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摘 要 提取功能安全需求(Functional
 

Safety
 

Requirement)是安全关键软件(Safety-Critical
 

Software)开发的重要

步骤,对软件功能安全性有着重要的影响。一直以来,安全需求提取由系统工程师和软件工程师以协作方式人工

完成,高度依赖于他们所掌握的领域知识和经验,面临着遗漏的风险,同时周期也比较长。因此,降低安全需求提

取的遗漏风险和提高提取效率是一个重要的研究问题。本文提出一种模型驱动的大语言模型(Large
 

Language
 

Model,LLM)提示词生成与优化方法,分析安全需求提取所依赖的领域知识形成元模型,并建立提示词框架指导提

示词的构建,在此基础上通过自动生成的零样本提示词引导LLM提取文本的安全需求特征,然后据此从历史安全

需求中为少样本提示词选取相似案例,引导大语言模型结合领域知识和历史经验进行安全需求提取。本文在三个

安全关键领域的需求案例上对本文所提方法的安全需求提取性能与现有需求提取方法和主流检索增强生成(Re-
trieval

 

Augmented
 

Generation,RAG)方法进行了对比评估和消融实验,探究了基础LLM、示例数量、相似度案例选

择策略、应用场景、方法设计对本文方法的性能影响,并进一步开展案例研究探究了本文方法的实践效果。结果表

明,本文方法可以有效向LLM提供安全需求方面的领域知识与经验,从而获得更优的安全需求提取效果,在所选

的三个中文LLM上相比于现有基于LLM的需求提取方法,F1值提升最高可达25.75%,相比于基于TF-IDF和

语义相似度的RAG方法在提取系统功能和软件安全信息上有更好的效果,F1值提升最高分别可达5.18%
和6.14%。
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Abstract 
 

Functional
 

safety
 

requirements
 

extraction
 

is
 

a
 

crucial
 

and
 

foundational
 

step
 

in
 

the
 

de-
velopment

 

lifecycle
 

of
 

safety-critical
 

software
 

systems,
 

directly
 

influencing
 

the
 

functional
 

safety
 

and
 

overall
 

reliability
 

of
 

such
 

systems.
 

Functional
 

safety
 

requirements
 

serve
 

as
 

the
 

cornerstone
 

for
 

designing,
 

implementing,
 

and
 

verifying
 

software
 

components
 

that
 

must
 

operate
 

safely
 

under
 



all
 

conditions,
 

especially
 

in
 

domains
 

where
 

failures
 

can
 

lead
 

to
 

catastrophic
 

consequences,
 

such
 

as
 

automotive,
 

aerospace,
 

and
 

medical
 

devices.
 

Traditionally,
 

the
 

extraction
 

of
 

safety
 

requirements
 

has
 

been
 

a
 

labor-intensive,
 

manual
 

process
 

carried
 

out
 

collaboratively
 

by
 

system
 

engineers
 

and
 

software
 

engineers.
 

This
 

approach
 

heavily
 

depends
 

on
 

the
 

engineers’
 

domain-specific
 

knowledge
 

and
 

accumulated
 

experience,
 

making
 

it
 

not
 

only
 

time-consuming
 

but
 

also
 

prone
 

to
 

the
 

risk
 

of
 

o-
missions,

 

which
 

can
 

undermine
 

the
 

quality
 

of
 

the
 

final
 

requirements.
 

Given
 

these
 

challenges,
 

re-
ducing

 

the
 

risk
 

of
 

omissions
 

and
 

enhancing
 

the
 

efficiency
 

and
 

comprehensiveness
 

of
 

the
 

safety
 

re-
quirement

 

extraction
 

process
 

have
 

become
 

pressing
 

and
 

significant
 

research
 

topics.
 

In
 

recent
 

years,
 

Large
 

Language
 

Models
 

(LLMs)
 

have
 

demonstrated
 

strong
 

capabilities
 

in
 

natural
 

language
 

understanding
 

and
 

generation,
 

suggesting
 

new
 

opportunities
 

for
 

automating
 

safety
 

requirements
 

extraction.
 

However,
 

leveraging
 

LLMs
 

effectively
 

in
 

this
 

context
 

requires
 

addressing
 

the
 

chal-
lenge

 

of
 

adequately
 

infusing
 

them
 

with
 

domain-specific
 

knowledge
 

and
 

practical
 

experience,
 

espe-
cially

 

given
 

the
 

nuanced
 

and
 

complex
 

nature
 

of
 

safety
 

requirements.
 

To
 

address
 

these
 

issues,
 

this
 

paper
 

proposes
 

a
 

novel,
 

model-driven
 

approach
 

for
 

the
 

generation
 

and
 

optimization
 

of
 

prompts
 

for
 

LLMs,
 

specifically
 

tailored
 

to
 

the
 

extraction
 

of
 

functional
 

safety
 

requirements.
 

By
 

metamodeling
 

the
 

domain
 

knowledge
 

necessary
 

for
 

safety
 

requirements
 

extraction,
 

this
 

method
 

established
 

prompt
 

frameworks
 

to
 

guide
 

the
 

construction
 

of
 

prompt,
 

and
 

uses
 

LLMs
 

to
 

extract
 

the
 

safety
 

re-
quirement

 

features
 

of
 

natural
 

language
 

text
 

with
 

automatically
 

generated
 

zero-shot
 

prompts.
 

Based
 

on
 

the
 

extracted
 

safety
 

requirements
 

features,
 

this
 

method
 

identifies
 

similar
 

cases
 

from
 

his-
torical

 

safety
 

requirements
 

extraction
 

results
 

to
 

generate
 

few-shot
 

prompts,
 

which
 

guides
 

LLMs
 

to
 

combine
 

domain
 

knowledge
 

and
 

historical
 

experience
 

for
 

safety
 

requirements
 

extraction.
 

