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基于依赖路径分析的PLC变量关联关系分析方法
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摘 要 可编程逻辑控制器(PLC)的变量负责传感器数据接收、执行器数据发送及中间变量存储,其关联关系易

被攻击者利用。PLC蜜点作为一种安全防御工具,通过模拟真实工业控制系统(ICS)环境吸引和分析攻击行为,可
以融入变量关联关系以提升仿真真实性。为此,挖掘PLC变量间的关联关系对ICS攻防至关重要。传统静态代码

分析忽视了代码运行时的动态特征,而数据采集与监视控制系统(SCADA)日志因果分析仅依赖统计特性,难以全

面反映PLC变量真实的关联关系。为克服这些局限,本文提出一种基于依赖路径分析的PLC变量关联关系分析

方法(A
 

PLC
 

variable
 

correlation
 

analysis
 

method
 

based
 

on
 

dependency
 

path
 

analysis,
 

VCA)。VCA融合静态与动

态特征,首先解析PLC代码为抽象语法树并构建程序依赖图,再利用SCADA日志时序数据,通过互信息为依赖边

赋权重,最后构建变量权重的加权邻接矩阵,计算路径总权重以量化关联关系。实验表明,VCA组装线工控系统

上准确识别了16组强关联关系的PLC变量对,相较于现有研究具有明显优势。VCA还为设计PLC蜜点时提供

ICS功能域知识,模拟变量依赖逻辑,提升仿真真实性与诱捕效果。
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Abstract 
 

Programmable
 

Logic
 

Controllers
 

(PLCs)
 

play
 

a
 

critical
 

role
 

in
 

Industrial
 

Control
 

Systems
 

(ICS),
 

overseeing
 

essential
 

operations
 

such
 

as
 

acquiring
 

data
 

from
 

sensors,
 

issuing
 

commands
 

to
 

actua-
tors,

 

and
 

managing
 

intermediate
 

variable
 

storage.
 

The
 

industrial
 

control
 

process
 

is
 

driven
 

by
 

changes
 

in
 

the
 

values
 

of
 

PLC
 

variables,
 

as
 

these
 

PLC
 

variables
 

are
 

intricately
 

linked
 

through
 

correlations
 

that
 

govern
 

the
 

system’s
 

functionality.
 

However,
 

these
 

relationships
 

also
 

represent
 

potential
 

weaknesses,
 

as
 

attack-
ers

 

can
 

exploit
 

them
 

to
 

compromise
 

industrial
 

processes.
 

PLC
 

honeypoints
 

have
 

emerged
 

as
 

an
 

innovative
 

security
 

mechanism.
 

By
 

emulating
 

genuine
 

ICS
 

environments,
 

these
 

honeypoints
 

lure
 

attackers,
 

enabling
 

the
 

observation
 

and
 

analysis
 

of
 

malicious
 

behaviors.
 

Leveraging
 

variable
 

correlations
 

in
 

designing
 

PLC
 



honeypoints
 

can
 

enhance
 

the
 

simulation’s
 

realism
 

and
 

effectiveness
 

in
 

deceiving
 

adversaries.
 

Consequent-
ly,

 

uncovering
 

these
 

correlations
 

in
 

PLC
 

variables
 

is
 

a
 

critical
 

task
 

for
 

both
 

attacking
 

and
 

defending
 

ICS
 

infrastructure.
 

Many
 

research
 

efforts
 

on
 

PLC
 

variable
 

correlations
 

have
 

largely
 

followed
 

two
 

paths:
 

PLC
 

code-based
 

analysis
 

and
 

causal
 

analysis
 

of
 

Supervisory
 

Control
 

and
 

Data
 

Acquisition
 

(SCADA)
 

log
 

analy-
sis.

 

However,
 

these
 

traditional
 

methods
 

for
 

analyzing
 

PLC
 

variable
 

correlations
 

have
 

notable
 

shortcom-
ings.

 

PLC
 

code-based
 

analysis,
 

a
 

static
 

code
 

analysis
 

approach,
 

examines
 

the
 

structure
 

of
 

PLC
 

code
 

to
 

identify
 

dependencies.
 

While
 

effective
 

in
 

revealing
 

potential
 

relationships,
 

it
 

fails
 

to
 

capture
 

the
 

dynamic
 

features
 

that
 

emerge
 

during
 

runtime,
 

such
 

as
 

variable
 

interactions
 

influenced
 

by
 

real-time
 

conditions.
 

This
 

limitation
 

can
 

lead
 

to
 

an
 

incomplete
 

understanding
 

of
 

how
 

variables
 

truly
 

interact
 

in
 

an
 

operational
 

ICS.
 

Alternatively,
 

causal
 

analysis
 

based
 

on
 

SCADA
 

log
 

relies
 

on
 

statistical
 

properties
 

derived
 

from
 

his-
torical

 

data.
 

Although
 

this
 

method
 

provides
 

insights
 

into
 

variable
 

behavior
 

over
 

time,
 

its
 

dependence
 

on
 

statistical
 

correlations
 

often
 

misses
 

deeper
 

causal
 

connections,
 

resulting
 

in
 

an
 

inadequate
 

representation
 

of
 

the
 

true
 

dependencies
 

within
 

the
 

system.
 

To
 

address
 

these
 

limitations,
 

this
 

paper
 

proposes
 

a
 

PLC
 

varia-
ble

 

correlation
 

analysis
 

method
 

based
 

on
 

dependency
 

path
 

analysis
 

(VCA).
 

VCA
 

distinguishes
 

itself
 

by
 

integrating
 

both
 

static
 

and
 

dynamic
 

features
 

to
 

provide
 

a
 

more
 

accurate
 

depiction
 

of
 

variable
 

correlations.
 

First,
 

VCA
 

parses
 

the
 

PLC
 

code
 

into
 

an
 

Abstract
 

Syntax
 

Tree
 

(AST),
 

a
 

structured
 

representation
 

that
 

outlines
 

the
 

code’s
 

syntax.
 

From
 

this,
 

a
 

Program
 

Dependence
 

Graph
 

(PDG)
 

is
 

built
 

to
 

map
 

out
 

depend-
encies

 

among
 

code
 

elements,
 

establishing
 

a
 

foundation
 

for
 

static
 

analysis.
 

To
 

incorporate
 

runtime
 

dy-
namics,

 

VCA
 

utilizes
 

time-series
 

data
 

from
 

SCADA
 

log.
 

VCA
 

employs
 

mutual
 

information
 

to
 

assign
 

weights
 

to
 

the
 

dependency
 

edges
 

in
 

the
 

PDG.
 

These
 

weights
 

reflect
 

the
 

strength
 

of
 

correlations
 

observed
 

during
 

system
 

operation.
 

Subsequently,
 

a
 

weighted
 

adjacency
 

matrix
 

is
 

constructed,
 

and
 

the
 

total
 

weights
 

of
 

paths
 

between
 

variables
 

are
 

calculated
 

to
 

quantify
 

their
 

relationships.
 

Experimental
 

results
 

validate
 

VCA’s
 

effectiveness.
 

In
 

an
 

assembly
 

line
 

ICS,
 

VCA
 

successfully
 

identified
 

16
 

pairs
 

of
 

strongly
 

correlated
 

PLC
 

variables,
 

surpassing
 

the
 

performance
 

of
 

prior
 

methods.
 

Furthermore,
 

this
 

paper
 

discus-
ses

 

the
 

application
 

of
 

VCA
 

to
 

PLC
 

honeypoints.
 

