

al.

Breaking

the

computation

and

communication

abstraction

barrier

in

distributed

machine

learning

workloads.

arXiv

preprint

arXiv:2105.05720,

2022
[83] Harlap

A,

Narayanan

D,

Phanishayee

A,

et

al.

PipeDream:

Fast

and

efficient

pipeline

parallel

DNN

training.

arXiv

pre-

print

arXiv:1806.03377,

2018
[84] Wu

K,

Park

J

B,

Zhang

X,

et

al.

SSDTrain:

An

activation

offloading

framework

to

SSDs

for

faster

large

language

model

training.

Arxiv

Preprint

Arxiv:2408.10013,

2024
[85] Yan

R,

Jiang

Y,

Tao

W,

et

al.

FlashFlex:

Accommodating

large

language

model

training

over

heterogeneous

environ-

ment.

Arxiv

Preprint

Arxiv:2409.01143,

2024
[86] Ren

J,

Rajbhandari

S,

Aminabadi

R

Y,

et

al.

{ZeRO-off-

load}:

democratizing

{billion-scale}

model

training//Proceed-

ings

of

the

2021

USENIX

Annual

Technical

Conference.

San-

ta

Clara,

USA,

2021:

551-564
[87] Yao

J,

Jacobs

S

A,

Tanaka

M,

et

al.

Training

ultra

long

context

language

model

with

fully

pipelined

distributed

trans-

former.

arXiv

preprint

arXiv:2408.16978,

2024
[88] Griewank

A,

Walther

A.

Algorithm

799:

Revolve:

An

im-

plementation

of

checkpointing

for

the

reverse

or

adjoint

mode

of

computational

differentiation.

ACM

Transactions

on

Mathematical

Software,

2000,

26(1):

19-45
[89] Chen

T,

Xu

B,

Zhang

C,

et

al.

Training

deep

nets

with

sub-

linear

memory

cost.

arXiv

preprint

arXiv:1604.06174,

2016
[90] Douillard

A,

Feng

Q,

Rusu

A

A,

et

al.

DiLoCo:

distributed

low-communication

training

of

language

models.

arXiv

pre-

print

arXiv:2311.08105,

2024
[91] Ho

Q,

Cipar

J,

Cui

H,

et

al.

More

effective

distributed

ML

via

a

stale

synchronous

parallel

parameter

server//Proceed-

ings

of

the

Advances

in

Neural

Information

Processing

Sys-

tems.

Lake

Tahoe,

USA,

2013:

1223-1231
[92] Nabli

A,

Fournier

L,

Erbacher

P,

et

al.

ACCO:

Accumulate

while

you

communicate,

hiding

communications

in

distributed

LLM

training//Proceedings

of

the

OPT

2024

Optimization

for

Machine

Learning.

San

Diego,

USA,

2024
[93] FlagOpen.

FlagScale:

A

large

model

toolkit

based

on

open-

sourced

projects.

2025
[94] Kwon

W,

Li

Z,

Zhuang

S,

et

al.

Efficient

memory

manage-

ment

for

large

language

model

serving

with

PagedAttention//

Proceedings

of

the

29th

Symposium

on

Operating

Systems

Principles.

New

York,

USA,

2023:

611-626
[95] Li

S,

Liu

H,

Bian

Z,

et

al.

Colossal-AI:

A

unified

deep

learning

system

for

large-scale

parallel

training//Proceedings

of

the

52nd

International

Conference

on

Parallel

Processing.

New

York,

USA,

2023:

766-775
[96] Chen

Q,

Gu

D,

Wang

G,

et

al.

InternEvo:

Efficient

long-se-

quence

large

language

model

training

via

hybrid

parallelism

and

redundant

sharding.

arXiv

preprint

arXiv:2401.09149,

2024
[97] Zhang

W,

Zhou

B,

Tang

X,

et

al.

MixPipe:

Efficient

bidi-

rectional

pipeline

parallelism

for

training

large-scale

models//

Proceedings

of

the

2023

60th

ACM/IEEE

Design

Automation

Conference.

San

Francisco,

USA,

2023:

1-6
[98] Jia

Z,

Zaharia

M,

Aiken

A.

Beyond

data

and

model

parallel-

ism

for

deep

neural

networks//Proceedings

of

the

Machine

Learning

and

Systems.

California,

USA,

2019:

1-13
[99] Shazeer

N,

Cheng

Y,

Parmar

N,

et

al.

Mesh-tensorFlow:

Deep

learning

for

supercomputers//Proceedings

of

the

Ad-

vances

in

Neural

Information

Processing

Systems.