This
 

paper
 

conducts
 

a
 

comprehensive
 

evaluation
 

of
 

the
 

safety
 

requirements
 

extraction
 

performance
 

of
 

the
 

proposed
 

method
 

in
 

comparison
 

with
 

existing
 

requirements
 

extraction
 

methods
 

and
 

main-
stream

 

Retrieval
 

Augmented
 

Generation
 

(RAG)
 

methods
 

on
 

three
 

cases
 

from
 

safety-critical
 

do-
main

 

requirements
 

practice,
 

and
 

explores
 

the
 

impacts
 

of
 

the
 

underlying
 

LLM,
 

the
 

number
 

of
 

ex-
amples

 

included
 

in
 

the
 

few-shot
 

prompt,
 

the
 

example
 

selection
 

strategy,
 

the
 

application
 

scenarios
 

on
 

the
 

performance
 

of
 

the
 

proposed
 

method.
 

This
 

paper
 

also
 

conducts
 

ablation
 

experiments
 

to
 

in-
vestigate

 

the
 

impact
 

of
 

method
 

design
 

on
 

performance
 

of
 

the
 

proposed
 

method,
 

and
 

further
 

con-
ducts

 

a
 

case
 

study
 

to
 

explore
 

the
 

practice
 

effectiveness
 

of
 

the
 

method.
 

The
 

results
 

show
 

that
 

the
 

proposed
 

method
 

can
 

effectively
 

provide
 

domain
 

knowledge
 

and
 

experience
 

to
 

LLMs,
 

thus
 

obtai-
ning

 

better
 

safety
 

requirements
 

extraction
 

results,
 

with
 

F1-score
 

enhancements
 

of
 

up
 

to
 

25.75%
 

on
 

the
 

three
 

selected
 

Chinese
 

LLMs
 

compared
 

to
 

the
 

existing
 

LLM-based
 

requirements
 

extraction
 

meth-
od.

 

When
 

compared
 

with
 

TF-IDF
 

and
 

semantic
 

similarity-based
 

RAG
 

methods,
 

the
 

proposed
 

method
 

has
 

better
 

results
 

in
 

extracting
 

system
 

functionality
 

and
 

software
 

safety
 

information,
 

with
 

F1-score
 

enhancements
 

of
 

up
 

to
 

5.18%
 

and
 

6.14%,
 

respectively.
 

These
 

results
 

demon-
strate

 

that
 

our
 

approach
 

can
 

effectively
 

bridge
 

the
 

gap
 

between
 

domain
 

knowledge
 

and
 

LLM
 

capa-
bilities,

 

offering
 

a
 

promising
 

direction
 

for
 

automating
 

and
 

improving
 

safety
 

requirement
 

engineer-
ing

 

in
 

safety-critical
 

software
 

domains.
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1 引 言

安全关键系统(Safety-Critical
 

System)中软件

的非预期行为可能会导致系统失效,对环境、财产和

人员造成严重损害[1-2]。因此,包括航空航天、汽车

在内的安全关键领域,要求软件系统具备完善的安

全性设计以确保系统的安全运行。安全性评估标准

ARP4761A[3]和 MIL-STD-882E[4]明确提出,功能

安全需要全面考虑潜在的风险,并开展针对性的安

全需求分析,即根据历史安全信息以及已知的系统

设计信息,对软件和系统存在的安全风险进行全面

识别并指定相应的安全需求[5]。对于规模庞大、结
构复杂的安全关键系统来说,其安全风险涉及大量

相互关联的影响因素,例如异质组件交互、复杂的时

序关系等。因此,软件安全需求分析需要基于历史

和已有系统资料中包括系统架构、系统功能在内的

关键信息进行分析,实践中这些信息的识别和整理

通 常 依 赖 于 系 统 工 程 师 和 软 件 工 程 师 的 经 验

与协作。
当 前 工 业 实 践 中 依 照 的 DO-178C[6]、

ARP4761A[3]等相关标准,以及广泛应用的PHA
(Preliminary

 

Hazard
 

Analysis,PHA)[7]、FMEA
(Failure

 

Mode
 

and
 

Effect
 

Analysis,FMEA)[8]、

FTA(Fault
 

Tree
 

Analysis,FTA)[9]等软件安全需

求分析方法,缺乏对提取安全需求分析所需信息的

系统指导,因此实践中需要工程师阅读文档并结合

自身的领域知识和经验对安全需求信息进行梳理和

提取。为降低安全需求提取的难度,软件工程领域

提出了 一 系 列 基 于 用 例 模 板[10-11]、半 形 式 化 模

型[12-14]的安全需求提取方法,这些方法使用受限自

然语言模板和图形化模型引导用户捕捉关键的安全

相关信息,但仍然需要用户对相关文档进行阅读并

手动分析和识别相关信息,面对规模庞大的系统时,
仍然存在遗漏的问题。近年来,随着机器学习和自

然语言处理技术的发展,一批针对一般软件需求和

软件信息安全(Security)需求的自动化提取方法被

提出[15-17]。但由于功能安全需求的语料数据极其

稀缺,导致难以应用机器学习方法来自动识别和提

取安全需求[18-19]。总的来说,安全需求提取目前依

赖人工阅读梳理,提取质量与工程师的领域知识和

经验高度相关。因此,实践中容易出现耗时长且存

在遗漏安全需求的风险。如何降低安全需求遗漏风

险并提高提取过程的效率是一个亟待解决的问题。

最近,以ChatGPT[20]、LLaMA[21]、Qwen[22]为
代表的一系列大语言模型(Large

 

