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Token级多模型并联协作推理
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(暨南大学信息科学技术学院 广州 510632)

摘 要 推理准确率作为大模型的核心评估指标,对模型的实际应用效果和用户体验具有重要影响。多模型协作

推理是提升推理准确率的有效途径之一,其主要分为全回复级协作和Token级协作。Token级协作相比全回复级

协作在Token开销和时间成本方面具有显著优势。然而,现有Token级协作方法存在低置信度Token噪声过滤不

足以及在聚合过程中平等化模型贡献等问题。为此,本文设计了一种新型Token级模型并联协作推理架构———

DuetNet。该架构通过汇聚多个模型的推理共识以降低选择错误推理路径的可能性,从而提高推理准确率。具体

而言,在每个推理步骤中,DuetNet首先应用联合截断策略,以减少引入低置信度Token噪声;随后,在聚合过程

中,通过聚合逻辑值向量计算每个候选Token的累计逻辑分数,以降低置信度损失;最后,通过Top-T随机采样算

法选择下一个Token。实验结果表明,DuetNet框架下的多模型并联协作在推理准确率方面优于现有方法。在双

模型并联协作时,DuetNet的平均推理准确率相对于其他方法提高了1.88%~38.50%,并且在推理过程中需要对

齐的Token数量减少了80%以上。在三模型和四模型并联协作场景中,DuetNet同样显示出较好的推理准确率提

升,相对于其他方法提高了1.21%~40.34%。
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Abstract 
 

As
 

a
 

core
 

metric
 

for
 

large
 

models,
 

inference
 

accuracy
 

critically
 

influences
 

their
 

practi-
cal

 

performance
 

and
 

the
 

user
 

experience.
 

Multi-model
 

collaborative
 

reasoning
 

is
 

one
 

of
 

the
 

effec-
tive

 

ways
 

to
 

improve
 

inference
 

accuracy,
 

which
 

is
 

mainly
 

divided
 

into
 

full-response-level
 

collabo-
ration

 

and
 

token-level
 

collaboration.
 

Token-level
 

collaboration
 

has
 

significant
 

advantages
 

over
 

full-response-level
 

collaboration
 

in
 

terms
 

of
 

token
 

overhead
 

and
 

time
 

cost.
 

Nevertheless,
 

existing
 

token-level
 

collaboration
 

methods
 

face
 

issues,
 

such
 

as
 

inadequate
 

filtering
 

of
 

low-confidence
 

token
 

noise
 

and
 

equalizing
 

model
 

contributions
 

during
 

the
 

aggregation
 

process.
 

To
 

address
 

these
 

chal-
lenges,

 

this
 

paper
 

designs
 

a
 

novel
 

token-level
 

model
 

parallel
 

collaboration
 

inference
 

architecture—

DuetNet.
 

This
 

framework
 

enhances
 

inference
 

accuracy
 

by
 

aggregating
 

the
 

inference
 

consensus
 

from
 

multiple
 

models
 

to
 

reduce
 

the
 

likelihood
 

of
 

selecting
 

erroneous
 

inference
 

paths.
 

Specifically,
 

in
 

each
 

reasoning
 

step,
 

DuetNet
 

first
 

applies
 

a
 

joint
 

truncation
 

strategy
 

to
 

mitigate
 

the
 

introduc-
tion

 

of
 

low-confidence
 

token
 

noise.
 

Subsequently,
 

during
 

the
 

aggregation
 

process,
 

it
 

calculates
 

the
 

cumulative
 

logit
 

scores
 

of
 

each
 

candidate
 

token
 

by
 

aggregating
 

the
 

logit
 

value
 

vectors,
 

thereby
 



reducing
 

confidence
 

loss.
 

Finally,
 

the
 

next
 

token
 

is
 

selected
 

using
 

a
 

Top-T
 

stochastic
 

sampling
 

algorithm.
 

Experimental
 

results
 

indicate
 

that
 

multi-model
 

parallel
 

collaboration
 

under
 

the
 

Duet-
Net

 

framework
 

outperforms
 

existing
 

methods
 

in
 

terms
 

of
 

inference
 

accuracy.
 

In
 

the
 

dual-model
 

parallel
 

collaboration
 

scenario,
 

DuetNet
 

improved
 

average
 

inference
 

accuracy
 

by
 

1.88%
 

to
 

38.50%
 

compared
 

to
 

other
 

methods,
 

while
 

the
 

number
 

of
 

tokens
 

requiring
 

alignment
 

during
 

in-
ference

 

was
 

reduced
 

by
 

over
 

80%.
 

In
 

both
 

tri-model
 

and
 

quad-model
 

parallel
 

collaboration
 

scenar-
ios,

 