Montr􀆧al,

Canada,

2018:

10435-10444
[100] Aminabadi

R

Y,

Others.

DeepSpeed

inference:

Enabling

ef-

ficient

inference

of

transformer

models

at

unprecedented

scale.

arxiv

preprint

arxiv:2207.00032,

2022
[101] Zhao

S,

Li

F,

Chen

X,

et

al.

vPipe:

A

virtualized

accelera-

tion

system

for

achieving

efficient

and

scalable

pipeline

par-

allel

DNN

training.

IEEE

Transactions

on

Parallel

and

Dis-

tributed

Systems,

2022,

33(3):

489-506
[102] Sun

Z,

Cao

H,

Wang

Y,

et

al.

AdaPipe:

Optimizing

pipe-

line

parallelism

with

adaptive

recomputation

and

partitio-

ning//Proceedings

of

the

29th

ACM

International

Confer-

ence

on

Architectural

Support

for

Programming

Languages

and

Operating

Systems.

New

York,

USA,

2024:

86-100
[103] KennedyKen,

KremerUlrich.

Automatic

data

layout

for

dis-

tributed-memory

machines.

ACM

Transactions

on

Pro-

gramming

Languages

and

Systems,

1998,

20(4):

869-916
[104] Li

J,

Chen

M.

Index

domain

alignment:

Minimizing

cost

of

cross-referencing

between

distributed

arrays//Proceedings

of

the

Third

Symposium

on

the

Frontiers

of

Massively

Par-

allel

Computation.

Maryland,

USA,

1990:

424-433
[105] Kremer

U.

NP-completeness

of

dynamic

remapping//Pro-

ceedings

of

the

Fourth

Workshop

on

Compilers

for

Parallel

Computers.

Delft,

The

Netherlands,

1993:

1-7
[106] Li

J,

Chen

M.

The

data

alignment

phase

in

compiling

pro-

grams

for

distributed-memory

machines.

Journal

of

Parallel

and

Distributed

Computing,

1991,

13(2):

213-221
[107] Um

T,

Oh

B,

Kang

M,

et

al.

Metis:

Fast

automatic

dis-

tributed

training

on

heterogeneous

{GPUs}//Proceedings

of

the

2024

USENIX

Annual

Technical

Conference.

Santa

Clara,

USA,

2024:

563-578
[108] Zhou

Y,

Roy

S,

Abdolrashidi

A,

et

al.

Gdp:

Generalized

device

placement

for

dataflow

graphs.

Arxiv

Preprint

Arx-

iv:1910.01578,

2019
[109] Lu

W,

Yan

G,

Li

J,

et

al.

Flexflow:

A

flexible

dataflow

ac-

celerator

architecture

for

convolutional

neural

networks//

Proceedings

of

the

2017

IEEE

International

Symposium

on

9211

期 张贵鹏等:大模型训练的混合并行技术综述

High

Performance

Computer

Architecture.

Austin,

USA,

2017:

553-564
[110] Schaarschmidt

M,

Grewe

D,

Vytiniotis

D,

et

al.

Automap:

Towards

ergonomic

automated

parallelism

for

ML

models.

Arxiv

Preprint

Arxiv:2112.02958,

2021
[111] Mirhoseini

A,

Goldie

A,

Pham

H,

et

al.

A

hierarchical

model

for

device

placement//Proceedings

of

the

Internation-

al

Conference

on

Learning

Representations.

Vancouver,

Canada,

2018:

2261-2272
[112] Gilks

W

R,

Richardson

S,

Spiegelhalter

D.

Markov

chain

monte

carlo

in

practice.

New

York,USA:

Chapman

and

Hall/CRC,

1995
[113] Lattner

C,

Amini

M,

Bondhugula

U,

et

al.

MLIR:

Scaling

compiler

infrastructure

for

domain

specific

computation//

Proceedings

of

the

2021

IEEE/ACM

International

Symposi-

um

on

Code

Generation

and

Optimization.

Seoul,

Republic

of

Korea,

2021:

2-14
[114] Jia

Z,

Lin

S,

Qi

C

R,

et

al.

Exploring

hidden

dimensions

in

accelerating

convolutional

neural

networks//Proceedings

of

the

International

Conference

on

Machine

Learning.

Stock-

holm,

Sweden,

2018:

2274-2283
[115] Tarnawski

J

M,

Narayanan

D,

Phanishayee

A.

Piper:

Mul-

tidimensional

planner

for

dnn

parallelization.

Advances

in

Neural

Information

Processing

Systems,

2021,

34:

24829-

24840
[116] Song

L,

Chen

F,

Zhuo

Y,

et

al.