Language
 

Model,

LLM)发展迅猛。LLM 基于海量语料进行预训练,
有很强的自然语言处理能力和丰富的人类知识,同
时具有开箱即用的特点[23],为安全需求提取任务提

供了自动化的解决机会。现有很多研究通过提示学

习的方式指导大语言模型转变为领域专家,承担测

试[24]、建模[25-27]等工作。作为LLM的重要输入,提
示词质 量 对 LLM 完 成 任 务 的 性 能 有 很 大 的 影

响[23]。实践中,要构造高质量提示词需要对LLM
和任务本身都有深入理解,并在构造过程中多次迭

代,这提高了将LLM应用于各类任务中的难度[28]。
对于诸如软件缺陷复现[29]、领域建模[23,25]、安全需

求提取等高度依赖领域知识与经验的任务,由于

LLM缺乏特定领域的相关知识[30-31],通常需要使用

如少样本提示[20]、思维链提示[32]等方法来构造更

有针对性的提示词,通过示例将任务思路、领域知识

等信息提供给LLM 以更好地完成任务[23]。因此,
对于安全需求提取任务来说,如何将提示工程和安

全关键软件两方面知识相结合以构造高质量提示词

是个关键问题。
为此,本文提出一种面向功能安全软件需求提

取的模型驱动提示词生成与优化方法,基于表示为

元模型的安全需求提取所涉及的相关概念和提示工

程领域知识,通过提示词框架捕捉相关信息生成提

示词以指导LLM进行安全需求提取。该方法首先

通过零样本提示词引导LLM 获取安全需求特征,
然后据此从历史安全需求中识别相似案例为少样本

提示词选取切合的示例,引导LLM 结合领域知识

与历史经验完成软件安全需求的提取。该方法降低

了对使用者具备安全关键软件领域知识的要求,因
而也降低了因工程师缺乏相应领域知识而遗漏安全

需求的风险,在保证安全需求提取质量的同时提高

了需求提取的效率。
为验证方法效果,本文整理了包含3个安全关

键领域需求案例的数据集,基于数据集在3个基础

LLM上对本文方法的安全需求提取效果和性能影

响因素进行探究,并与当前先进的需求信息提取方

法和主流检索增强生成(Retrieval
 

Augmented
 

Gen-
eration,RAG)方法进行了对比实验。实验结果显

示本文方法能够有效提取文本中的安全需求信息,
且在提取功能和安全方面信息有着更优的性能。本

文进一步针对 AFTI/F-16飞行控制系统开展案例

研究,通过定性分析探究了本文方法所提取的安全
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需求信息与工程师实践关注点的一致程度,证明了

本文方法在实践中的可行性。
本文的主要贡献包括4个方面:
(1)针对安全需求提取主要依赖于手工方式的问

题,提出了一个基于LLM的自动化方法,自动从自然

语言需求文本中提取安全需求信息,降低了人力投入;
(2)针对安全需求提取极大依赖于领域知识的问

题,提出了一种模型驱动的提示词自动构造方法,将提

示工程领域知识和安全需求相关概念整合为安全需求

提取提示词元模型,并在此基础上使用提示词框架建

模和生成提示词,降低了安全需求遗漏的风险;
(3)选择合适的示例是构造高质量少样本提示

词的关键,本文提出了一个基于安全需求特征相似

度的历史安全需求案例检索方法,可以为少样本提

示词筛选安全特征角度的相似示例,使其具有更好

的引导效果;
(4)整理了包含3个安全关键领域的中文需求

数据集①,包含42条涵盖了系统功能、系统架构、安
全性方面信息的需求文本,每条需求均由领域专家

人工对其中的安全需求信息进行了识别标注,可开

放给其他研究使用。
本文其余部分组织如下:第2节介绍本文方法

的预备知识;第3节详细介绍本文提出的面向功能

安全软件需求提取的模型驱动提示词生成与优化方

法;第4节介绍本文所整理数据集以及评估实验设

计;第5节对评估实验结果进行分析和讨论;第6节

介绍案例研究设计及结果;第7节讨论本文的有效

性分析和局限性;第8节对相关研究进行总结;第9
节对全文进行总结并介绍未来工作。

2 预备知识

本节从安全系统工程、软件安全需求、LLM、提
示工程以及元模型五个方面介绍预备知识。

2.1 安全系统工程

  安全系统工程作为系统工程的子领域[33],应用

系统工程原理、标准和技术识别危害,并消除危害或

降低危害的影响[4]。安全系统工程通过危害识别、
风险评估、安全性设计技术,识别、分析、评价潜在危

险,并对系统设计等进行调整,从而实现安全目标,
保证系统在生命周期内的安全运行[2]。

当前航空、汽车等安全关键系统逐渐由硬件主

导转向软件主导[2]。此类系统中的软件以传感器数

据作为输入进行计算,基于计算结果控制作动器与

外界进行交互[34]。在该过程中,软件的非预期行为

可能会通过作动器等设备间接导致危险。因此,软
件安全是当前此类系统安全工程任务的重点[1-2]。

2.2 软件安全需求

  软件安全需求是软件安全设计的重要依据,通
常在安全系统工程初期被识别[35]。本文关注于功

能安全软件需求,不同于一般软件需求关注于定义

系统必须满足的功能和约束[36],软件安全需求关注

于对软件行为进行约束,从而确保系统和软件不会

出现不安全行为而导致严重后果[37]。
软件安全需求与一般软件需求在获取方式上也

存在差异。一般软件需求获取通常需要开发人员与

利益相关者通过访谈、讨论等方式进行沟通从而确

定软件所需满足的功能和特性[38-39]。反之,软件安

全需求关注于识别不期望系统出现的行为,同时限

制或消除危害影响[37],其获取过程需要从系统架

构、系统功能需求、系统危险分析等信息中识别组

件、接口、任务等信息,并在此基础上依据相关标准,
以人工方式结合历史经验识别潜在失效,分析软件

安全需求以降低危害发生的可能性或限制危害的影

响。基于以上分析,软件安全需求的具体获取流程

可被归纳为图1。本文关注于图中的第1阶段,即
从输入信息中系统提取安全需求相关信息从而支撑

后续的安全需求分析任务。

2.3 大语言模型

  LLM 作为预训练语言模型(Pre-trained
 

Lan-
guage

 