DuetNet
 

demonstrates
 

consistent
 

inference
 

accuracy
 

improvements,
 

achieving
 

performance
 

gains
 

of
 

1.21%
 

to
 

40.34%
 

over
 

comparative
 

methods.
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1 引 言

大模型作为人工智能革命的核心突破,正在重塑

人机交互方式和技术发展路径。自ChatGPT发布以

来,其强大的通用能力和广泛应用价值使大模型成为

了数字化转型的关键力量和国际科技竞争的焦

点[1-3]。尽管大模型显著提升了人工智能的推理能

力,但现有模型在推理准确率方面仍存在明显不足。
这一局限性促使学术界与工业界持续探索优化推理

性能的新方法[4-7]。当前,提升模型推理准确率的技

术路径主要归纳为三类:训练规模更大或推理效果更

佳的大模型、探究模型内部思维模式和设计多模型协

作策略。
训练规模更大或推理效果更佳的大模型是提升

模型推理准确率的技术路径之一,该路径的实现途径

包括训练参数量更大的大模型[8-9]、优化数据集和训

练策略[10-11]以及探索新的模型架构[12-13]。以OpenAI
系列模型为例,GPT-1的参数量仅为1.1亿,而性能

显著提升的GPT-3.5其参数量达到1750亿,更高性

能的GPT-4据推测可能具备万亿参数规模。Llama
 

3、Qwen
 

2.5和Mistral等一系列基于Transformer架

构的大语言模型主要通过优化训练数据和训练策略

来提升模型推理性能。2024年9月,基准测试平台

Chatbot
 

Arena公布的大模型盲测榜单结果显示,

Qwen2.5-72B-Instruct位列全球前十,这一结果验证

了优化数据集和训练策略的有效性[14]。此外,由于

Transformer架构在处理较长文本时存在局限性,

2023年12月Mamba架构被提出并旨在替代Trans-
former架构的主导地位[12],然而该架构的有效性目

前仍处于探索阶段。
探索模型内部思维模式是近年来迅速发展的重

要研究方向,研究者通过探索将人类的慢思考特性赋

能给大模型从而提高模型的推理准确率。2022年

Google提出思维链(Chain-of-Thought,CoT)策略,该
策略显著增强了大模型在决策过程中的表现[15]。

CoT策略的有效性促使研究人员探索其他思维方式

以优化模型表现,包括思维链自洽性[16]、思维树[17]和

思维图[18]。OpenAI的o1模型将思维链内置,模型

在训练过程中系统性地掌握了多步骤推理能力,从而

使得o1的推理准确率显著提升[19]。深度求索公司

开发的DeepSeek-R1模型基于强化学习框架构建了

一个自主思维链系统,其在问题解决和创造性任务中

展现出显著的智能水平[20]。
上述两类技术路径实质上都是专注于优化单一

模型的推理性能并且需要投入高昂的成本重新训练

一个大模型。相比之下,多模型协作的技术路径则强

调集合多个现有的模型优化推理性能[21-22]。
对于多模型协作,全回复级协作是当前主流方

案,旨在通过多个模型对同一问题的完整回答进行协

作推理[23-25]。如图1(a)所示,在全回复级协作的架构

下,参与协作的大模型分别根据提示词输出问题的全

部回复,然后通过一种协作机制共同优化最终的输

出,这类全回复级协作机制包括辩论[26-27]、辩论与反

思组合[28]以及讨论[29]等。然而,全回复级协作往往

需要多轮协作才会输出最终结果,这导致该方式面临

高昂的Token开销和时间成本。与全回复级协作相

比,Token级协作只需一轮完整响应即可完成,其推

理开销更低。如图1(b)所示,该方法在每个生成步

骤中聚合各模型产生的候选Token,实现更高效的协

作推理[30-33]。
尽管Token级协作展现了良好的性能,但现有

方法仍面临两个主要问题:(1)现有Token级并联

协作方法在聚合过程中无法有效过滤低置信度
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图1 全回复级协作和Token级协作

Token噪声,影响模型并联协作的推理准确率。具

体而言,现有方法中的对齐策略包括全量对齐[30-32]

和Top-K截断对齐[33]。全量对齐在每个生成步骤

中对整个词汇表的概率进行对齐,但易引入低置信

度Token噪声且计算开销较高。而固定 K 值的

Top-K截断对齐策略虽然提高了计算效率,但难以

适应不同样本的动态概率分布。(2)现有方法[30-33]

主要采用归一化后的概率值向量进行等权重聚合,
即在聚合时平等化每个模型的贡献,该策略忽视了

不同模型预测结果的可靠性差异。例如,当性能优

异的模型A与欠佳的模型B对同一Token均给出

高置信度预测时,后者可能仅反映随机噪声或局部

最优解。因此,这种等权重聚合方式会平等对待各

模型的贡献度,不仅可能导致概率空间语义失真,还
会均等放大各模型的固有偏差。

综观现有大模型推理准确率优化策略,优化单

模型性能因需进行模型重训练而导致较高的实现门

槛与成本。另一方面,在多模型协作中,全回复级协

作的时间成本和Token开销高昂,而Token级协作

方法仍未得到充分探索。
鉴于此,探索高效的Token级模型协作策略具

有重要的研究价值。随着开源大模型生态的快速发

展,模型私有化部署逐渐成为重要趋势。本地部署

不仅能提供更强的隐私保护能力,还能为用户提供

细粒度的模型控制权限。然而,受限于终端设备的

计算资源,本地部署的大模型往往面临性能瓶颈,且
难以支持多模型并行部署。因此,如何高效提升本

地大模型的推理准确率成为当前亟待解决的关键问

题。受现有多模型协作实践和互联网的“连接即服

务”与共享理念的启发,分布式模型可视为网络中的

智能节点。未来,在这一框架下,互联的模型之间能

够实现协同推理,从而在保持本地化部署优势的同

时提升整体推理效能。因此,本文设计了一种To-
ken级多模型并联协作推理方法,旨在评估其在未

来由大量本地大模型构成的互联系统中的协作潜

力。本文的主要贡献归纳如下:
(1)

 

本文设计了一种Token级模型并联协作推

理架构———DuetNet。在该架构下,模型可以实现

Token级并联协作,共同解决同一难题。同时,本文

还设计了一种Token级多模型并联协作推理算法,
该算法通过汇聚多个模型的推理共识以降低选择错

误推理路径的可能性,从而提高推理准确率。
(2)

 

针对现有 Token级协作方法存在的局限

性,本文提出以下两方面的改进:首先,本文设计了

一种联合 Top-K截断与 Top-P截断的截断策略。
该策略综合了Top-K方法在局部稳定性方面的优

势与Top-P方法在全局适应性方面的特点,不仅显

著降低了需要聚合的Token数量,还实现了两种策

略的优势互补。通过过滤低置信度的候选Token,
可有效降低聚合过程中的噪声。其次,本文采用归

一化前的逻辑值向量进行聚合操作,这一设计避免

了传统归一化处理导致的置信度损失,从而有效缓

解了概率值向量平均加权带来的负面影响。
(3)

 

实验结果表明本文设计的DuetNet可有效

提高推理准确率。具体而言,与单模型推理的平均

准确率相比,DuetNet中双模型并联的推理准确率

提高了21.44%,且随着并联模型数量的增加,准确

率的提升幅度也更大。此外,实验结果表明Duet-
Net的推理准确率高于其他Token级协作方法,同
时聚合开销更小。在双模型并联的情况下,Duet-
Net的 平 均 推 理 准 确 率 相 比 其 他 方 法 提 升 了

1.88%至38.50%,并且在并联推理过程中需要对

齐的Token数量减少了80%以上。最后,在Duet-
Net框架下,双模型并联协作推理的延迟仅比单模
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型推理多约2毫秒,显示出良好的推理效率。
本文的组织结构如下:第1节为引言;第2节归