The
 

design
 

of
 

PLC
 

honeypoints
 

must
 

account
 

for
 

dy-
namic

 

response
 

mechanisms,
 

update
 

variable
 

states
 

based
 

on
 

their
 

correlations,
 

and
 

deliberately
 

expose
 

certain
 

variable
 

correlations
 

to
 

lure
 

attackers
 

along
 

intended
 

attack
 

paths.
 

VCA
 

provides
 

ICS
 

physical
 

do-
main

 

knowledge
 

for
 

PLC
 

honeypoint
 

design,
 

simulating
 

variable
 

dependency
 

logic
 

to
 

improve
 

realism
 

and
 

deception
 

efficacy.
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1 引 言

可编程逻辑控制器(Programmable
 

Logic
 

Con-
troller,

 

PLC)变量在程序中负责了工业控制系统
 

(Industrial
 

Control
 

System,
 

ICS)
 

中传感器数据的

接收、执行器数据的发送和中间变量的存储。PLC
变量之间已经被证明过是存在相互关联的关系[1]。
攻击者可以利用这种相互关联的关系和PLC安全

方面的脆弱性[2-3],劫持变量实施ICS攻击[4-6]。因

此,挖掘出PLC变量之间的关联关系是极具意义

的,不但可以帮助攻击者发现潜在的攻击点,也可以

指导ICS防御系统发现入侵点或者故障源。例如

在Triton/Trisis攻击事件中[7],Triton恶意软件通

过篡改控制逻辑器的内存变量,影响了一系列的其

他变量,攻击了沙特阿拉伯一家石化工厂的安全仪

表系统。通过将这些关联关系融入PLC蜜点设计,
可以模拟真实的ICS环境,诱导攻击者暴露其意图

和手法。
当前已经有相当的研究者人员致力于PLC变

量关联关系的研究[4,8]。识别PLC变量关联关系的

一般方法是使用静态代码分析方法,去识别出PLC
变量之间的相互影响关系[9-11]。这些方法可以准确

地挖掘出一些PLC变量之间的因果关系,在ICS攻
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击或者防御上都取得了一定的应用。然而,这些方

法存在局限性:它们仅仅是使用了代码的静态特征

去识别出变量的影响关系,缺乏考虑代码的动态特

征。例如在PLC代码中变量 A 和B 构成依赖关

系,但ICS实际运行中,构成变量A 和B 依赖关系

的条件从不执行。例如变量 A读取的是传感器的

数据,但是该传感器在ICS运行时,一直没有读取

外界信号。当前的PLC变量关联关系方法仍会将

其视为有效关系,但这并不能识别出变量之间更加

全面和深层次的影响关系。另外的一个研究方向是

基于数据采集与监视控制系统(
 

Supervisory
 

Con-
trol

 

And
 

Data
 

Acquisition,
 

SCADA)日志的因果分

析,通过利用机器学习或深度学习技术,对SCADA
系统采集的日志数据进行因果关系挖掘,以揭示

PLC变量间的关联性[12-13]。然而,这类的方法仅依

赖日志数据的统计特性,难以全面反映变量间的真

实依赖关系。
为了解决上述问题,本文提出了一种基于依赖

路径分析的PLC变量关联关系分析方法。该方法

不仅利用了PLC代码的静态特征,还结合SCADA
日志捕捉代码运行时的动态特征,从而更准确、全面

地识别PLC变量间的关联关系。本文VCA方法具

体过程是:首先将 PLC解析为抽象语法树(Ab-
stract

 

Syntax
 

Tree,
 

AST),并在 AST上添加构成

依赖关系的依赖边,构造程序依赖图(Program
 

De-
pendence

 

Graph,
 

PDG);接着通过SCADA日志中

的时序数据,利用互信息为PDG中的数据依赖边和

控制依赖边定义并计算权重;最后,构建变量权重的

加权邻接矩阵,计算依赖路径总权重,使用关联关系

分数公式挖掘出变量间的关联关系。本文在搭建的

组装线工控系统上开展实验,并验证本文方法在识

别PLC变量关联关系的有效性和准确性。实验结

果表明,VCA不仅准确识别了变量间的直接依赖,
还捕捉了间接影响关系,并且能够全面且可靠地识

别出16组PLC变量之间的强关联关系。VCA相

较于现有研究具有明显优势。此外,本文 VCA方

法可以有助于ICS防御系统发现入侵点或者故障

源,对于指导ICS安全防御工作有着重要意义,尤
其是在设计信息域的PLC蜜点时,可以提供ICS功

能域知识,从而提高PLC蜜点的仿真真实性,增强

对攻击者的诱捕效果。
本文研究工作的主要贡献如下:
(1)

 

提出了一种基于依赖路径分析的PLC变

量关联关系分析方法,利用PLC代码的静态特征和

SCADA日志中代码运行时的动态特征,在组装线

工控系统实验中,VCA成功识别出16组PLC变量

的强关联关系,相较于现有研究具有明显优势。
(2)

 

构造了依赖边具备权重信息的程序依赖

图,通过SCADA日志中的时序数据,利用互信息为

PDG中的数据依赖边和控制依赖边计算依赖的权

重信息。
(3)

 

探讨了VCA在工控安全中的应用,在设计

信息域的PLC蜜点时,可以提供ICS功能域知识,
提高PLC蜜点的仿真真实性,增强对攻击者的诱捕

效果。

2 预备知识

2.1 PLC及PLC代码

  PLC是一种专用于工业自动化的计算设备,用
于监控和控制制造过程和机械设备[14]。PLC的核

心功能通过控制逻辑语言来实现,它定义了在
 

ICS
 

中运行的规则。尽管有多家PLC制作商定义了不

同语法规则的控制逻辑代码,例如西门子和施耐德

等,这 些 类 型 的 控 制 逻 辑 代 码 都 必 须 符 合IEC
 

61131—3标准[15]。PLC控制逻辑代码的形式包含

了Ladder
 

Diagram(LD)、Structured
 

Text
 

(ST)、

Function
 

Block
 

Diagram
 

(FBD)、Instruction
 

List
 

(IL)
 

和
 

Sequential
 

Function
 

Chart
 

(SFC)。这些类

型的控制逻辑代码尽管表现形式不一致,但是都可

以实现相同的控制逻辑意图。ST代码与其他4种

控制逻辑语言的形式对比,具有可读性强和灵活性

高的优点,适合于编写复杂的控制算法。

2.2 PLC代码的执行方式

  PLC的代码执行采用周期性运行模式,通常称

为循环扫描(Cyclic
 

Scanning),如图1所示。

图1 PLC代码的循环扫描方式

图1中循环扫描过程包含三个主要阶段:更新输

入映像区、执行控制逻辑代码、写入输出映像区。具

体而言,PLC首先从输入映像区读取传感器变量的状

态,例如温度、压力或开关位置等的数值,并通过将外

部输入信号映射至输入映像区,PLC能够在每个周期

开始时获取最新的环境数据。接着,PLC执行预先编

写的控制逻辑代码,根据输入的传感器数据和程序逻
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辑执行复杂的计算与判断操作,包含对变量的状态进