AccPar:

Tensor

partitio-

ning

for

heterogeneous

deep

learning

accelerators//Proceed-

ings

of

the

2020

IEEE

International

Symposium

on

High

Performance

Computer

Architecture.

San

Diego,

USA,

2020:

342-355
[117] Cai

Z,

Yan

X,

Ma

K,

et

al.

TensorOpt:

Exploring

the

tradeoffs

in

distributed

DNN

training

with

auto-parallelism.

IEEE

Transactions

on

Parallel

and

Distributed

Systems,

2022,

33(8):

1967-1981
[118] Liu

X,

Wang

Y,

Zhu

S,

et

al.

Galvatron:

An

automatic

distributed

system

for

efficient

foundation

model

training.

arXiv

preprint,

2025
[119] Miao

X,

Wang

Y,

Jiang

Y,

et

al.

Galvatron:

Efficient

transformer

training

over

multiple

GPUs

using

automatic

parallelism.

Proceedings

of

the

VLDB

Endowment,

2022,

16(3):

470-479
[120] Wang

Y,

Jiang

Y,

Miao

X,

et

al.

Improving

automatic

par-

allel

training

via

balanced

memory

workload

optimization.

IEEE

Transactions

on

Knowledge

and

Data

Engineering,

2024,

36(8):

3906-3920
[121] She

R,

Pang

B,

Li

K,

et

al.

Automatic

operator-level

paral-

lelism

planning

for

distributed

deep

learning-a

mixed-integer

programming

approach.

arXiv

preprint

arXiv:2503.09357,

2025
[122] Zhu

Z,

Giannoula

C,

Andoorveedu

M,

et

al.

Mist:

Efficient

distributed

training

of

large

language

models

via

memory-

parallelism

Co-optimization//Proceedings

of

the

Twentieth

European

Conference

on

Computer

Systems.

Rotterdam,

the

Netherlands,

2025:

1298-1316
[123] Lin

H,

Wu

K,

Li

J,

et

al.

UniAP:

Unifying

inter-

and

in-

tra-layer

automatic

parallelism

by

mixed

integer

quadratic

programming//Proceedings

of

the

IEEE/CVF

Conference

on

Computer

Vision

and

Pattern

Recognition.

Tennessee,

USA,

2025:

20947-20957
[124] Liu

J,

Wu

Z,

Feng

D,

et

al.

HeterPS:

Distributed

deep

learning

with

reinforcement

learning

based

scheduling

in

heterogeneous

environments.

Future

Generation

Computer

Systems,

2023,

148(C):

106-117
[125] Raffel

C,

Shazeer

N,

Roberts

A,

et

al.

Exploring

the

limits

of

transfer

learning

with

a

unified

text-to-text

transformer.

The

Journal

of

Machine

Learning

Research,

2020,

21(1):

140:5485-140:5551
[126] Narayanan

D,

Others.

Efficient

large-scale

language

model

training

on

GPU

clusters

using

megatron-LM.

Arxiv

Pre-

print

Arxiv:2104.04473,

2021
[127] Lin

Z,

Miao

Y,

Xu

G,

et

al.

Tessel:

Boosting

distributed

execution

of

large

DNN

models

via

flexible

schedule

search//Proceedings

of

the

2024

IEEE

International

Sympo-

sium

on

High-Performance

Computer

Architecture.

Edin-

burgh,

UK,

2024:

803-816
[128] Li

A,

Song

S

L,

Chen

J,

et

al.

Evaluating

modern

GPU

in-

terconnect:

PCIe,

NVLink,

NV-SLI,

NVSwitch

and

GPU-

Direct.

IEEE

Transactions

on

Parallel

and

Distributed

Sys-

tems,

2020,

31(1):

94-110
[129] Gangidi

A,

Miao

R,

Zheng

S,

et

al.

RDMA

over

ethernet

for

distributed

training

at

meta

scale//Proceedings

of

the

ACM

SIGCOMM

2024

Conference.

New

York,

USA,

2024:

57-70
[130] Li

Q,

Gao

Y,

Wang

X,

et

al.

Flor:

An

open

high

perform-

ance

{RDMA}

framework

over

heterogeneous

{RNICs}//

Proceedings

of

the

17th

USENIX

Symposium

on

Operating

Systems

Design

and

Implementation.

Boston,

USA,

2023:

931-948
[131] Amine

Hamdi

M,

Daghero

F,

Maria

Sarda

G,

et

al.

MATCH:

Model-aware

TVM-based

compilation

for

hetero-

geneous

edge

devices.