纳了相关研究工作;第3节介绍了Token级多模型

并联协作推理架构;第4节为实验结果分析;第5节

总结了并联协作的优势以及未来可能面临的挑战;
第6节为结论。

2 相关工作

在人类社会中,合作、竞争等组织形式能够实现

个体难以独立完成的任务。随着大模型技术的演

进,学术界与产业界逐渐探索将人类社会的成功的

协作经验应用于多模型协作系统中,例如360多模

型协作框架[34]。当前,多模型协作的范式主要分为

基于角色扮演的协作[35]和流程驱动的协作[29]。
基于角色扮演的协作是指让多个大模型智能体

扮演不同的角色,从异构视角执行任务,最终聚合不

同角色的结果完成一项任务。360多模型协作中设

计了一种基于角色扮演的多模型协作推理框架,其
中参与协作的三个大模型分别扮演专家、反思者和

总结者[34]。Lu等人为每个大语言模型分配不同的

角色,以对抗大语言模型的同质性[36]。除多模型协

同处理单一任务外,利用角色扮演的另一个思路是

将问题分解为多个子问题并交给不同角色进行处

理。Hong等人针对软件开发任务设置了产品经

理、架构师、项目经理、工程师等角色分别负责不同

的子任务[37]。Xiao等人设计了11个角色以解决运

筹学问题[38]。基于角色扮演的协作方式的关键在

于需要根据特定场景设置相关的角色配置以完成特

定的复杂任务。
流程驱动的协作通过模仿人类讨论过程或共识

形成机制来增强大模型的推理准确率。多模型讨论

框架是典型的流程驱动协作,通常包含以下特征:基
于特定的主题构建讨论语境;参与讨论的智能体自

主发起讨论;通过预定义的聚合机制生成最终的解

决方案或者结论。这类框架的代表工作有基于辩论

的协作[26-27]和基于讨论的协作[29]。除了协作机制

设计外,部分研究尝试通过为大模型赋予额外属性

来优化多模型协作效果。Zhang等人[28]从社会心

理学出发构建了“自负”和“随和”两种性格的智能体

并将“辩论”和“反思”两种协作方式进行组合。该工

作探索了协作方式和智能体的性格对性能的影响,
结果表明协作方式的不同对性能有显著影响,且多

模型辩论比单模型反思的效果更好。

上述协作相关研究均是围绕全回复级别的多模

型协作机制展开,相比之下,当前针对Token级的

多模型协作的探索相对有限。Token级的多模型协

作主要通过逐步骤聚合多个模型的输出分布,汇聚

模型共识从而优化最终推理结果。Xu等人[30]提出

了EVA框架,它使用大语言模型词汇表中的重叠

标记作为桥梁,在每对大语言模型之间训练一个投

影矩 阵 实 现 并 联 协 作 推 理。Huang 等 人 提 出

DEEPEN[31],它在集成之前使用锚 Token将输出

概率转换为相对表示,然后在协作后通过梯度下降

映射到原始模型的词汇空间。Yu等人设计了GaC
框架[32],其通过统计一个并集词汇表以去除不同模

型的词汇表的差异,但是在集成过程中需要进行额

外的矩阵乘法。研究工作[30-32]由于需要学习转换

参数或采用全量级别的词汇聚合策略,其计算开销

较大。针对这些工作的不足,Yao等人设计了 U-
nite框架[33],该框架在每个生成步骤中仅对模型输

出的Top-K
 

Token进行聚合,在显著降低计算复杂

度的同时有效提升了推理准确率。
综观上述多模型协作推理的研究,可以发现,全

回复级模型协作方法(例如辩论和反思)依赖于多轮

完整的响应交互才能实现协作,这导致了较高的计

算开销和延迟。相比之下,Token级并联协作仅需

一轮完整的响应即可完成协作,从而实现了更高效

的推理过程。然而,现有的 Token级并联协作方

法[30-33]聚焦于词汇表的概率化向量的聚合策略,该
策略平等化模型贡献会导致模型的置信度损失,从
而影响并联协作的推理准确率。此外,现有Token
级并联协作方法的对齐策略无法有效过滤低置信度

Token噪声。因此,针对现有方法的不足,本文设计

了一种新的Token级模型并联协作推理框架Duet-
Net以优化模型并联协作的推理准确率。

3 Token级多模型并联协作推理架构

本节详细描述了Token级的多模型并联协作推

理架构———DuetNet。首先概括了系统模型,然后介

绍了并联协作推理的流程,最后设计了一种模型并联

协作推理算法实现Token级多模型协作推理。

3.1 系统模型

  本文考虑的系统模型如图2所示。该系统包括

一个模型互联平台、若干无本地模型的用户和若干

具备单个模型或多个模型的用户。
模型互联平台是整个系统的核心组件之一,负
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图2 模型互联系统示意图

责实现模型的接入、管理与协作,确保各个模型之间

能够高效、顺畅地相互交流与配合。
用户是模型互联系统的重要组成部分。在该系

统中,用户可分为两类:一类为无本地模型用户,他
们依赖模型互联平台提供的多种模型以完成特定任

务;另一类为具备单个或多个本地模型的用户,他们

不仅可以直接使用自身模型,还能通过平台与其他

用户的模型进行协作。
协作器是控制模型协作的核心组件之一,多个

模型通过协作器共同完成同一个任务。协作器可以

部署在发起任务的边缘终端设备上,也可以位于中

心平台。多个模型基于协作器协作完成同一任务的

流程可概括如下:(1)协作器将任务分发给参与协作

的模型;(2)多个模型利用协作器聚合候选 Token
集合,进行自回归生成回复;(3)任务完成后,协作器

将结果反馈给相应的用户。

3.2 DuetNet中并联协作推理流程概述

  图3系统呈现了DuetNet中Token级模型并

联协作的流程。DuetNet架构借鉴了音乐二重奏

(Duet)的协作理念,通过类似乐器配合的方式,使
多个模型能够在Token层级实现并联协作,共同解

决复杂问题。在图3中,每个拼图单元代表一个独

立的Token,而完整的输入序列则通过多个拼图单

元的有机组合进行表征。
如图3所示,多个模型进行Token级并联协作

完成同一个任务的流程具体如下:
(1)协作器将问题(输入序列)分发给参与并联

协作的多个模型;
(2)每个模型生成下一个Token的候选Token

集合并上传到协作器;
(3)协作器聚合所有参与模型的候选Token集

合 的 信 息 并 通 过 一 种 协 作 范 式 选 择 出 下 一 个

图3 DuetNet中Token级模型并联协作推理流程

Token,即新Token;
(4)协作器将该新 Token同步给每个模型,该

新Token将作为每个模型的下一个Token;
(5)重复步骤1~4,直到下一个Token为终止

符或者超出最大协作的Token数量,则协作结束。
由上述过程可以发现,最终每个模型输出的回

答是一致的。

3.3 模型并联协作推理算法

  本小节详细介绍了DuetNet中的模型并联协

作推理算法,重点包括候选Token集合的生成、聚
合过程以及下一个Token的选择方法。

定义1.
 

逻辑值.
 

如图4所示,逻辑值向量是大

模型在Softmax层之前的原始输出结果。作为模

型预测过程中的关键中间变量,逻辑值提供了对下

一个Token生成可能性的量化表征。具体而言,逻
辑值可用来比较不同 Token的相对可能性。在自

回归生成的每个生成步骤中,某一Token的逻辑值

越高,表明模型基于其参数化知识对该Token的生

成具有更强的统计确定性。

图4 大模型的自回归生成图示

由图4可见,任一模型在每个生成步骤的逻辑

值向量经过Softmax层后得到的概率值向量都将

归一化到0~1的取值范围。采用Softmax归一化

后的概率进行聚合会模糊模型间预测可靠性的差

异。这样会导致低质量模型的噪声预测与高质量模

型的可靠预测被同等对待,从而扭曲聚合结果的语
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义表示并放大模型偏差。对此,本文探索了直接采

用逻辑值向量进行聚合的策略。令Nm 表示大模型

m 的词汇表大小,logitn
m 表示第n 个Token对应的

逻辑值。那么,对于输入序列ω,模型m 生成的逻

辑值向量logitm 可以表示为式(1)。

logitm =Gm(ω) (1)

其中,logitm ={logit1m,logit2m,…,logit
Nm
m },Gm(·)

表示模型 m 对应的生成函数。为方便后文陈述,

logitm 表示按照逻辑值大小非升序排序后的逻辑值

向量并且πn
m 表示logitn

m 对应的Token。那么,采用

Top-K 与Top-P 参数分别为τK 和τP 进行联合截

断后,所得到的逻辑值向量logit→m 可用式(2)表示。

logit→m =χ(logitm,τK,τP) (2)
其中,χ(logitm,TK,TP)表示基于参数τK 和τP 从

逻辑值向量logitm 中截取满足限制的元素。具体而

言,首先从全部候选Token中保留概率最高的τK

个Token,确保候选集覆盖合理的选择范围;其次,
基于Top-P约束,在Top-K截断结果的基础上,仅
保留累计概率达到τP ∈[0,1]的最小Token集合。
该步骤将排除长尾低概率项,将候选集压缩至模型