行逻辑运算、条件分支处理以及执行器指令的生成。
最后,PLC将逻辑运算结果写入输出映像区。输出映

像区存储的信号随后被传输至执行器,例如电机、阀
门等,以驱动设备动作或更新系统状态。此外,执行

其他任务是指PLC的操作系统(runtime等[16])执行

其他任务,例如下载和删除块、接收和发送数据。最

后,循环扫描重新开始,重复上述步骤。

3 VCA方法设计

为了识别PLC变量中的关联关系,本文设计了

一种基于依赖路径分析的PLC变量关联关系分析

方法。在PLC控制逻辑中,传感器变量用以接收外

界的传感器信号的信息,执行器变量用来存储控制

逻辑运算的结果,并将该结果发送到执行器,驱动执

行器。因此,在本文中,主要分析的是传感器变量到

执行器变量、执行器到执行器潜在的关联关系。这

里将这种关联关系表示为

Relationship=f(vsource,vtarget) (1)
其中,f 是关联关系分析的方法;vsource 是源变量,
由传感器结点S 和执行器结点A 的集合构成,即

VSOURCE=(S,A);vtarget是目标变量,由执行器结点

S 集合构成,即VTARGET=(A).
本文VCA方法可以挖掘到传感器变量到执行

器变量、执行器变量到执行器变量潜在的关联关系。
这种关联关系可以被用来发现潜在的攻击点或故障

源。如图2所示,本文 VCA方法包含了3部分的

内容:(1)
 

构造程序依赖图;(2)
 

计算依赖边权重;
 

(3)
 

计算变量间关联关系分数。

图2 VCA方法设计概览

  VCA方法首先将PLC代码解析为 AST,并在

AST上添加构成依赖关系的依赖边,构造程序依赖

图;接着使用SCADA日志为依赖边定义权重,计算

目标变量到源变量的依赖边的权重;
 

最后,构建PLC
变量的加权邻接矩阵,计算目标变量到源变量的依赖

路径总权重,识别出变量间的关联关系。

3.1 构造程序依赖图

  程序依赖图是程序在程序中各个代码片段间数

据依赖和控制依赖关系的反映。为了构造程序依赖

图,在这个章节中,需要将PLC代码解析为 AST,
接着设计在AST的遍历算法,识别出传感器结点和

执行器结点,并将构成依赖关系的结点添加连接边。

3.1.1 解析AST
AST是编程代码在编译过程中的一种中间表

示,通常由一些token构成[17]。这些token按照一

定的连接方式,组合起来像一棵树的结构,这棵树被

称为抽象语法树(AST)。在这个结构中,每个节点

代表程序中的一个构造,如表达式、语句或声明等。
在本文中,VCA使用了一种名为Parsing

 

Expres-
sion

 

Grammar
 

(PEG)的工具[18-19]将ST代码解析

为AST。在这些 AST上,每一个token均为一个

二元组<type,value>。例如在水罐ICS的ST代

码中一部分代码如表1所示。

表1 水罐ICS的ST代码片段

IF
 

State
 

=
 

1
 

AND
 

LevelMeter
 

<=
 

200
 

THEN

  Fill
 

:=
 

Value_200;

  Discharge
 

:=
 

Value_0;

END_IF;

将表1的代码片段代码解析成AST,如图3所示。
在图3中可以得知,该AST上的token的type

有RULE、ASSIGNMENT 等类型,value有if _
statement、statement_list等类型。这 AST的特点

是token层次和连接关系分明,在上面遍历可以识

别出传感器结点和执行器结点,并进一步连接它们

的依赖边。

3.1.2 构造依赖图过程

PDG是程序在程序中各个代码片段间数据依

赖和控制依赖关系的反映。在构造程序依赖图之

前,这里将其表示为G(V,E),其中:
(1)V=(VSOURCE,VTARGET)由源变量结点集合和
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图3 PLC代码解析的AST实例

目标变量结点集合构成,表示了PLC代码中所有的

源变量和目标变量。

(2)E=(e
vtarget
vsource

)是一个连接源变量结点vsource

到目标变量结点vtarget 的有向边集合,表示PLC代

码中目标变量到源变量的依赖关系,即目标变量依

赖于源变量。
在本文中,为了挖掘变量之间的关联关系,将传

感器结点si到执行器aj 的连接关系边、执行器结点am

到执行器结点an 的连接边设为依赖边。这里的依赖

边包含了控制依赖边和数据依赖边。因为PLC的控制

逻辑是根据传感器和执行器的状态值,去进行逻辑运

算,从而将运算结果发送到执行器。因此,源变量结点

vsource到目标变量结点vtarget存在关联性的关系。
另一方面,VCA方法构建的是token粒度的程

序依赖图。token粒度构成的PDG具备精细化分

析的优点,使得每个细节(如变量、运算符、常量)都
在依赖图中有明确的表示。构造PDG的过程需要

设计AST的遍历算法,识别出传感器结点和执行器

结点,再将构成依赖关系的结点连接。算法1描述

了构造依赖图的过程。

算法
 

1.构造PDG
输入:AST

输出:PDG

1.
 

Initialize
 

an
 

empty
 

DFG,
 

CFG;

2.
 

FOR
 

each
 

token
 

IN
 

the
 

AST
 

DO:

3. sensor_nodes,actuator_nodes←
 

IdentifyNodes(token)

4. pair←ConstructPairs({(si,aj)􀰙si∈sensor_nodes,
 

aj∈
 

actuator_nodes)
 

∪
 

{(am,an)
 

􀰙am,an∈actuator_nodes});

5.
 

 IF
 

CanConstructDataDependency(pair)
 

THEN:

6.  
 

DFG←DFG∪{(pair,data_dep)􀰙pair=(source,
 

target)};

7.
 

 IF
 

CanConstructControlDependency(pair)
 

THEN:

8.  
 

CFG←CFG∪{(pair,cotr_dep)􀰙pair=(source,
 

target)};

9.
 

END
 

FOR
10.

 

PDG←Combine(DFG,
 

CFG)

11.
 

RETURN
 

the
 

PDG

  算法1
 

首先识别传感器变量和执行器变量的结

点(第3行)。接着判断传感器结点和执行器结点、
执行器结点和执行器结点是否构成了依赖关系,如
果构成依赖关系,则连接它们的数据依赖边或者控

制依赖边(第4~8行)。最后,该算法将所有数据和

控制依赖关系组合到PDG中并返回。
此外,算法1构建的变量对具备传递性。即在

变量对(am,an)和(an,an+1)中,变量an 是前一个

变量对的目标变量,又是下一个变量对的源变量,那
么可以构造新的变量对(am,an+1)。变量am 对变

量an+1 也构成了依赖关系。
图4是根据图3的AST实例,通过算法1去构

建程序依赖图的结果展示。数据依赖边表示变量之

间的直接数据传递关系,即源变量的值通过赋值或

计算直接影响目标变量,例如图4中<IDENTI-
FIER:

 

Value_200>到<IDENTIFIER:
 

Fill>
的红色指向边,表示数据依赖关系,反映在表1中

ST代码“Fill
 

:=
 

Value_200”中Value_200到Fill
的数据依赖。控制依赖边表示条件语句对变量赋值

的控制关系,即条件决定赋值是否执行,例如表1中

  

图4 构建token粒度的PDG实例
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“IF
 

State
 

=
 

1
 

AND
 

LevelMeter
 

<=
 

200
 

THEN
 

Fill
 

:=
 

Value_200”中LevelMeter 和State到Fill
的依赖。在图4中,token<IDENTIFIER:

 

Level-
Meter>和<IDENTIFIER:

 

State>到<IDENTI-
FIER:

 

Fill>的蓝色指向边,表示了控制依赖关系。
显然,这个程序依赖图是基于token

 