Model,PLM)[40],其兴起最早可以追溯到

Transformer模型[41]的提出,Transformer模型凭

借其自注意力机制和强大的并行计算能力,可以有

效处理输入序列中的长距离依赖关系,从而捕捉文

本中复杂的语义关系,为之后BERT[42]、GPT[20]②③

等PLM的提出提供了基础。凭借着强大的自然语

言处理能力,PLM逐渐成为自然语言处理(Natural
 

Language
 

Processing,NLP)任 务 的 主 流 方 法。

LLM在PLM基础上进一步扩大了训练语料数据

规模及模型的参数规模[43-44],显著提升了自然语言

处理能力。
近期,以ChatGPT[20]和LLaMA 系列[21]模型
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pervised/language_understanding_paper.pdf

 

2024,12,12



图1 软件安全需求获取任务流程示意图

为代表的生成式LLM 进一步提升了性能,拥有强

大的自然语言理解和生成能力,通过提示词实现与

用户的实时交互,已开始在代码生成[45]、软件建

模[23,25-27]等一系列软件工程任务得到了应用。

2.4 提示工程

  LLM 在特定任务上的性能与提示词质量高度

相关。通过构造和优化提示词,在不调整模型参数

和重新训练模型的前提下,实现对LLM 的微调,从
而优化其任务性能,这种微调方式被称为提示工程。

目前有多种提示工程方法[46],广泛使用的主要

有零样本(Zero-shot)提示、少样本(Few-shot)提
示[20]和思维链(Chain-of-Thought,CoT)提示[32]。
其中,零样本提示仅向LLM 提供任务的文本描述,
引导模型使用其内在的知识来完成任务;少样本提

示则向LLM提供带有标注的示例,增强模型对给

定任务的理解,这种方法可以提高LLM 解决复杂

问题的能力;CoT提示则用于解决步骤繁多的复杂

任务,将问题按推理步骤分解为多个子问题,使

LLM学习问题的求解过程来解决复杂问题。

2.5 元模型

  在软件工程中,元模型(Metamodel)是模型的

更高层次抽象[47],通常被用于定义领域模型的约

束、规则和概念及之间的关系[48]。在相关研究和实

践中,元模型也常被用于建模领域概念及关系,为后

续任务提供概念框架[10-11,49]。从本文角度来说,在
安全需求提取任务上工程师所掌握的领域知识因人

而异,而LLM又缺乏特定领域的知识,因此本文使

用元模型固化安全需求提取任务LLM 所需的领域

知识,从而为指导LLM 进行安全需求提取提供提

示词构建支持。

3 面向安全需求提取的提示词生成与
优化

  本节面向安全需求提取任务,提出模型驱动的

提示词生成与优化方法。首先介绍方法的总体框

架,然后对面向安全需求提取任务的提示词生成方

法和基于安全需求特征的RAG方法进行介绍。

3.1 方法框架概述

  安全需求提取任务对工程师的领域知识和经验

都提出了很高的要求,否则就容易出现遗漏的问题,
本文提出一种模型驱动的安全需求提取提示词生成

与优化方法,方法关注于将领域知识和经验结合到

提示词中,引导LLM系统地从包含系统架构信息、
系统功能需求、系统危险分析在内的自然语言文本

输入信息中提取组件、接口、数据等安全需求信息。
方法包括面向安全需求提取任务的提示词生成、基
于安全需求特征检索增强生成的安全需求提取两个

关键步骤,整体流程如图2所示。
首先,本文对安全关键软件安全概念进行分析

建立安全概念元模型,安全概念元模型关注于覆盖

安全需求提取任务中需要关注的信息,并系统刻画

信息之间存在的关联关系。进一步,为有效指导

LLM提取安全需求信息,基于提示工程经验和安全

概念元模型,针对安全需求提取提示词中所需包含

的信息建立概念提取提示词元模型,通过将该元模

型与安全概念元模型整合为安全需求提取提示词元

模型并建立提示词框架,为安全需求提取提示词生

成奠定基础。
其次,为了向LLM 提供安全需求提取任务所

需的领域知识,设计了一种基于安全需求特征相似

度的RAG方法,通过检索历史案例为少样本提示

词选取切合的示例以提升LLM 的安全需求提取性

能。方法通过LLM获取目标需求文本的安全需求

特征,计算目标需求文本和历史案例在安全需求特

征上的相似度,筛选与目标需求文本安全特征最为

相似的历史安全需求,将历史安全需求及其来源需

求文本作为少样本提示词示例,指导LLM 进行安

全需求提取,从而得到高质量的安全需求信息。
当前在提示工程领域,已有多个研究关注于优

化少样本提示和CoT提示的示例选取来提升LLM
的性能[50],但都是关注于逻辑推理问题,不涉及特
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图2 面向功能安全软件需求提取的模型驱动提示词生成与优化方法研究框架