高置信度的核心支持区间。
假设M 个模型参与协作,那么在当前生成步骤

中所有模型生成的候选Token的并集,即联合候选

集可表示为式(3)。

U=∪M
m=1π

⇀
m (3)

其中,π⇀m 表示logit→m 对应的Token集合。令Xm 表

示π⇀m 到U 的映射矩阵,其元素Xm(u)∈Xm 的取

值由式(4)给出。

 Xm(u)=
logit→m(u),ifu∈π⇀m;

0,else ,∀u∈U (4)

其中,logit→m(u)表示模型m 中Token
 

u 对应的逻

辑值。那么,Token
 

u 的累计逻辑值Cu 可表示为式

(5)。

Cu =∑
M

m=1
Xm(u) (5)

  算法1描述了DuetNet中模型并联协作推理算

法的具体流程。需要强调的是,DuetNet框架中的

聚合操作直接作用于Token语义层面(而非Token
编号空间),因此其协作机制与底层分词器实现了有

效的解耦。该算法中,每个生成步骤包括3个子步

骤,即联合截断、聚合和Top-T 随机采样。首先,每
个参与协作的大模型采用联合截断策略生成候选

Token集合;然后,在聚合步骤计算联合候选集并基

于此计算每个候选Token的累计逻辑值;最后,对
联合候选集进行Top-T 随机采样。该算法中,Top-
T随机采样的具体过程如下:

(1)从联合候选集选择累加逻辑分数最高的前

T 个Token组成待选集合。若T 值小于联合候选

集的大小,则T 值更新为联合候选集的大小。
(2)基于每个Token的逻辑分数大小依概率从

待选集合中随机选择出一个元素作为下一个 To-
ken。上述Top-T 随机采样的过程可表示为式(6)。

û=Rselect(U,C,T) (6)

算法1.
 

DuetNet中模型并联协作推理算法

输入:ω ;
 

T;
 

Gm(·),m =1,2,…,M ;
 

τK ;
 

τP

输出:回答A
1.A ← “”

2.DO
3. 

 

//
 

步骤1:联合截断

4. 
 

FOR
 

每个大模型m
  

DO
5. 

 

 
 

logitm ←Gm(ω)

6. 
 

 
 

logit→m ←χ(logitm,τK,τP)

7. 
 

END
 

FOR
8. 

 

//
 

步骤2:聚合

9. 
 

通过式(3)计算候选Token集合U。

10. 通过式(5)计算U 对应的累计逻辑值集合C。

11. //
 

步骤3:Top-T随机采样

12. û←Rselect(U,C,T)
 

//依概率随机选择一个Token
13. ω ←ω+û
14. A ←A+û
15.WHILE

 

û≠"end"
 

OR
 

Token数量未超出

16.RETURN
 

A

  为便于理解,本文结合图5描述DuetNet中多

模型并联协作推理的生成步骤。

图5 DuetNet中模型协作推理的生成步骤示例

如图5所示,首先,输入将提示词“1+1=?”进
行模板化封装,需要强调的是,不同类型模型的聊天

模板可能不同。随后,将模板化后的输入序列分别

输入到相应的模型并对模型A和模型B的输出进

行联合截断得到候选Token集合。紧接着,对两个
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模型的候选Token集合进行聚合得到联合候选集

(即 {“1”,“The”,“2”})和对应的累计逻辑值。以

Token
 

“1”为例,其同时出现在两个候选集中,因此

其累计逻辑值为两者逻辑值之和,即29.0+21.3=
50.3,其余情形类推。最后,对聚合后的联合候选集

执行Top-T 随机采样,由于图中示例的T 值为1,
其等效于贪心选择累计逻辑值最高的Token,故选

取Token“1”。在生成Token“1”后,将其添加到两

个模型的输入序列中进行自回归生成。需注意,自
回归过程中均需重复执行前述的联合截断、聚合和

Top-T 随机采样确定下一个Token。
算法1中模型协作推理的生成步骤的复杂度分

析。考虑M 个模型参与协作且每个模型独立部署,
模型词汇表规模最大为 Nmax 且 Top-K 截断的K
值为τK。 由于τK ≪Nmax,因此联合截断步骤的时

间复杂度主要来源于Top-K 截断。由于基于快速

排序思想实现的Top-K 算法的平均时间复杂度为

O(Nmax),因 此,联 合 截 断 步 骤 的 时 间 复 杂 为

O(Nmax)。 联合截断后每个模型的候选 Token集

合最多有τK 个元素,因此,最坏情况下聚合步骤的

时间复杂度为O(MτK)。 当每个模型生成的候选

Token集合都不同时,聚合后的联合候选Token集

合达到最大,即MτK,那么Top-T 随机采样的时间

  

复杂度为O(MτKlogMτK)。 由于MτK ≪Nmax 且每

个模型独立部署,因此,生成步骤的时间复杂度为

O(Nmax)。

4 实验结果分析

4.1 实验设置

  如表1所示,本文主要选取了四款开源大语言

模型进行实验以论证DuetNet的有效性。实验在

具备4块80G显存的A100的服务器上进行,四款

大模型分别部署在不同卡上以模拟模型分布式部署

的场景。所有大模型在解码阶段均采用一致的联合

截断策略,其中默认设置K =τK =10且P =τP =
0.75。 本文采用表2所示的4种推理数据集来评

估DuetNet的性能,包括数学计算、选择题和判断

题。本文从每个数据集中随机抽取50个题目进行

实验测试,并且单模型与多模型并联推理采用的提

示词模板一致。

表1 实验主要选定的4款开源大模型
简称 模型名称 发布者 发布时间

q1 Qwen1.5-7B-Chat[39]

q2 Qwen2.5-7B-Instruct[11]
阿里巴巴集团

2024.02
2024.09

g4 glm-4-9B-chat[40] 智谱AI 2024.06
L3 Meta-Llama-3.1-8B-Instruct[10] Meta 2024.07

表2 实验选定的4种测试数据集及对应的提示词模板

数据集 数据类型 描述 提示词模板

SimpleMath[26]
简单数学

计算题

计算a+b×c+d-e×f,其中a 至

f 为0~30的随机整数
{问题}的答案是什么? 请确保在回复的最后陈述你的答案

C-Eval[41] 选择题

中文 AI大 模 型 评 测 数 据 集,涉 及

4个学科大类,52个学科小类,主要

用于评测大模型的知识和逻辑推理

能力

{问题}你必须在回答的最后重申你的答案

BoolQ[42] 判断题

用于回答是/否问题的英文数据集,

这些问题在无提示和无约束的环境

中生成

Read
 

the
 

following
 

background:{background}Based
 

on
 

the
 

above
 

background,
 

please
 

answer
 

the
 

True-false
 

question:{question}If
 

you
 

think
 

it
 

is
 

correct,
 

answer
 

(True),
 

otherwise
 

answer
 

(False).
 