粒度构建的。

3.2 计算依赖边权重

  在3.1小节中已经构建了对PLC代码表征的

程序依赖图。但这些表征属于静态的特征。由于

PLC是在不断地从外界接口读入信息并进行处理

的,这些信息是实时不断变化的。因此在程序依赖

图中的依赖边是具备权重信息的。另一方面,SCA-
DA日志记录了变量的时序变化情况,可以分析这

些时序数据的变化情况,计算变量之间的相关性和

不确 定 性,从 而 为 PDG 中 的 依 赖 边 赋 予 权 重。

PDG中的依赖权重用W =(w
vtarget
vsource

)表示,反应了依

赖边e
vtarget
vsource

所定义的依赖关系,即SCADA日志中

传感器结点si 到执行器结点aj 的连接关系,或执行

器结点am 到执行器结点an 之间的关联强度的量化

表达。本小节先对SCADA 日志格式进行说 明。

SCADA日志记录的时序数据采用结构化格式呈现,
如表2所示。

表2 集装线系统的SCADA数据格式示例

Time s1 … si a1 … aj

t1 vs1
t1 … vsi

t1 va1
t1 … vaj

t1

… … … … … … …
tn vs1

tn … vsi
tn va1

tn … vaj
tn

表2中,“Time”字段表示记录数据采集的具体

时间,格式为“YY-MM-DD
 

HH:MM:SS”,精度为

秒。其中,“YY”表示的是年份,“MM”表示的是月

份,“DD”表示的是日,“HH”表示的是小时,“MM”
表示的是分钟,“SS”表示的是秒。表2的单元格内

容中,“s1”字段表示的是PLC传感器变量名称,即

PLC输入映像区的变量;“a1”字段表示的是PLC
执行器变量名称,即PLC输出映像区的变量。数值

“vs1
t1”表示的是在t1 时刻,变量s1 的值为vs1

t1。变量

的数值类型包含了INT(整数)、BOOL(布尔值)等。
例如在章节4“实验与评估”中,传感器变量Lid

 

at
 

place的数值类型为布尔值。
在计算依赖边权重之前,本小节首先给出依赖

边的条 件 熵 定 义。对 于 依 赖 边e
vtarget
vsource

的 条 件 熵

H(VTARGET|VSOURCE)表示在已知源变量VSOURCE 的

条件下,目标变量VTARGET 的条件概率分布的熵对

VSOURCE 的数学期望,即

H(VTARGET|VSOURCE)=∑
n

i=1

piH(VTARGET|VSOURCE=vsource_i
) (2)

式中,pi=P(VSOURCE=vsource_i),i=1,2,…,n,表示

在SCADA日志中,传感器变量或者执行器变量在

作为源变量vsource_i 时的概率分布。
进一步地,为了挖掘SCADA日志信息中源变

量vsource 到目标变量vtarget的关联关系,这里使用互

信息(Mutual
 

Information,
 

MI)对依赖边e
vtarget
vsource

的

权重w
vtarget
vsource

进行定义。交叉互信息广泛应用于时序

数据分析,反映的是一个随机变量由于已知另一个

随机变量而减少的不肯定性,在本文中适用于捕捉

SCADA 变 量 的 相 互 性。因 此,依 赖 边 的 权 重

w
vtarget
vsource

定义为

I(w
vtarget
vsource

)=H(VTARGET)-H(VTARGET|VSOURCE)

(3)
其中VTARGET 是SCADA日志中目标变量vtarget_k 的概

率分布,VSOURCE是SCADA日志中源变量vsource_j 的

概率分布。
同时需要考虑到时序效应,因为SCADA变量间

可能存在时延影响。例如源变量vsource_j 的变化可能

在一段时间后才能影响目标变量vtarget_k 。传统互信

息的计算忽略了时延效应,在这里引入时延τ,计算

源变量在时延τ对目标变量的影响。因此公式(3)所
计算的依赖权重可以进一步完善。具体而言,使用交

叉互信息计算不同时延下的依赖关系,即

I(w
vtarget
vsource

)=H(VTARGET)-H(VTARGET|Vτ
SOURCE)

(4)
式中,τ表示时延的值,Vτ

SOURCE 表示延时后,目标变

量vtarget_k 的概率分布。
通过SCADA日志中的时序数据,利用了互信息

为PDG中的数据依赖边和控制依赖边定义并计算权

重。这些权重不仅量化了变量依赖关系的强度,还能

为进一步分析它们之间的关联关系提供平台。

3.3 计算变量间关联关系分数

  尽管在上面中量化了源变量和目标量变量之间

的依赖关系的强度,但是还不能直接应用于挖掘

PLC变量影响关系。因为PLC变量之间可能存在

多条可达路径,例如在数据依赖边e
vj
vi
、e

vk
vj
、e

vk
vi

中,
在计算变量vi 对vk 的关联关系分数时,如果直接

用依赖边e
vk
vi

的依赖权重计算是不合理的。因为还
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存在着e
vj
vi

和e
vk
vj

的依赖路径组合。这组合也可以

构成变量vi 对vk 的可达路径,即通过中间变量vj ,
得到vi 对vk 的可达路径。另一方面,在依赖可达

路径的计算中,可能存在路径爆炸的问题,即随着依

赖图中结点和依赖边的数量增加,从一个变量到另

一个变量的可达路径数量可能呈指数级的形式增

长。为了解决这个问题,本小节通过计算依赖总权

重的方式,用来计算变量之间关联关系分数,最终有

效地挖掘出所有变量之间的关联关系。在计算关联

关系分数之前,定义计算关联关系分数的公式:

score(vi,vj)=∑
n

k=1φ(I(w
vj
vi
)k) (5)

式中,φ表示的是计算PLC变量关联关系的分数,k
表示的是变量vi 对vj 的第k条可达路径,n表示的

是可达路径的总和。由公式(5)可知,PLC变量的关

联关系分数是变量之间所有依赖路径的权重之和。
进一步细化,挖掘PLC变量关联关系的具体步

骤如下。

3.3.1 构建变量权重的加权邻接矩阵

利用程序依赖图中的依赖边及其权重构成一个

加权邻接矩阵W,其中W[vi][vj]表示从变量结点vi

到变量结点vj 的依赖边的权重。如果变量结点vi

到变量结点vj 不构成依赖关系,则W[vi][vj]的值

为0。因此构建变量加权邻接矩阵为

W[vi][vj]=
I(w

vj
vi
),存在依赖边

0,不存在依赖边 (6)

式中,I(w
vj
vi
)表示的是使用交叉互信息公式(4)计

算不同时延下的依赖关系。

3.3.2 计算依赖路径总权重

变量结点vi 到变量结点vj 的依赖路径可能有

一条,也有可能有多条。如果是多条依赖路径,需要

计算所有依赖路径的总权重。计算变量的依赖权重

之和M 为

M =(I-W)-1 (7)
式中,I是单位矩阵,M[vi][vj]表示从变量结点vi

到变量结点vj 的所有路径的总权重,反映了变量结

点vi 到变量结点vj 的总关联关系。

3.3.3 设置关联阈值threshold
通过设置一定的关联关系阈值系数,来进一步

说明PLC变量的关联关系的强弱。判断PLC变量

的关联关系的分数公式为

Relationship=
score(vi,vj)≥threshold,强关联关系

score(vi,vj)<threshold,弱关联关系 
(8)

式中,对 于 路 径 总 权 重 大 于 关 联 关 系 阈 值 系 数

threshold,本文将这种关联关系设为强关联关系,
反之

 