定领域的知识。而对安全关键软件来说,安全需求

涉及功能、架构、安全等多方面的知识。因此,本文

需要解决如何给LLM提供所需的领域知识与经验

来提取相应的安全需求信息。本文首先使用零样本

提示指导LLM 提取安全需求特征,进而据此筛选

相似度高的历史安全需求及其来源文本作为示例来

构造少样本提示。该方法避免了无关示例对LLM
造成的误导,同时通过自动化的提示词生成和案例

筛选 也 降 低 了 使 用 LLM 进 行 安 全 需 求 提 取

的难度。

3.2 面向安全需求提取任务的提示词生成

  本节对安全关键软件的安全领域概念分析、安
全需求提取提示词元模型、安全需求提取提示词的

建模和生成方法进行介绍。

3.2.1 安全概念分析

提取和分析软件安全需求通常需要以系统信息

为输入[6,37]并围绕功能需求开展[51],而系统功能需

求通常基于系统架构定义。因此,本文从系统架构

和系统功能两个角度识别软件安全需求。
系统架构定义了系统组件之间的结构与关系。

Leveson指 出 分 析 软 件 需 要 结 合 系 统 上 下 文 开

展[52],包括计算机硬件和系统内的其他组件[37],同
时组件间交互所使用的硬件接口也是安全关键系统

安全分析的重要关注[53]。因此,本文在系统架构角

度识别得到软件组件、硬件组件、组件、硬件接口四

个关 键 概 念,其 中 组 件 包 括 软 件 组 件 和 硬 件 组

件两类。
系统功能明确了系统所需完成的任务[37,53],在

安全关键系统中功能通常涉及交互过程中组件的行

为和数据交互[51],因此,本文系统功能角度关注于

任务和数据。

Leveson提出软件安全需要从系统层面出发,
明确系统中的潜在故障并提供消除或控制危险的安

全性机制[37]。因此,本文在软件安全需求角度关注

于故障和安全性机制两个概念。
基于以上分析,本文从系统架构、系统功能、软

件安全需求三个角度共梳理得到八个重要的相关概

念。由于安全需求提取是安全关键系统开发的关键

步骤,需要严格依照相关标准开展。为保证所识别概

念符合相关标准,本文进一步针对通用标准(IEC
 

61508[54])和来自航空航天(DO-178C[6]、NASA-STD-
8719.13C[55]、ARP4761A[3])、汽车(ISO26262[56])、装
备(MIL-STD-882E[4])三个安全关键领域的相关标

准进行分析调研,确认所识别概念也是相关标准中

安全需求的关注重点。
基于系统架构、系统功能、软件安全需求三个方

面梳理得到的八个概念,本文建立了如图3所示的

安全概念领域模型,该模型依照统一建模语言(Uni-
fied

 

Modeling
 

Language,UML)类图规范构建。模

型中包含系统架构、系统功能、软件安全需求三类概

念,其中系统架构定义了系统功能的设计结构,安全

需求识别了系统架构和功能层面潜在的故障,并定

义了相应的安全性机制以应对故障的出现。
系统架构从系统中组件交互的角度捕捉了软硬

件实体以及信息交互所使用的硬件接口。其中,组
件可分为软件组件和硬件组件两类,软件组件运行

于硬件组件之上,通过计算实现对硬件组件行为的

控制,而硬件组件则为软件组件提供其正常交互运

行所需的硬件接口,硬件组件之间的通信需要通过

硬件接口进行。在安全关键系统中,功能通常以任
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图3 安全关键软件安全概念领域模型图

务的形式来表达,定义了系统组件在运行过程中需

完成的一系列行为。任务的功能实现依赖于数据计

算和交互,数据由组件在运行过程中产生。
安全需求一般围绕识别出的潜在故障来获取,

包含故障及其处理机制[10],故障是系统运行过程中

出现的状态错误。针对所识别的潜在故障,需要相

应的安全机制来降低故障的发生概率或消除故障对

系统发挥正常功能的影响。不失一般性,本文主要

从系统任务、软硬件组件、硬件接口中识别潜在故

障,进而提取相应的安全需求。

3.2.2 安全需求提取提示词元模型设计

如2.2节所述,软件安全需求获取与一般软件

   

需求获取在目标和流程上的差异也导致二者在应用

LLM完成任务时的提示词存在差异。现有将LLM
应用于一般软件需求获取的研究,通常以用户对系统

的期望作为LLM输入,以满足期望的软件需求为输

出,因此提示词设计关注于引导LLM对用户期望进

行泛化或细化以提炼生成相应的需求[27,57]。相比之

下,本文所关注的安全需求提取任务需要从文本中提

取隐含的安全需求信息,其难点在于难以确定安全需

求分析需要哪些关键信息,以及如何从文本中准确地

提取,这也是该任务依赖于工程师的领域知识和经验

的原因所在。由于LLM缺乏相应的领域知识和经

验,需要通过提示词来明确所需提取的关键信息并向

LLM提供历史提取经验,从而使LLM满足安全需求

提取任务的领域知识和经验要求。
通过提示词向LLM提供领域知识和经验同时

涉及安全关键系统和提示工程两方面知识,本文使

用元模型对两方面知识进行整合,设计了安全需求

提取提示词元模型。该元模型基于现有提示工程方

法的实践经验[20,23],捕捉了提示工程和安全需求中

的关键概念,分离了提示工程和领域概念的关注点,
保证安全需求提取任务系统性和全面性的同时降低

了构造提示词的难度,元模型如图4所示,该模型依

照UML类图规范构建。

图4 安全需求提取提示词元模型图

  安全需求提取提示词元模型由两部分组成:概
念提取提示词元模型、安全概念元模型。其中,安全

概念元模型用于明确所需提取的关键信息,元模型

定义了领域模型所要表达的实体和关系,包含对安
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全概念实体和安全概念关联两种元类的定义。安全