You
 

must
 

reiterate
 

your
 

answer
 

at
 

the
 

end
 

of
 

the
 

question

MMLU[43] 选择题

涵盖了美国历史、计算机科学等,难

度覆盖高中水平到专家水平的英文

数据集

Can
 

you
 

answer
 

the
 

following
 

question
 

as
 

accurately
 

as
 

possible?
 

{question}
 

Explain
 

your
 

answer,
 

putting
 

the
 

answer
 

(i.e.,
 

A
 

or
 

B
 

or
 

C
 

or
 

D)
 

in
 

the
 

form
 

(X)
 

at
 

the
 

end
 

of
 

your
 

response"

  本文对比的方法包括:
(1)SC[16]:一种基于自洽性(Self-consistency,

SC)的单模型推理方法。本文使用单个模型在每个

生成步骤采用从 Top-1或 Top-2
 

Token中随机选

择的策略且每个任务生成3条推理路径。
(2)GaC[32]:一种基于全量聚合的概率值向量

维度的模型并联协作方法。考虑到大模型输出的

Token概率分布具有长尾特性(即高概率集中在少

数Token上),本文采用Top-50的候选Token进行

近似聚合计算。
(3)Unite[33]:一种基于 Top-K 截断的概率值

向量维度的模型并联协作方法,基于该工作使用的

设置,本文同样将K 值设定为10。
(4)DP:一种基于概率值向量的DuetNet(Du-
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etNet
 

based
 

on
 

probability
 

vectors,DP)。该方法是

DuetNet的消融方法,其同样采用联合截断策略,与

DuetNet的不同之处在于其是基于概率值向量进行

聚合。
(5)DK:一种采用Top-K 截断的DuetNet(Du-

etNet
 

with
 

Top-K
 

truncation,DK)。该方法是Du-
etNet的消融方法,其采用Top-K 截断策略生成候

选Token(K 值设置为10),而聚合阶段和选择下一

个Token的策略与DuetNet一致。

4.2 最优T 值选取

  为确定Top-T 随机采样子步骤的最优阈值参

数T,本节分析了DuetNet中不同双模型并联组合

在不同T 值下的平均推理准确率。如图6所示,实
验设置五种T 值方案,其中“随机”是指在每个生成

步骤中随机设置T 值为1或2,等效T =1.5。由

结果可见,一方面,不同并联组合的平均推理准确率

存在较大的差异;另一方面,平均准确率随T 值增

大呈现递减趋势。该结果表明在DuetNet架构中,
采用累计逻辑分数最高的Token选择策略能较好

提升模型并联时的推理性能。

图6 不同取值策略下的平均推理准确率

产生上述结果的一个可能原因是大模型在生

成Token的过程中的错误累积效应。一旦选择了

错误的Token,后续生成的Token将沿着这一错误

路径继续推理,从而导致结果偏差。在 DuetNet
中,模型并联后在每一个生成步骤中聚合共识,进
一步降低了单一模型知识面或性能不足带来的错

误推理风险,从而提升了推理准确率。由于模型

输出Token的逻辑分数反映了对该选择的信心,
逻辑分数越高表示选择的信心越强。因此,贪心

选择累计逻辑分数最高的Token在一定程度上可

以减少选择到错误方向的可能性。为论证上述猜

想,在后续章节中,本文设定T 值为1进行了相关

实验。

4.3 双模型并联性能评估

  本节从推理准确率、推理结果分布、输出相似度

和输出Token数量这四个指标评估DuetNet中双

模型并联协作推理的性能,指标的详细定义如下:
(1)推理准确率是评估模型并联后推理的准确

性,其是衡量推理性能的重要指标。
(2)推理结果分布指单模型的推理结果与模型

并联后的推理结果的分布,该指标可更详细地衡量

并联推理准确率。
(3)输出相似度指模型并联的输出文本与单模

型的输出文本的相似程度。
(4)输出Token数量是将模型并联输出的文本

的Token数量与单模型输出的Token数量进行比

较以衡量输出长度的差异。

4.3.1 推理准确率分析

表3和表4分别展示了单模型和不同的双模型

并联组合的在测试数据集上的推理准确率。表4中

的“平均(%,
 

%)”列中的(50.9,
 

9.0)表示并联组

合q1&q2
 

的平均推理性能分别比模型q1和q2的

平均推理性能高50.9%和9.0%,其余情形类推。

表3 单模型的推理准确率(%)
模型 SimpleMath C-Eval BoolQ MMLU 平均

q1 50 52 78 44 56
q2 72 70 82 86 77.5
g4 96 52 84 52 71.5
L3 14 48 66 52 45
平均 58 55.5 77.5 58.5 62.5

  表4 不同并联组合下的推理准确率(%)

组合
Simple-

Math
C-Eval BoolQ MMLU 平均

q1&q2 88 78 84 88 84.5↑(50.9,
 

9.0)

q1&g4 66 50 76 58 62.5(11.6,
 

-12.6)

q1&L3 74 52 76 62 66.0↑(17.9,
 

46.7)

q2&g4 86 72 84 88 82.5↑(6.5,
 

15.4)

q2&L3 92 70 84 88 83.5↑(7.7,
 

85.6)

g4&L3 94 54 80 78 76.5↑(7.0,
 

70.0)
平均 83.3 62.7 80.7 77.0 75.9

注:↑表示双模型并联协作的推理准确率优于两个单模型的最佳值。

  由表3和表4的结果主要得到以下两个发现:
(1)在DuetNet架构下,双模型并联的推理性

能明显优于单模型。具体而言,大多数双模型并联

组合都优于两个单模型的最佳性能。与单模型相

比,双模型并联的平均推理准确率由62.5%增加至

75.9%,相对提高21.44%。并联组合q2&L3的性

能提升幅度最大,与q2和L3的平均推理准确率相

比(即 (77.5+45)/2=61.25),q2&L3的推理准确
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率提高了36.3%;而单独与L3相比,q2&L3的推

理准确率提高了85.6%。
(2)不同的并联组合在推理准确率上表现出显

著差异。通常情况下,同系列或性能相近的模型进

行并联时,其推理准确率较高。例如,Qwen
 

1.5与

Qwen
 

2.5(q1&q2)属于同系列模型,而Qwen
 

2.5
与GLM

 

4(q2&g4)则均为性能优越的模型。从表

4中可以看出,q1&g4和q1&L3的推理准确率相

对较低,而q1&q2和q2&g4在各个数据集上的推

理性能显著提升,且其准确率均超过了单一模型的

最佳推理准确率。这些结果表明,不同的并联组合

对推理准确率的影响是显著的,并且选择合适的模

型组合能够有效提升整体性推理准确率。
发现(1)说明本文所提出的DuetNet在平均维

度上可显著提高推理准确率。换言之,从4个模型

中随机选择2个模型进行并联的推理准确率往往优

于从中随机选择1个模型进行单模型推理的准确

率。发现(2)说明不同模型并联显著影响并联的推

理准确率,一个可能的原因是模型的版本不同、训练

数据不同导致并联推理性能的差异。因此,选择合

适的模型进行并联也是一个较为关键的问题。
之后,本文对比了不同框架下的双模型并联推

理的平均推理准确率,实验结果如表5所示。表中

的“单”列表示两个单模型的最优平均推理准确率。

表5 平均推理准确率对比(%)