,设为弱关联关系。对于强关联关系的变量

值,如果对变量结点vi 进行破坏或者篡改,那么将

对变量结点vj 产生重要影响。

4 实验及评估

4.1 实验设置

  本文构建了一个组装线系统。该系统由open-
PLC[20]

 

、FactoryIO[21]和一个HMI组成。组装线系

统和本文方法运行的环境是window
 

10系统的PC,
运行了16GB

 

内存和 AMD
 

Ryzen
 

5@2.1
 

GHz处

理器。
该系统的传感器和执行器信息如表3所示。

表3 组装线系统的传感器和执行器

变量
类型

变量名称
数据
类型

Modbus
数据地址
(功能码)

作用

传感器

X 整数型 100(0x04) 感应X 轴的位置

Z 整数型 101(0x04) 感应Z 轴的位置

Lid
 

at
 

place 布尔型 801(0x02) 盖板A传感器

Base
 

at
 

place 布尔型 802(0x02) 底座B传感器

Part
 

leaving 布尔型 803(0x02) 产品离开传感器

Item
 

detected 布尔型 800(0x02) 真空检测信号

执行器

Set
 

X 整数型 100(0x06)
机械手X 轴的

电机驱动

Set
 

Z 整数型 101(0x06)
机械手Z 轴的

电机驱动

Lids
 

conveyor
 

1 布尔型 802(0x05) 盖板A传送带

Lids
 

emitter 布尔型 807(0x05) 盖板A
 

生成器

Bases
 

emitter 布尔型 808(0x05) 底座B生成器

Bases
 

conveyor
 

1 布尔型 803(0x05) 底座B传送带

Bases
 

conveyor
 

2 布尔型 805(0x05) 产品传送带

Stop
 

blade
 

1 布尔型 801(0x05) 盖板A挡板

Stop
 

blade
 

2 布尔型 804(0x05) 底座B挡板

Grab 布尔型 806(0x05) 真空阀

Parts
 

remover 布尔型 809(0x05) 产品搬运

表3中描述了集装线系统中包含的传感器、执
行器及其数值类型、Modbus寄存器地址和对应的

作用。
集装线系统的业务信息如表4所示。
表4中描述了组装线系统的业务过程以及涉及

到的PLC变量。

4.2 实验过程

  本文首先提取组装线工控系统的PLC控制逻

辑代码,通过 VCA 方法将其解析为 AST并构建

PDG;随后采集组装线工控系统连续10天的运行日
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  表4 组装线的业务过程及涉及的变量

序号 业务过程 描述 涉及的变量

1 初始状态
 机械手回到X 轴、

Z 轴初始位置 X、
 

Z,Set_X、Set_Z

2
机械手垂直
方向移动

机械手垂直向下运动 Set_Z

3 吸附盖板
机械手检测到盖板,

并抓取该盖板 Item_detected、Grab

4
移动盖板到
底座上面

机械手抓取盖板
到底座上面

X、Z、Set_X、
Set_Z、Grab

5 组装
将A和B组装成

物体C
Grab、X、Z、Set_X、Set_Z、

Item_detected

6 传输产品
启动产品传送带,
将产品传送走

Base
 

conveyor
 

2、
Stop

 

blade
 

2
7 搬运产品 将产品搬走 Parts

 

remove

志数据。利用 VCA 方法识别出存在关联关系的

PLC变量,并将识别结果与文献[4]、文献[12]和文

献[13]的方法进行对比分析,以此验证本文方法在

关联关系挖掘上的准确性与有效性。

4.3 实验结果及分析

4.3.1 PLC变量权重分析

SCADA日志的格式如表2所示。在采集到10
天的 SCADA 运行日志后,运用公式(4)对这些

SCADA日志信息进行处理,得到变量之间的依赖

权重值,即在运用VCA方法识别到PLC变量之间

的依赖权重,结果如图5所示。
在图5中,横轴表示的源变量,纵轴表示的是目

  

图5 PLC变量之间的依赖权重

标变量,方格颜色的深浅反映了目标变量到源变量

的依赖权重分数。方格的红色越深,表示目标变量

到源变量的依赖权重分数越高。这些权重分数通过

公式(4)计算得出,反映了目标变量对源变量的依赖

强度。例如,在横坐标为 X,纵坐标为Set
 

X 的方

格数值为0.8748,表示的是目标变量Set
 

X 到源变

量X 的依赖权重分数是0.8748,显示出X 对Set
 

X
具有较强的直接影响。

由图5可知,传感器变量之间和执行器变量到

传感器的依赖权重分数都为0,说明了它们之间不

存在关联关系。这与工业控制系统的实际运行情况

是符合的。传感器变量通常作为系统的独立输入,
负责接收外部环境信号(如位置、状态等),不受其他

变量的直接控制或影响,任何变量都不对其构成依

赖关系。
尽管x 轴和z轴上都有对应的位置传感器(传

感器变量X 和Z)和机械手方向电机驱动(执行器

变量Set
 

X 和Set
 

Z),
 

但是由图5可知,变量X 对

变量Set
 

Z 具有影响关系,而变量Z 对Set
 

X 不具

有影响关系。原因是在该ST构成的PDG中,可以

找到变量X 到变量Set
 

Z 的间接依赖路径(X→Set
 

X→Set
 

Z),而Z 到Set
 

X 不存在直接或间接的依
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赖路径,因此变量X 对Set
 

X 和Set
 

Z 具有影响关

系,
 

而
 

Z 只对Set
 

Z 具有影响关系。
另一方面,图5也反映了PLC变量之间依赖的

多样性。部分变量和多个变量构成依赖关系。例

如,传感器变量 X 和 多 个 目 标 变 量(如 Set
 

X:
 

0.8748、Set
 

Z:
 

0.2742、Bases
 

conveyor
 

1:
 

0.5483
等)具有非零的依赖权重分数。这反映了在组装线

系统的控制逻辑和业务流程中,传感器变量X是一

个关键输入变量,广泛参与多个执行器变量的控制

过程。然而,部分变量不对任何变量构成依赖关系。
例如,Lids

 

emitter作为源变量时,所有目标变量对

其的依赖权重分数都为0,表明其在系统中扮演输

出的角色,而不是作为其他变量的控制输入。在组

装线系统中,这类变量通常用于反馈状态,而不直接

驱动其他过程。

4.3.2 依赖路径总权重分析

对组装线系统的PLC变量进行依赖总权重公

式(7)进行计算,结果如图6所示。

图6 PLC变量关联关系分数权重和矩阵

  与图5相同,图6的横轴表示源变量,纵轴表示

目标变量,方格颜色的深浅反映了目标变量到源变

量的关联关系分数。方格的紫色越深,表示目标变

量到源变量的关联关系分数越高。例如,在横坐标

为Z,纵坐标为Set
 

X 的方格数值为0.4318,表示

的是目标变量Set
 

Z 到源变量Z 的依赖权重和是

0.4318,即关联关系分数为0.4318。
图6与图5的数值分布趋势大体相同。例如,

在图5和图4中,横坐标为Lid
 

at
 

place,纵坐标为

Set
 

X 的方格数值均为0.5156,依赖权重和的数值

相等。这是因为Set
 

X 到Lid
 

at
 

place的依赖路径

只有一条,在计算依赖权重和时,直接使用了这2个

变量的依赖权重分数。但是也存在这2个图在相同

方格位置、不同数值的情况。例如,图5中横坐标为

Grab,纵坐标为Set
 

X 的方格数值为0.4178;
 