概念实体定义了领域模型中的概念实体,安全概念

关联则定义了实体之间的关联关系。结合图3中识

别的领域概念,系统任务、潜在故障、组件等概念扩

展自安全概念实体元类,概念间的衍生、交互等关系

则扩展自安全概念关联元类。
基于3.2.1节的分析,本文将所需提取的关键

安全需求要素和关系定义为图3的领域模型,通过

引导LLM识别安全概念模型中的要素和关系,从
而形成系统的安全需求。因此该任务可被看作是自

然语言实体关联识别任务,这也是当前需求获取工

作的普遍做法[15,17]。本文借鉴这种做法,对当前常

用的零样本提示和少样本提示方法进行建模,基于

安全概念模型语法设计概念提取提示词元模型。其

中,提示词类来自于对零样本提示和少样本提示共

有结构的抽象,包括任务描述、待分析需求、其他输

出要求三个部分。任务描述用于明确LLM 所需完

成的任务;待分析需求向LLM 提供待分析的文本;
其他输出要求则明确了LLM 在任务过程和输出上

的约束,单个提示词可以添加多个输出要求。
零样本提示词类在提示词类的基础上增加了输

出格式要求属性,单个零样本提示词可根据所需获

取目标信息的数量添加多个输出格式约束,并可根

据捕捉领域概念类型的不同,进一步被区分为实体

输出格式和关联输出格式,分别用于捕捉领域概念

元模型中的实体和关联概念。
少样本提示词类同样继承自提示词类,增加了

示例样本属性。单个少样本提示词可根据需要提供

一个或多个示例,每个示例包含一个输入任务文本

描述和多个输出实例,输出实例需要按照实体或关

联的输出格式给出,因此是实体输出格式和关联输

出格式两个类的实例。
在安全需求提取提示词元模型中,概念提取提

示词元模型用于捕捉安全需求中的实体要素和关联

概念。因此,概念提取提示词元模型可针对安全概

念领域模型生成相应的安全需求提取提示词,通过

输出格式明确所需捕捉的安全信息,并通过示例提

供安全需求提取的领域知识和经验。这种设计将提

示词和领域分析解耦,降低了提示词构造的复杂度,
提高了提示词设计的可扩展性,并且方便替换领域

模型中的相关要素。

3.2.3 安全需求提取提示词建模

安全需求提取提示词元模型捕捉了安全需求提

取过程中提示工程和安全需求两个角度的关键概

念,在此基础上本文采用提示词框架捕捉元模型中

定义的信息,实现对零样本和少样本提示词的建模,
具体方法如下:

(1)零样本提示词建模。零样本提示词在安全

需求提取提示词元模型中由提示词类和零样本提示

词类定义,可被形式化定义为

Pzero ={tzero,r,F,c} (1)

F={(s1,o1),(s2,o2),…,(sn,on)} (2)
其中,tzero 为零样本提示词任务描述,对应于图4元

模型中提示词类的任务描述,用于定义LLM的任务

内容;r为待分析需求文本,对应于提示词类的待分

析需求属性;F 表示包括实体和关联在内的各类安全

需求信息的输出格式要求,对应于零样本提示词类的

输出格式要求,由一系列安全需求信息名称和相应的

输出格式构成,分别由si 和oi 表示,具体如公式(2);

c表示零样本提示词的其他输出要求,对应于提示词

类的其他输出要求属性。本文使用零样本提示词框

架引导用户针对上述信息进行建模,框架及所捕捉提

示词信息与元模型的对应关系见表1。

表1 安全需求提取零样本提示词框架及对应元模型元素

提示词结构 对应元模型元素

任务描述 提示词::任务描述

输出格式要求 零样本提示词::输出格式要求

待分析需求 提示词::待分析需求

其他输出要求 提示词::其他输出要求

(2)少样本提示词建模。少样本提示词在安全

需求提示词元模型中由提示词类和少样本提示词类

定义,可被形式化定义为

Pfew ={tfew,E1,E2,…,En,r,c} (3)

E={hr,(s1,A1),(s2,A2),…,(sn,An)}(4)

A={ai,…,am} (5)
其中,tfew 是少样本提示词的任务描述,对应于提示

词类的任务描述;Ei 表示输入输出示例,对应于少

样本提示词类的示例样本属性,通过一组示例向

LLM提供领域知识和历史安全需求提取经验,根据

元模型中的定义,少样本提示词可以包含多个示例,
每个示例Ei 由一个历史需求案例文本hr和包含多

个输出实例的答案组成,单个输出实例包含历史安

全需求信息特征si、由人工获取的安全需求信息集

合Ai 两部分,ai 表示某个具体的安全需求信息条

目,具体如公式(4)(5),在本文方法中输入输出示例

由方法自动检索得到;待分析需求r 和其他输出要

求c则与零样本提示词定义相同。本文使用少样本

提示词框架引导用户针对上述信息进行建模,框架
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及所捕捉提示词信息与元模型的对应关系见表2。

表2 安全需求提取少样本提示词框架及对应元模型元素

提示词结构 对应元模型元素

任务描述 提示词::任务描述

输入输出示例 少样本提示词::示例样本

待分析需求 提示词::待分析需求

其他输出要求 提示词::其他输出要求

用户通过使用以上提示词框架可以对零样本和

少样本提示词建模,框架所捕捉信息可以实例化为

安全需求提取提示词模型,用于后续的安全需求提

取提示词生成。

3.2.4 安全需求提取提示词生成

使用提示词框架建模得到的安全需求提取提示

词模型包含了构建安全需求提取提示词所需的任务

描述、输出要求、目标概念等信息,基于此可以实现

零样本提示词和少样本提示词的自动生成,具体流

程如算法1所示。

算法1.安全需求提取提示词生成算法

输入:

安全需求提取提示词模型 Model
输出:

安全需求提取提示词文本promptString
1.