组合 单 GaC Unite DP DK DuetNet

q1&q2 77.5 79.0 79.5 78.7 79.0 84.5

q1&g4 71.5 64.0 62.5 69.5 45.0 62.5

q1&L3 56.0 58.5 62.5 62.5 45.0 66.0

q2&g4 77.5 84.0 83.5 82.0 54.0 82.5

q2&L3 77.5 78.0 80.5 79.5 51.0 83.5

g4&L3 71.5 75.0 76.5 75.0 55.0 76.5

平均 71.9 73.1 74.1 74.5 54.8 75.9

注:带下划线的表示每一行的最高值。

  由表5的结果可见,DuetNet优于所有的对比

方法,平 均 推 理 准 确 率 提 高 1.88% ~38.50%。

GaC、Unite、DP和DuetNet都优于单模型的最优性

能,而DK的性能远低于其他方法。此外,可以发现

DP优于Unite,这说明采用联合截断策略优于采用

Top-K 截断策略,而DuetNet优于DP说明采用逻

辑值向量进行聚合可进一步优化推理准确率。另一

方面,DK的性能较差的原因可能是采用Top-K 截

断和逻辑值向量聚合的策略会引入更大的噪声。
本文进一步分析了 GaC、Unite和DuetNet的

每问题所需对齐的Token数量,实验结果如图7所

示。该指标的数值越小,表明计算开销越低,聚合速

度越快。由图7的结果可见,采用Top-K 截断策略

的Unite可以显著降低需对齐的Token数量,而采

用联合截断策略的DuetNet可进一步减少所需对

齐的Token数量(减少约80%)。因此,DuetNet在

该指标上显著优于GaC和Unite。

图7 平均每个问题需对齐的Token数量

4.3.2 推理结果分布分析

为分析DuetNet优于其他方法的直观原因,本
节分析了推理结果分布,结果如图8所示。图中“×
√√”表示两个单模型的推理结果一错一对但并联

后推理正确,“××√”表示两个单模型的推理结果

都错但并联后的推理结果正确,其余情况类推。

图8 不同方法的推理结果分布

观察图8的结果,主要可发现以下三个现象:
首先,当两个单模型均推理正确时,所有并联方

法的推理结果显著偏向正确;当两个单模型的推理

结果为一错一对时,除了DK方法的推理结果显著

偏向错误外,其余方法均显著偏向正确。这些结果

表明,当至少一个模型的推理结果正确时,Token级

双模型并联的推理结果更有可能是正确的。
其次,当两个单模型均推理错误时,整体上所有

方法的推理结果都倾向于错误,然而,仍然有相当比

例的推理结果是正确的。这一结果表明,Token级
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双模型并联具有一定的纠正单模型推理错误的能

力,但其纠正效果仍然存在一定的局限性。
最后,与其他方法相比,在相同的组合条件下

(例如所有单模型推理均错误),DuetNet的并联推

理结果的错误比例最低,而正确比例最高。由此可

见,DuetNet的推理准确率高于其他方法的直观原

因可归纳为“在同等情形下,错的少而对得多”。

4.3.3 输出相似度分析

为深入探讨不同方法的特性,本文分析了双模

型并联输出与两个单模型输出在四个测试数据集上

的平均余弦相似度的差值,实验结果如图9所示。
该差值定义为并联输出与模型1的相似度减去并联

输出与模型2的相似度。在相同问题下,双模型并

联输出与某个单模型输出的相似度越大,表明并联

输出越倾向于该模型,同时也反映出该模型在并联

中的主导性更强。因此,相似度差值的绝对值越大,
表明并联输出对某一模型的偏向性越明显。例如,
在组合q1&q2中,所有方法的差值均小于0,表明

并联输出与模型q2的输出更为相似。

图9 不同方法下的双模型并联协作的输出相似度差值

从图9的结果可以看出,大多数并联组合表现

出一定的偏向性,但其程度较小(即相似度差值不超

过0.3)。这表明,在Token级模型的并联输出中,
通常会出现轻微的“主导”现象。其次,采用逻辑值

向量聚合的方法(即DuetNet、DP和DK)的偏向性

明显高于采用概率值向量聚合的方法(即 GaC和

Unite),其中DuetNet表现出最强的偏向性。这可

能源于采用归一化后的概率值向量聚合会平等化模

型的贡献,从而使得相似度差值较小。结合表5所

示的结果可以发现基于逻辑值向量聚合的DuetNet
方法的推理准确率高于其他方法,这说明了逻辑值

向量的原始尺度差异是有意义的。

4.3.4 输出Token数量分析

紧接着,本文探讨了DuetNet架构中双模型并

联与单一模型在平均每个问题输出的Token数量

方面的差异,相关实验结果如图10所示。由图10
的结果可见,双模型并联输出的Token数量基本介

于单模型输出的 Token数量之间。这说明双模型

并联并不会导致输出文本的发散,而是呈现一个更

高效的输出质量。需要说明的是,在 DuetNet中,
两个模型以并行方式执行 Token级协作。这意味

着,由于并联模型与单模型在输出文本的Token数

量上相似,因此两者在延迟方面并无显著差异。

图10 单模型与并联后输出文本的Token数量

图11 不同模型组合下的时延比较

为验证上述观点,本文设计了对比实验,以分析

DuetNet中多模型并联协作推理的延迟,实验结果

如图11所示。由图中结果可见,在独立推理模式

下,模型q1和q2的单Token生成延迟基本相当,
分别为43.94毫秒和43.60毫秒。值得注意的是,
当采用q1&q2并联协作时,推理延迟仅比q1高

2.51毫秒,达到46.45毫秒。相比之下,模型g4的

单独推理延迟较高,约为56毫秒/Token。由结果

可发现推理延迟差异较大的q1和g4进行并联协

作推理时,延迟仅增至58毫秒/Token,单Token生

成延迟相对模型g4单独推理仅增加2毫秒。
通过对这些结果的深入分析,可以得出两个重

要结论。首先,在 DuetNet的并联协作推理模式

下,推理延迟主要受到最慢模型性能的限制。其次,
与单一模型推理相比,DuetNet框架下的并联协作

推理生成单个Token的延迟的增加幅度非常有限。
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这一结果表明,DuetNet框架下的多模型并联协作

推理对用户体验的影响较小。

4.4 同模型与更多模型并联协作性能评估

  在本节,本文进行了更多的对比实验分析以论

证DuetNet的优势。
鉴于T=1时并联输出与单模型一致,因此,本

文只讨论在次优的随机模式下(即每个生成步骤中

T 随机取1或2)两个同样的模型并联的推理准确

率。此外,考虑到同模型并联推理本质上只有一个

模型进行推理,因此,本文也引入了单一模型自洽性

(即SC方法)作为对比基准,其中n=3,即单个模型

采样3个结果。实验结果如表6所示。由结果可

见,随机模式下的多数组合的推理准确率高于单模

型,SC方法则优于随机模式。SC方法的平均推理

准确率为69.4,其低于DuetNet中平均推理准确率

75.9(见表4)。此外,SC方法需要采样3次结果,
而双模型并联等效于两个模型采样1次结果。因

此,SC方法的Token开销高于双模型并联。综上,

DuetNet架构下的双模型并联推理的性能更优。

表6 随机模式下的平均推理准确率(%)