而图

4中相同的这个位置方格数值为0.035。这是因为

变量Set
 

X 到变量Grab的依赖路径有多条,在计算

依赖权重和时,叠加了所有依赖路径的权重的总值。
整体而言,在相同方格位置的值,图6的值都比图5
的值都要大。

4.3.3 变量关联关系分析

设置不同的阈值threshold,可以得到不同具备

强关联关系的变量对组合。在图6中,在进行依赖

路径总权重计算时,得到变量Set
 

Z
 

对变量Z 的依

赖总权重为0.4318,略高于0.4。而在组装线工控

系统中,变量Set
 

Z
 

对变量Z 被确认为存在强关联
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关系。因此将阈值设为0.4,能够有效区分变量间

的强弱关联关系。在设置0.4的阈值threshold后,
识别得到具备强影响关系的变量关联关系如图7
所示。

图7 具备强影响关系的变量关联关系

  图7中,红色圈表示本文识别得到具备强关联关

系的变量对。红色圈越大,目标变量到源变量的关联

关系分数越高。例如在第一个红色圈,表示目标变量

Set
 

X到源变量X的关联关系分数为1.4337。在图7
可知,本文方法识别到了16组具备强影响关联关系

的变量对。本文方法和文献[4]、文献[12]、文献[13]
识别出的依赖关系进行对比,结果如表5所示。

表5 PLC变量关联关系结果对比

强关联关系变量对
(源变量,目标变量)

文献
[4]

文献
[12]

文献
[13]

本文VCA
方法

(X,
 

Set
 

X) √ √ √
(X,

 

Set
 

Z) √ √ √
(X,

 

Bases
 

conveyor
 

1) √ √
(X,

 

Grab) √ √ √
(X,

 

Set
 

Z) √ √ √
(Lid

 

at
 

place,
 

Set
 

X) √ √ √
(Lid

 

at
 

place,
 

Set
 

Z) √ √
(Base

 

at
 

place,
 

Set
 

X) √ √ √
(Base

 

at
 

place,
 

Set
 

Z) √ √
(Base

 

at
 

place,
 

Bases
 

conveyor
 

1)
√ √ √

(Item
 

detected,
 

Set
 

X) √ √ √
(Item

 

detected,
 

Set
 

Z) √ √ √ √
(Item

 

detected,
 

Grab) √ √
(Set

 

X,
 

Set
 

Z) √ √
(Grab,

 

Set
 

X) √ √
(Grab,

 

Set
 

Z) √ √

由表5可知,VCA识别出16组PLC变量之间的

强关联关系。而文献[4]识别了9/16组强关联关系

的变量组;文献[12]识别了7/16组强关联关系的变

量组;文献[13]
 

识别了10/16组强关联关系的变量

组。具体而言,文献[4]解耦了大部分传感器变量到

执行器变量的关联关系。但是对于执行器变量到执

行器变量,例如(Set
 

X,
 

Set
 

Z)变量对,该方法不能识

别它们之间的关联关系。文献[12]和文献[13]虽然

可以识别出传感器变量到执行器变量、执行器变量到

执行器变量的关联关系,但是它们只能够识别出部分

变量对的关联关系。作为对比,本文VCA方法可以

全面识别传感器变量到执行器变量以及执行器变量

之间的强关联关系。例如,本文方法成功识别了(X,
 

Set
 

X)、(Item
 

detected,
 

Set
 

Z)等关键变量对的强关

联关系,同时准确捕捉到(Set
 

X,
 

Set
 

Z)、(Grab,
 

Set
 

X)等执行器变量间的关联,弥补了文献[4]的不足。
例如,生成的PDG局部子图如图8所示。

在图8中,变量Set
 

X 到中间变量loc_value存

在数据依赖关系,即token
 

<IDENTIFIER:
 

Set
 

X>到<IDENTIFIER:
 

loc_valuel>存在数据依

赖的路径,图8中标号path_I的路径(SetX→loc_

value);中间变量loc_value 到定时器变量TON1
存在控制 依 赖 关 系,即token

 

<IDENTIFIER:
 

loc_value>到<IDENTIFIER:
 

TON1>存在控

制依赖的路径,图8中path_Ⅱ的路径(loc_value→
TON1);定时器变量TON1到变量Set

 

Z 存在控制

依赖关系,即token<IDENTIFIER:
 

TON1>到

<IDENTIFIER:Set
 

Z>存在控制依赖的路径,图

8中path_Ⅲ的路径(TON1→Set
 

Z)。根据依赖的
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图8 PDG局部子图示例

传递性,得出依赖关系(SetX→loc_value→TON1→
SetZ)。因此,根据这个PDG子图可以得出变量关

系对(Set
 

X,
 

Set
 

Z)。
此外,本文方法在关联关系的覆盖范围上优于

文献[12]和文献[13]。通过引入交叉互信息和路径

权重分析,VCA方法不仅识别了直接依赖关系,还
考虑了间接影响路径,从而提高了关联关系的检测

精度。例 如,(Lid
 

at
 

place,
 

Set
 

Z)和(Base
 

at
 

place,
 

Set
 

Z)等变量对的识别,显示了本文方法在

复杂工业控制系统中的鲁棒性。这种综合分析能力

为优化PLC控制逻辑提供了更可靠的数据支持。

4.3.4 关联变量影响传播分析

为了理解具备强关联关系变量的行为变化情

况,本小节使用中间人攻击(MITM)的方法[22],对
源变量(X)施加扰动,去观察具备与其具备强关联

关系的变量(Set
 

X,
 

Set
 

Z,
 

Bases
 

conveyor
 

1,
 

Ba-
ses

 

conveyor
 

2,
 

Stop
 

blade
 

2,
 

Grab)的变化情况。
变量的变化趋势如图9所示。

图9 变量的时序变化情况概览

  图9中,分别列出了变量X、Set
 

X、Set
 

Z、Ba-
ses

 

conveyor
 

1、Bases
 

conveyor
 

2、Stop
 

blade
 

2、

Grab的时序变化情况。红色虚线表示的是对变量

X 施加扰动干扰的时刻点,该图在“23:07:40”和

“23:10:21”时刻对变量 X 施加了扰动。该扰动的

恶意值被写进了PLC的输入映像区。对变量X 构

成强关联关系的变量,如Set
 

X
 

和Set
 

Z 等,分别在

“23:07:40”和“23:07:42”时刻也出现了扰动的情
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况,即Set
 

X 在“23:07:40”时刻,从0跳变至
 

110,
并明显保持在880的非法值的时间比其他正常运行

时的长,如图9中红色圈中的“异常(abnormal)”部
分内容。这说明了当变量Set

 

X 充当目标变量时,
对源变量X 构成了强关联关系。

另一方面,从
 

“23:07:40”到
 

“23:10:31”时刻

的数据看,变量X 的扰动(从880减少至0)首先触

发了
 

Set
 

X 的快速响应(从
 

110
 

升至
 

880),表明Set
 

X
 

对X 的扰动响应几乎无时延。随后变量Set
 

Z
在

 

23:07:42
 

从0增加到950,表明Set
 

Z
 

可能受到
 

Set
 

X 的间接影响,存在约
 

2秒的时延。这一路径

(X→SetX→Set
 

Z)与系统中预期的依赖关系一致,
反映了扰动通过中间变量逐步传播的效应。此外,

Bases
 

conveyor
 

1在整个扰动过程中保持值为0,未
受显著影响,表明其可能仅在特定条件下(如业务过

程切换)与
 

X 产生强关联,而非持续响应。扰动传

播还表现出多路径效应,例如
 

Grab 在
 

“23:07:46”
和

 