 

promptString
 

=
 

String
2.

 

prompt
 

=
 

Model.get(提示词) //从模型中获取提示

词类实例

3.
 

promptString.add(prompt::任务描述)

4.
 

IF
 

prompt::type
 

==
 

零样本提示词
 

DO:

5.
 

FOR
 

实体
 

in
 

Model.get(实体输出格式)
 

DO:

6.
 

promptString.add(format(实体::实体名称))

7.
 

END
 

FOR
8.

 

FOR
 

关联
 

in
 

Model.get(关联输出格式)
 

DO:

9.
 

promptString.add(format(关联::主语实体名称,
 

关

联::宾语实体名称))

10.
 

END
 

FOR
11.

 

END
 

IF
12.

 

ELSE
 

IF
 

prompt::type
 

==
 

少样本提示词DO:

13.
 

FOR
 

示例
 

in
 

Model.get(示例)
 

DO:

14.
 

promptString.add(示例::示例需求)

15.
 

promptString.add(示例::答案)

16.
 

END
 

FOR
17.

 

END
 

IF
18.

 

promptString.add(提示词::待分析需求)

19.
 

FOR
 

输出要求
 

in
 

提示词::输出要求
 

DO:

20.
 

promptString.add(输出要求)

21.
 

END
 

FOR
22.

 

RETURN
 

promptString

  算法1的输入为针对单个提示词建模的提示词

模型,即基于3.2.3节中提示词框架所捕捉信息建

立的模型实例。算法的第2~3行首先对模型进行

解析并从中提取提示词类实例,将提示词类实例中

的任务描述加入到提示词文本中。若建模的提示词

是零样本提示词,则通过算法的第4~11行进行零

样本提示词构建,构建零样本提示词需要将安全概

念实体和关联按照输出格式加入到提示词中,从而

明确LLM所需提取的信息。其中5~7行将领域

模型中所有的安全概念实体按照规定的输出格式加

入到提示词中,8~10行则将领域模型中的安全概

念关联按照输出格式要求加入到提示词中,从而完

成零样本提示词的构建。若提示词为少样本提示

词,则通过算法的第12~17行进行少样本提示词构

建,构建过程中按序将示例以示例需求和答案的组

合添加到提示词中,其中答案在元模型中是实体输

出格式和关联输出格式的实例,即答案的格式需要

符合实体和关联的输出格式。算法的第18行将待

分析需求追加到提示词中,明确安全需求提取任务

的目标需求文本。算法的第19~21行将LLM 的

输出约束逐个添加到提示词中,指导LLM 输出符

合要求的信息。

3.3 基于检索增强生成的安全需求提取

  由于零样本提示无法向LLM 提供领域知识和

经验,效果通常弱于少样本提示。而如何选择有针

对性的示例则是构造少样本提示词需要解决的关键

问题。本文将零样本提示与少样本提示相结合,首
先基于零样本提示词来获取安全特征,即图3领域

模型中的安全需求相关信息,以此为基础检索具有

相似安全特征的历史安全需求案例,从而为少样本

提示词从安全特征角度选取切合的示例完成安全需

求提取。

3.3.1 基于零样本提示的安全特征提取

在本文方法中,零样本提示词用于指导LLM
在不结合领域知识与历史经验的情况下提取安全特

征,从而为少样本提示从安全特征角度识别相似示

例。该过程可被形式化定义为

fLLM(Pzero)={(s1,A1),(s2,A2),…,(sn,An)}
(6)

其中,Pzero 为提取过程中所使用的零样本提示词,
其具体含义如公式(1)所示;si 为输出的第i类安全

需求信息名称;Ai 为LLM 获取的第i类安全需求

信息集合。相应的,ai 表示某个具体的安全需求信

息条目(见公式(5))。

0672 计  算  机  学  报 2025年



根据该任务特征,本文使用零样本提示词框架

对安全特征提取零样本提示词建模,所建模零样本

提示词如表3所示。

表3 安全特征提取零样本提示词建模

提示词结构 提示词内容

任务描述
提取出目标案例中的明确指出的信息。待分析

需求中明确指出的信息通过以下格式给出:
输出格式要求 <安全需求信息名称>:

 

<输出格式>
待分析需求 <待分析需求文本>

其他输出要求
仅从案例中提取信息,案例中不包含的无需进

行联想生成归纳,若为无则输出‘无’。

该提示词通过任务描述部分明确LLM 的任务

是提取安全特征,并按照给定格式输出;同时通过其

他输出要求约束LLM 的联想和生成能力,以避免

LLM在需求提取过程引入待分析需求以外的信息,

或输出不符合格式要求的信息。
提示词中的输出格式要求则由一系列安全

需求信息名称和相应的输出格式构成(见表4),
本文基于图3中安全概念领域模型结构,从系统

架构、系统功能、软件安全需求三个角度识别了

相应的实体和实体间关系,并设计了相应的输出

格式。实体输出格式要求 LLM 输出实体名称;
关联则需要输出存在相应关联的两个实体,并通

过“-”相连。为保证输出的相对独立,不同的实

体和关系之间使用分号进行分割,并使用井字号

“#”来代表一类安全需求信息的结尾。完整零

样本提示词建模需要将表4中的安全需求信息

名称和输出格式按表3定义的结构按顺序全部

添加到提示词。

表4 待提取的安全需求信息及输出格式要求

安全需求类型 安全需求角度 安全需求信息名称 输出格式

实体

系统架构要素

系统功能要素

软件安全需求要素

软件组件 软件组件1;软件组件2;……
 

#
硬件组件 硬件组件1;硬件组件2;……

 