组合 单模型 随机模式 SC(n=3)

q1&q1 56.0 57.0
 

(+1.0) 63.5
 

(+7.5)

q2&q2 77.5 79.5
 

(+2.0) 86.5
 

(+9.0)

g4&g4 71.5 70.0
 

(-1.5) 74.0
 

(+2.5)

L3&L3 45.0 51.5
 

(+6.5) 53.5
 

(+8.5)
平均 62.5 64.5 69.4

最后,本文分析了不同方法在更多模型并联时

的表现,实验结果如表7所示。由结果可见,Duet-
Net的平均推理准确率优于其他方法。在三模型的

平均指标上,DuetNet的推理准确率比其他方法提

高了4.51%至28.84%。在四模型并联时,DuetNet
的准确率提升幅度达到1.21%至40.34%。此外,
结合表5与表7的结果可以看出,随着并联模型数量

的增加,DuetNet框架下的模型并联协作推理的平

    表7 多模型并联的平均推理准确率(%)率的均值

组合 均值 GaC Unite DP DK DuetNet

q1&q2&L3 59.5 81.0 81.5 81.5 75.0 81.0

q1&q2&g4 68.3 77.5 77.0 80.0 71.0 80.0

q1&L3&g4 57.5 62.5 60.5 57.5 43.5 64.0

q2&g4&L3 64.7 71.5 67.0 68.0 47.5 80.5

三模型平均 60.5 73.1 71.5 71.8 59.3 76.4

q1&q2&g4&L362.5 82.5 82.5 78.0 59.5 83.5

注:表中的均值表示参与并联的各单模型单独推理时的推理准确率

的均值。

均推理准确率呈现出明显的提升趋势,具体表现为

从75.9提升至76.4,再到83.5。这表明增加并联

模型数量可以有效提高 DuetNet中模型并联的

性能。

4.5 参数实验

  本节分析了在联合截断阶段中Top-K 和Top-
P 的取值对推理准确率的影响。

图12展示了不同Top-P 取值下的平均推理准

确率的实验结果。根据图12的结果,可以观察到在

不同Top-P 取值下,平均推理准确率表现出先上升

后降低的趋势。具体来说,当P 值增加时,准确率

逐渐提高,并在P=0.75时达到了最大值0.757,之
后开始下降。这表明在选择 Top-P 时,适当的 P
值对于提升模型的推理准确率是至关重要的。基于

实验结果可发现,较小或者较大的 P 值都是不

合适的。

图12 不同Top-P 取值下的平均推理准确率

(T =1,K =10)

图13展示了不同Top-K 取值下的平均推理准

图13 不同Top-K 取值下的平均推理准确率

(T =1,P =0.75)
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确率的实验结果。根据图13的结果,可以观察到,
在不同Top-K 取值下,平均推理准确率呈现出先增

加后趋于稳定的趋势。具体来说,随着 K 值的增

加,准确率逐渐提高,并在K =4时基本收敛。这表

明增加Top-K 的值可以在一定程度上提升模型的

性能,但在达到一定值后,进一步增加 K 值对准确

率的提升效果变得有限。

5 并联协作优势与未来挑战

5.1 Token级模型并联协作的优势

  类比人类社会中,协作能够相互启发和提升效

率从而使得人们高效地完成任务。本文多项实验结

果也表明Token级双模型并联协作推理相比于单

模型推理也有着类似的优势。

图14 单模型推理与双模型并联协作推理示例

首先,多模型并联可以弥补单一模型的不足。
在实验结果中,q1&q2是同系列模型的不同版本进

行并联,q2&g4是两个较优的单模型进行并联,这
两个组合的并联推理准确率都表现出高于单模型的

推理准确率。一个可能的原因是,不同模型受限于

各自的训练数据和策略,导致它们在知识水平和推

理准确率上存在差异。因此,针对同一推理问题,不
同模型可能有不同的理解和思路。合作能够提供多

样化的视角,有助于全面分析问题。通过模型并联

可以实现知识的互补,从而提高推理准确率。
其次,Token级模型并联可降低模型推理过程

的错误累积,提高推理准确率。大模型推理存在错

误累积效应,即某一步推理错误会导致后续的推理

都向着错误的方向进行。如图14所示,模型1在推

理错误之后的步骤中推理都偏离了正确答案,而并

联协作推理则推理正确。这是由于 Token级并联

协作在生成每个Token时汇聚了多个模型的共识,
在一定程度上降低单模型的幻觉和知识缺陷问题导

致的推理错误。该机制可降低推理过程的错误累

积,从而提高推理准确率。本文的实验结果表明多

模型并联的推理准确率往往优于随机选择一个单模

型,这说明并联协作可降低选择错误推理方向的可

能性,从而实现更准确的推理输出。
最后,模型并联可降低用户对模型性能的不确

定性。面对多个模型可选的场景,用户往往无法判

断一个模型是否全方面优于另一个模型。在心理学

中,风险厌恶使得人们存在优先考虑确定性而非不

确定性的偏好。如图14中所示,针对所测试的问

题,若用户只选择一个模型,则平均准确率为1/2,
但选择双模型并联协作,则准确率为1。这意味着

双模型并联协作推理更具确定性,在风险厌恶的心

理下,人们对其更具有偏好。本文的实验结果表明

多模型并联的推理准确率往往优于随机选择一个单

模型,因此用户可以依据经验从候选模型集合中选

择两个模型进行并联,从而在一定程度上降低用户

对模型推理准确率的不确定性。

5.2 未来挑战

  随着模型开源和私有化趋势的加快,如何整合

这些私有模型资源,利用现有的模型资源完成复杂

的任务成为了一个现实且紧迫的问题。正如本文所

设想的一样,在未来,模型将可能互联互通组成一个

网络,用户可随时接入网络或共享本地的大模型参

与完成复杂任务。该网络可有效整合现有的模型资
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源,避免模型各自为战,提升模型解决复杂任务的能

力。在这种背景下,DuetNet将会取得进一步发展,
但同时也将面临着诸多的挑战。因此,本节总结了

未来可能面临的四个挑战。
(1)

 

探索高效协作

在多模型协作场景中,协作范式是提高推理准

确率的关键因素之一,其包括如何针对任务类型选

取合适的协作模型、如何根据任务类型选取协作的

方式等。本文实验结果已表明不同协作范式的推理

准确率有着较大的差异。此外,本文的协作范式依

旧存在可改进之处,例如如何在保障推理准确率的

同时降低Token开销以及如何保障单模型推理正

确则并联后也一定推理正确。最后,一些更复杂任

务可能需要多种类型大模型进行协作,例如绘画大

模型和大语言模型协作完成一项高质量的绘画任

务。因此,探索高效的协作方式使得Token级的并

联协作可完成更复杂任务是未来的挑战之一。
(2)

 

通信成本优化

由于在DuetNet的并联协作中,海量的模型分

布式部署在用户终端,两个模型共同完成任务的过

程中涉及数据共享。为了改善用户体验和降低网络

的负载,多模型协作完成任务的通信成本和延迟应

越低越好。因此,如何优化多模型协作过程中的通

信成本和通信延迟,提高Token级的模型协作的通

信效率也是未来亟需解决的挑战之一。
(3)