“23:10:25”时刻的两次响应(一直保持为
 

1),可
能受到

 

X 和其他中间变量(如
 

Item
 

detected)的叠

加影响。这不仅验证了变量间的关联强度差异,还
为异常检测提供了依据。如果

 

Set
 

X 未及时响应
 

X
 

的扰动,或
 

Grab的多次响应,可能提示系统存在

故障或潜在攻击。
在变量影响的时延方面(公式(4)),对源变量

X 施加扰动后,各目标变量的时延值如图10所示。

图10 各目标变量的时延值

由图10可知,当源变量为 X 时,与 X 具备强

关联关系的目标变量的时延值各不相同,最低的时

延值为0,如目标变量Set
 

X、Base
 

conveyor
 

1等;
最高值为10,如Base

 

conveyor
 

2等。这说明了当

X 出现扰动时,Set
 

X 和Base
 

conveyor
 

1等目标变

量会马上受到扰动,而Base
 

conveyor
 

2会在10秒

后受到了干扰。这可能与组装线系统业务过程的设

计相关。时延为0的目标变量,通常是直接依赖于
 

X 的控制逻辑中的关键响应点,其状态变化由
 

X
的扰动直接触发,无需经过复杂的中间处理或物理

延迟。例如,Set
 

X 可能作为
 

X(位置传感器)的直

接控制输出,用于实时调整执行器的设定点,因此能

够瞬时响应
 

X 的变化;类似地,Bases
 

conveyor
 

1
 

和
 

Stop
 

blade
 

2,可能位于与
 

X
 

直接关联的控制路径

上,负责快速执行如输送带启停或阻挡动作等任务,
无需等待其他变量的状态更新或机械动作的完成。

而时延值不为0的目标变量,如Grab和Set
 

Z
等,其时延值较高是由于它们在组装线系统中其他

的过程中,需要经过额外的中间处理、状态更新或机

械动作的完成。例如,Grab 涉及机械臂的运动控

制,其响应时间受到运动轨迹规划、执行器速度或传

感器反馈延迟的限制;Set
 

Z 需要等待其他变量(如

Z,Lid
 

at
 

place)的状态确认后才能触发动作。此

外,Base
 

conveyor
 

2的时延值为10秒,与其在生产

线中的物理位置或功能设计有关。位于业务过程下

游(表2中序号为6的“传输产品”的业务过程),需
等待表2中的“组装产品”业务过程完成。而“组装

产品”的业务过程又依赖于前面的业务过程完成。
因此,在变量 X 受到干扰时,其扰动传播到Base

 

conveyor
 

2需要一些时间。

5 VCA的应用探讨

VCA识别得到的PLC变量关联关系可以应用

到PLC蜜点当中。因为PLC蜜点作为一种安全防

御工具,可以被用来吸引、误导并分析攻击者的行

为,需要模拟真实的ICS环境[23]。PLC蜜点需要考

虑动态响应的内容,即当攻击者对蜜点进行多次的

请求时,按照PLC变量的关联关系更新变量的状

态。另一方面,在蜜点中故意暴露某些变量的关联

关系,引导攻击者沿着预设路径行动。以上均可以

从ICS的功能域方面为设计PLC蜜点提供ICS业

务场景知识。例如,在组装线系统中,运用本文的

VCA方法可以识别出多个变量对变量X 构成强关

联关系,如Set
 

X、Set
 

Z、Bases
 

conveyor
 

1、Bases
 

conveyor
 

2、Stop
 

blade
 

2、Grab 等。运用这种强关

联关系,可以指导PLC蜜点依次生成下面类型的

modbus协议[24]响应报文:
(1)

 

模拟传感器数据变化的报文。通过 Modb-
us写入指令(功能码0x04)向PLC的输入寄存器

(如地址100)写入模拟的传感器数据(如变量X 的
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值),诱导攻击者观察蜜点对数据变化的响应,误以

为发现了关键的控制点。
(2)

 

触发执行器动作的报文。发送 Modbus读

取指令(功能码0x06)从PLC的输出寄存器(如地

址100)读取执行器变量(如Set
 

X)的状态,引导攻

击者分析执行器与传感器变量的关联关系,增加其

对蜜点的兴趣。
(3)

 

模拟控制逻辑执行的报文。通过 Modbus
写入指令向PLC的内部寄存器(modbus数据地址

803,功能码0x05)写入控制信号,触发与变量X 相

关的控制逻辑(如启动Base
 

conveyor
 

1),诱导攻击

者尝试篡改控制逻辑,暴露其攻击意图和手法。
(4)

 

暴露伪造的弱点报文。在 Modbus响应中

故意包含异常的变量值或状态(如Grab 的错误状

态),模拟系统中的潜在漏洞,吸引攻击者深入探索

和利用,延长其在蜜点中的停留时间。
这些类型的报文可以诱导攻击者多次对该

PLC蜜点扫描和分析。通过模拟真实的传感器-执
行器关联关系和控制逻辑,蜜点的行为与真实PLC
高度一致,增强了仿真真实性;同时,暴露伪造的弱

点和关联关系能够吸引攻击者投入更多资源和时

间,显著提升诱捕效果。因此,将PLC变量的关联

关系融入蜜点设计,可以显著提升其仿真真实性与

诱捕效果。
另一方面,本文 VCA方法通过互信息量化了

PLC变量间的时序相关性,为进一步挖掘变量变化

趋势同步提供了基础。这些特性可能被用来进一步

挖掘变量的变化趋势同步特性。例如,VCA通过互

信息识别变量间的时序依赖后,可以筛选高互信息

变量对,构建时序关联网络,并提取变量时间序列,
量化同步时延和强度,最终优化趋势预测模型,检测

异常同步。识别出来的同步特性可应用于故障预测

(识别异常趋势)和实时监控(动态校准控制)。这个

过程从关联关系挖掘趋势同步规律,增强工业控制

系统的诊断与优化能力,保障工业控制系统的网络

安全。

6 相关工作

当前已有大量研究致力于探索PLC变量之间

的关联关系,这些工作主要可分为两大类:基于

SCADA日志的因果分析和基于PLC代码的分析

方法。基于SCADA日志的因果分析方法主要利用

机器学习或深度学习技术,对SCADA系统采集的

日志数据进行因果关系挖掘,以揭示PLC变量间的

关联性。这些方法通常依赖于历史数据的统计特

性,能够从海量时序数据中自动提取变量间的潜在

关系,具有较高的自动化程度和适应性。例如,文献

[25]采用K2算法评估全局报警关联结构,分析物

理层中报警变量的关联关系。该方法分析出的关联

结构能够较好地贴合工业流程,适用于工业环境中

报警事件的自动化分析。文献[12]
 