IEEE

Transactions

on

Computer-Ai-

ded

Design

of

Integrated

Circuits

and

Systems,

2025,

44
(10):

3844-3857
[132] Zheng

B,

Jiang

Z,

Yu

C

H,

et

al.

DietCode:

Automatic

op-

timization

for

dynamic

tensor

programs//Proceedings

of

the

Machine

Learning

and

Systems.

Santa

Clara,

USA,

2022:

848-863
[133] Zhao

J,

Wan

B,

Peng

Y,

et

al.

QSync:

Quantization-mini-

mized

synchronous

distributed

training

across

hybrid

de-

vices//Proceedings

of

the

2024

IEEE

International

Parallel

and

Distributed

Processing

Symposium.

San

Francisco,

USA,

2024:

193-204

031 计 算 机 学 报 2026年

ZHANG

Gui-Peng,

Ph.D.

candi-

date.

His

main

research

interests

in-

clude

cloud

gaming,

distributed

training

and

heterogeneous

computing.

SUN

Yu-Zhong,

Ph.D.,

professor.

His

main

research

interests

include

big

data

intelligence

analysis

(machine

learning)

and

calculation.

Background

 The

research

in

this

paper

addresses

the

field

of

distribu-

ted

systems

for

artificial

intelligence,

specifically

focusing

on

the

challenge

of

training

large-scale

models

based

on

the

Transformer

architecture.

With

the

exponential

growth

in

model

parameters,

reaching

hundreds

of

billions

or

even

tril-

lions,

traditional

single-mode

parallel

methods

like

data

par-

allelism

have

hit

a

bottleneck.

They

face

severe

limitations

in

computational

efficiency,

memory

capacity,

and

communica-

tion

overhead.

Consequently,

hybrid

parallelism,

which

combines

multiple

strategies

such

as

data,

tensor,

sequence,

pipeline,

and

expert

parallelism,

has

emerged

as

the

domi-

nant

paradigm

to

tackle

these

challenges.

Internationally,

the

state-of-the-art

is

characterized

by

powerful

distributed

training

frameworks

like

NVIDIA’s

Megatron-LM

and

Microsoft’s

DeepSpeed.

These

systems

have

successfully

enabled

the

training

of

massive

models

by

manually

combining

various

parallel

techniques.

However,

the

current

understanding

and

application

of

hybrid

parallel-

ism

remain

somewhat

fragmented

and

reliant

on

empirical,

case-by-case

engineering.

There

is

a

notable

lack

of

a

unified

theoretical

model

to

systematically

analyze

the

intricate

cou-

pling

relationships

between

different

strategies

and

define

their

combination

boundaries.

This

gap

makes

it

difficult

to

explore

the

vast

design

space

of

parallelism

strategies

in

a

principled

manner.

This

survey

paper

addresses

this

theoretical

gap

by

es-

tablishing

a

unified

framework

for

hybrid

parallelism.

It

de-

constructs

existing

parallel

strategies

from

the

fundamental

concepts

of

intra-operator

and

inter-operator

partitioning,

providing

a

coherent

mathematical

representation.

This

framework

serves

as

an

extensible

analytical

tool

to

system-

atically

understand,

compare,

and

design

complex

hybrid

parallel

configurations.

Furthermore,

this

paper

charts

the

evolutionary

path

of

automatic

parallelism

search

techniques,

which

aim

to

automate

the

discovery

of

optimal

training

strategies,

moving

beyond

manual

tuning.

This

work

is

a

fundamental

part

of

the

Science

and

Technology

Innovation

2030—Major

Project

“Elastic

Accel-

erated

Distributed

Training

with

Multi-core

and

Multi-en-

gine”

(No.

2022ZD0119104).

The

project’s

primary

signifi-

cance

lies

in

developing

the

core

technologies

required

to

break

through

the

systemic

challenges

of

training

future

tril-

lion-parameter

models,

which

is

crucial

for

advancing

generative

AI

and

maintaining

competitiveness

in

this

strategic

field.

Our

research

group

has

a

consistent

track

record

in

distributed

sys-

tems,

cloud

computing,

and

heterogeneous

computing.

This

survey

builds

upon

that

expertise

to

provide

the

theoretical

foun-

dation

for

the

project.

Specifically,

the

contributions

of

this

pa-

per—the

unified

framework

and

the

systematic

analysis—form

the

essential

theoretical

groundwork

that

will

guide

the

project’s

subsequent

research

and

development

of

novel,

efficient,

and

au-

tomated

distributed

training

systems.

1311

期 张贵鹏等:大模型训练的混合并行技术综述