 

模型协作激励

DuetNet的运作依赖于底层模型支持,但出于

数据安全和商业利益等考量,模型所有者可能不愿

将本地部署的模型接入网络。因此,需要探索如何

激励模型所有者将自己的模型接入到网络,激励他

们参与模型互联协作;另一方面,还需要探索合理的

模型服务定价机制,使得DuetNet平台和模型所有

者都有所收益,促进DuetNet的健康运作。
(4)

 

安全可信协作

DuetNet的安全可靠是极为关键的一环,只有

实现安全可靠模型互联才能使得用户放心使用其提

供的服务。因此,DuetNet中的安全可信协作问题

是未来需要解决的核心挑战之一,例如协作过程中

的隐私保护问题、安全通信问题、恶意模型识别问

题、外部攻击问题。

6 结 论

为优化大模型的推理准确率,本文设计了一种

Token级模型并联协作推理架构—DuetNet。在

DuetNet中,多个大模型可进行更细粒度的Token
级协作推理以解决同一难题。在DuetNet中,多个

大模型通过汇聚推理共识降低推理过程的错误累

积,从而提高推理准确率。实验结果表明,DuetNet
框架下的模型并联协作推理准确率优于现有方法,
并且聚合开销更低。此外,在DuetNet框架下,多
模型并联协作的平均推理准确率较单模型相对提高

了21.44%以上,而生成单个Token的延迟仅增加

约2毫秒。最后,本文也指出了DuetNet在未来将

面临若干亟待解决的挑战,包括如何设计更为高效

的协作范式、优化通信成本、激励用户参与模型共享

以及确保合作过程的安全性和可信性等问题。
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Background
  As

 

a
 

core
 

metric
 

for
 

large
 

models,
 

inference
 

accuracy
 

critically
 

influences
 

their
 

practical
 

performance
 

and
 

the
 

user
 

experience.
 

Current
 

approaches
 

to
 

optimize
 

inference
 

accura-
cy

 

are
 

mainly
 

divided
 

into
 

scaling
 

up
 

model
 

size
 

or
 

quality,
 

exploring
 

the
 

internal
 

thinking
 

mode
 

of
 

the
 

large
 

model,
 

and
 

developing
 

multi-model
 

collaboration
 

strategies.
 

Multi-model
 

collaboration
 

enhances
 

inference
 

accuracy
 

by
 

integrating
 

mul-
tiple

 

existing
 

models,
 

with
 

significantly
 

lower
 

costs
 

than
 

the
 

other
 

two
 

approaches.
 

Consequently,
 

this
 

strategy
 

has
 

re-
ceived

 

widespread
 

attention
 

in
 

recent
 

years.
Existing

 

multi-model
 

collaborative
 

reasoning
 

methods
 

are
 

divided
 

into
 

full-response-level
 

collaboration
 

and
 

token-
level

 

collaboration.
 

Token-level
 

collaboration
 

has
 

significant
 

advantages
 

over
 

full-response-level
 

collaboration
 

in
 

terms
 

of
 

token
 

overhead
 

and
 

time
 

cost.
 

However,
 

existing
 

token-level
 

collaboration
 

methods
 

face
 

challenges
 

such
 

as
 

insufficient
 

fil-
tering

 

of
 

low-confidence
 

token
 

noise
 

and
 

equalization
 

of
 

model
 

contributions
 

during
 

the
 

aggregation
 

process.
 

Therefore,
 

de-
signing

 

an
 

efficient
 

token-level
 

collaboration
 

method
 

to
 

im-

prove
 

inference
 

accuracy
 

remains
 

a
 

key
 

research
 

challenge.
 

Meanwhile,
 

given
 

the
 

rapid
 

development
 

of
 

the
 

open-source
 

large
 

model
 

ecosystem,
 

private
 

model
 

deployment
 

has
 

gradu-
ally

 

become
 

a
 

trend.
 

However,
 

locally
 

deployed
 

large
 

models
 

face
 

performance
 

bottlenecks
 

and
 

creating
 

a
 

need
 

for
 

accuracy
 

improvement.
 

Inspired
 

by
 

multi-model
 

collaboration
 

and
 

the
 

Internet's
 

'connectivity
 

as
 

a
 

service'
 

paradigm,
 

interconnec-
ted

 

models
 

can
 

cooperatively
 

enhance
 

reasoning
 

accuracy.
 

Thus,
 

developing
 

efficient
 

token-level
 

collaboration
 

methods
 

for
 

systems
 

with
 

numerous
 

interconnected
 

models
 

has
 

impor-
tant

 

theoretical
 

and
 

practical
 

value.
To

 

solve
 

the
 

above
 

problems,
 

this
 

paper
 

presents
 

a
 

to-
ken-level

 

multi-model
 

parallel
 

collaboration
 

reasoning
 

frame-
work,

 

namely
 

DuetNet.
 

In
 

DuetNet,
 

interconnected
 

large
 

language
 

models
 

collaboratively
 

accomplish
 

tasks
 

through
 

to-
ken-level

 

coordination.
 

The
 

architecture
 

improves
 

inference
 

accuracy
 

through
 

incremental
 

aggregation
 

of
 

multi-model
 

consensus.
 

Specifically,
 

during
 

each
 

inference
 

step,
 

DuetNet
 

first
 

employs
 

a
 

joint
 

truncation
 

strategy
 

to
 

minimize
 

the
 

in-
troduction

 

of
 

low-confidence
 

noise.
 

Subsequently,
 

during
 

the
 

aggregation
 

phase,
 

it
 

calculates
 

the
 

cumulative
 

logit
 

scores
 

of
 

each
 

candidate
 

token
 

by
 

aggregating
 

the
 

logit
 

value
 

vectors,
 

thereby
 

mitigating
 

confidence
 

loss.
 

Finally,
 

the
 

next
 

token
 

is
 

selected
 

using
 

a
 

Top-T
 

stochastic
 

sampling
 

algorithm.
 

Experimental
 

results
 

show
 

that
 

DuetNet
 

effectively
 

im-

proves
 

the
 

inference
 

accuracy
 

and
 

reduces
 

the
 

user's
 

uncer-
tainty

 

about
 

model
 

performance.
 

Specifically,
 

tests
 

conduc-
ted

 

on
 

four
 

inference
 

datasets
 

demonstrate
 

that
 

the
 

model
 

parallel
 

collaborative
 

reasoning
 

under
 

the
 

DuetNet
 

framework
 

outperforms
 

existing
 

methods
 

in
 

terms
 

of
 

accuracy
 

while
 

in-
curring

 

lower
 

aggregation
 

overhead.
 

Within
 

the
 

DuetNet
 

framework,
 

the
 

average
 

inference
 

accuracy
 

of
 

multi-model
 

parallel
 

collaboration
 

exceeds
 

that
 

of
 

single
 

models
 

by
 

more
 

than
 

21.44%,
 

with
 

the
 

generation
 

latency
 

for
 

individual
 

To-
kens

 

increasing
 

by
 

only
 

approximately
 

2
 

ms.
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