提出了一种利

用传递熵和贝叶斯网络的K2算法识别工业报警变

量之间因果关系的方法。该方法简化了报警变量间

的关联关系建模,进一步提高了因果分析的效率和

精 度。文 献 [13]提 出 了 一 种 时 空 因 果 有 向 图

(STCG),用于描述过程变量间的因果依赖关系。
该方法通过结合知识-数据引导的强化学习来识别

最优的因果结构,同时考虑了空间和时间因素以提

高模型的预测可靠性和物理可解释性。文献[26]提
出了一种基于CGTST的方法,该方法在识别工业

过程中变量间的因果关系时展现了优越性能,能够

有效消除虚假关联并处理噪声数据。特别地,此方

法成功应用于CCR过程,证明了其在实际大规模化

工过程中进行精确因果关系推断的有效性。文献

[27]提出了一种基于生成对抗网络和变分自编码器

融合的方法,用于精准分析工业系统中变量的因果

关系,通过将变量映射到潜在空间,有效克服传统方

法在处理复杂关系时的不足,提升因果关系判断的

准确性。文献[28]提出了一种基于改进的时间卷积

和多头自注意力机制(MTCMS)的框架,通过对时

间卷积网络进行特征重构和跳跃连接,增强其特征

提取能力,同时改进多头自注意力机制进行可量化

的因果推断,从而实现对多元时间序列的因果发现

和根本原因诊断。尽管这些方法能够在一定程度上

识别变量关联关系,但其主要局限在于未充分考虑

PLC控制逻辑代码的影响,仅依赖日志数据的统计

特性,难以全面反映变量间的真实依赖关系。此外,
这些研究工作主要集中在传感器变量和传感器变量

之间的关联关系分析。
另一类研究聚焦于PLC代码分析,通过构建代

码依赖图并结合静态分析方法[29],识别PLC变量间

的相互影响。例如,文献[8-9]和文献[11]通过构造

程序依赖图,并在依赖图上分析变量的可达路径,挖
掘PLC变量间的关联关系。文献[10]则通过建立代

码与数据间的变量映射,揭示变量依赖关系。这些方

法可以准确地挖掘出一些PLC变量之间的因果关

系,在ICS攻击或者防御上都取得了一定的应用。文
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献[30]提出通过对
 

PLC
 

和机器人代码进行静态程序

分析,提取事件因果关系,生成定时事件因果图

(TECG)来描述
 

PLC
 

变量间的因果依赖
 

。该方法考

虑控制流、常量和事件持续时间等因素,有效降低事

件序列搜索空间。文献[31]提出了
 

PLC-PROV
 

系

统,该系统通过追踪
 

PLC
 

系统中传感器和执行器变

量,收集带有时间戳的数据形成系统执行轨迹,进而

生成数据溯源图来呈现
 

PLC
 

变量间的因果关系。然

而,这些方法的局限性在于仅利用代码的静态特征,
未考虑代码运行时的动态行为,导致分析结果可能缺

乏完整性与动态适应性。此外,静态分析难以反映运

行时外部输入或环境变化对变量关系的影响,例如传

感器数据波动或网络延迟导致的动态行为变化。
综上所述,本文提出的基于依赖路径分析的

PLC变量关联关系分析方法,融合了代码的静态特

征与运行时的动态特征。通过结合程序依赖图与

SCADA日志数据,采用交叉互信息和路径权重分

析,本方法不仅准确识别了变量间的直接依赖,还捕

捉了间接影响关系。实验结果表明,该方法能够全

面且可靠地揭示PLC变量间的实际因果关系,相较

于现有研究具有明显优势。此外,本文工作可以为

信息域设计PLC蜜点时提供功能域知识,从而提高

蜜点的仿真真实性,增强对攻击者的诱捕效果[32-33]。

7 结 论

本文提出了一种基于依赖路径分析的PLC变

量关联关系分析方法(VCA),用以解决现有研究中

静态分析依赖图和SCADA日志因果分析的局限

性。VCA首先将PLC代码解析为 AST并构造程

序依赖图,随后利用SCADA日志的时序数据,基于

互信息为依赖边赋予权重,最后通过加权邻接矩阵

和路径权重和计算,全面挖掘变量间的直接与间接

关联关系。实验表明,本文 VCA方法在组装线工

控系统上能够全面且可靠地识别出PLC变量之间

的关联关系,相较于现有研究具有明显优势。此外,
本文工作可以为设计PLC蜜点时提供ICS功能域

知识,从而提高这类蜜点的仿真真实性,增强对攻击

者的诱捕效果。下一步将继续优化PLC变量关联

关系分析方法,并将挖掘得到的关联关系应用到

PLC蜜点的设计中。
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Background
  This

 

research
 

focuses
 

on
 

the
 

analysis
 

of
 

correlations
 

a-
mong

 

PLC
 

variables
 

within
 

ICS,
 

a
 

critical
 

area
 

at
 

the
 

conflu-
ence

 

of
 

cybersecurity
 

and
 

industrial
 

automation.
 

PLCs
 

serve
 

as
 

the
 

backbone
 

of
 

ICS,
 

handling
 

essential
 

tasks
 

such
 

as
 

col-
lecting

 

sensor
 

data,
 

issuing
 

actuator
 

commands,
 

and
 

manag-
ing

 

intermediate
 

variables.
 

These
 

variables
 

exhibit
 

complex
 

interdependencies,
 

which
 

prior
 

studies
 

have
 

shown
 

can
 

be
 

both
 

a
 

strength
 

and
 

a
 

vulnerability.
 

Malicious
 

actors
 

can
 

ex-

ploit
 

these
 

relationships,
 

capitalizing
 

on
 

known
 

PLC
 

security
 

flaws
 

to
 

manipulate
 

variables
 

and
 

launch
 

advanced
 

attacks
 

on
 

ICS
 

infrastructures.
 

Understanding
 

these
 

correlations
 

is
 

thus
 

vital
 

for
 

both
 

attackers,
 

who
 

seek
 

exploitable
 

weaknesses,
 

and
 

defenders,
 

who
 

aim
 

to
 

pinpoint
 

intrusion
 

origins
 

or
 

sys-
tem

 

faults.
 

Additionally,
 

such
 

insights
 

can
 

enhance
 

PLC
 

ho-
neypoint

 

designs
 

by
 

mimicking
 

realistic
 

ICS
 

behaviors
 

to
 

de-
ceive

 

and
 

study
 

adversaries.
Many

 

research
 

efforts
 

on
 

PLC
 

variable
 

correlations
 

have
 

largely
 

followed
 

two
 

paths:
 

causal
 

analysis
 

of
 

SCADA
 

logs
 

a-
nalysis

 

and
 

PLC
 

code-based
 

analysis.
 

However,
 

PLC
 

code-
based

 

analysis
 

ignores
 

the
 

dynamic
 

characteristics
 

of
 

code
 

runtime,
 

and
 

causal
 

analysis
 

of
 

SCADA
 

logs
 

only
 

relies
 

on
 

statistical
 

characteristics,
 

which
 

makes
 

it
 

difficult
 

to
 

fully
  

 

reflect
 

the
 

true
 

correlation
 

between
 

PLC
 

variables.
 

To
 

over-
come

 

these
 

challenges,
 

this
 

paper
 

proposes
 

a
 

VCA.
 

Testing
 

on
 

an
 

assembly
 

line
 

ICS
 

revealed
 

16
 

highly
 

correlated
 

variable
 

pairs,
 

surpassing
 

the
 

accuracy
 

and
 

completeness
 

of
 

prior
 

methods.
This

 

work
 

significantly
 

advances
 

ICS
 

security
 

by
 

illumi-
nating

 

PLC
 

variable
 

relationships,
 

supporting
 

vulnerability
 

detection,
 

intrusion
 

identification,
 

and
 

fault
 

tracing.
 

It
 

also
 

enriches
 

PLC
 

honeypoint
 

functionality,
 

offering
 

realistic
 

sim-
ulations

 

to
 

mislead
 

attackers.
 

Building
 

on
 

our
 

group’s
 

prior
 

investigations,
 

this
 

study
 

delivers
 

a
 

comprehensive
 

toolset
 

that
 

elevates
 

ICS
 

protection
 

and
 

resilience.
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