#
硬件接口 硬件接口1;硬件接口2;……

 

#
运行数据 数据1;数据2;……

 

#
系统任务 任务1;任务2;……

 

#
潜在故障 故障1;故障2;……

 

#
安全性机制设计 安全性设计1;安全性设计2;……

 

#

关联

系统架构关联

系统功能关联

软件安全需求关联

软件硬件运行关系 软件组件-硬件组件;……
 

#
接口硬件隶属关系 硬件接口-硬件组件;……

 

#
组件所产生数据关系 软件组件/硬件组件-数据;……

 

#
数据所涉及任务 数据-任务;……

 

#
故障发生位置 故障-软件组件/硬件组件/硬件接口/数据;……

 

#
可能发生故障的功能 故障-任务;……

 

#
故障所对应安全性机制 故障-安全性机制设计;……

 

#

  图5提供了一个由算法1在此基础上生成的完

整零样本提示词示例。

图5 零样本提示词示例

3.3.2 相似安全需求示例选取

现有研究主要基于语义相似度选择相似的示例

来构造少样本提示词[58],为LLM 提供相关知识来

提升其在指定任务上的性能。然而,正如前文所述,
安全需求提取需要结合系统架构、系统功能和软件

安全需求多方面领域知识,从需求文本中识别软件

安全需求的相关信息,因此常用的基于语义相似度

的方法难以从安全角度匹配合适的示例向LLM 提

供必要的领域知识。为有效从安全角度检索到相关

的历史案例,本文在图3中的领域概念模型的指导

下捕捉安全特征,使用基于安全特征的RAG方法,
从零样本提示的结果中提取表4所示的安全需求特

征并向量化。表4给出的安全需求信息包含系统架

构、系统功能、软件安全3个安全需求角度共14个

安全需求信息特征维度,捕捉了图3所定义的安全

概念及概念间关系,为保证示例在安全层面提供尽

可能相似的信息,可通过文本中包含的各类安全信

息数量来判断两个文本中安全需求特征的相似程
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度。首先从需求文本中按照表4定义的各类安全需

求信息来提取特征,进而形成安全需求向量:

H =[li,…,ln
] (7)

其中,n=14,分别对应于表4中的14个安全需求信

息维度,li 为每个维度所包含的安全需求信息条目

数量,即公式(5)中a 的数量,从而形成一条需求文

本所对应的安全需求信息特征向量。
安全需求向量有14个维度,对应系统架构、系

统功能、软件安全3个角度的实体概念及其关联,由
于关联描述了两个实体间的关联关系,因此与实体

概念存在很强的相关性,难以保证不同维度间的独

立性,可能导致部分特征在相似性计算中被重复考

虑,影响相似度结果的准确性。为解决此问题,本文

采用了主成分分析(Principal
 

Component
 

Analysis,

PCA)对数据进行降维,将原始的14维数据转换为

7个独立的主成分,通过消除变量间相关性[59]以避

免特征被重复考虑。
经过PCA降维后,本文通过余弦相似度[60],如

公式(8)所示,来筛选高相似度的历史安全需求作为

少样本提示案例。

cosX·Y

    =
X·Y

‖X‖·‖Y‖

= ∑
n

i=1
(xi×yi)

∑
n

i=1
(xi)2 × ∑

n

i=1
(yi)2

(8)

其中,X 和Y 分别是LLM 产生的安全需求特征向

量和历史安全需求的特征向量,余弦值接近1,则两

个向量的夹角越接近0度,表明两个向量越相似。

n 表示向量的特征数量。

算法2. 相似安全需求识别算法

输入:

安全需求特征文本列表answerList
历史安全需求特征向量库histBase
输出相似历史安全需求数量参数k

输出:

相似需求列表similarList
1.

 

answerVec,
 

cosineList,
 

similarList
 

=
 

[],
 

[],
 

[]

2.
 

FOR
 

answerText
 

in
 

answerList
 

DO:

3.
 

answerItems
 

=
 

Itemized(answerText) //各类安全需

求信息条目化

4.
 

answerVec.add(count(answerItems)) //安全需求信

息条目数量作为特征加入特征向量

5.
 

END
 

FOR
6.

 

answerVec
 

=
 

PCA(answerVec) //安全需求特征向量

PCA降维

7.
 

FOR
 

histCase
 

in
 

histBase
  

DO:

8.
 

similarity
 

=
 

cosine(answerVec,
 

histCase[Vec]) //计

算当前安全需求特征向量与历史安全需求的余弦相似度

9.
 

CosineList.add({histCase[ID]:
 

similarity}) //记录

当前安 全 需 求 特 征 向 量 与 每 一 个 历 史 安 全 需 求 的 余 弦

相似度

10.
 

END
 

FOR

11.
 

sortedCosineList
 

=
 

sortBySimilarity(CosineList,DE-
SC)//

 

降序排序与所有历史安全需求的余弦相似度

12.
 

i
 

=
 

0

13.
 

WHILE
 

i
 

<
 

k
  

DO:

14.
 

similarReq
 

=
 

histBase[sortedCosineList[i][ID]]
[Req] //记录来源需求文本

15.
 

similarResult
 

=
 

histBase[sortedCosineList[i][ID]]
[Result]

 

//记录历史安全需求分析结果

16.
 

similarList.add({similarReq:
 

similarResult}) //向

示例列 表 加 入 历 史 安 全 需 求 分 析 结 果 及 其 来 源 需 求 分

析文本

17.
 

i
 

+=
 

1

18.
 

END
 

WHILE

19.
  

RETURN
 

similarList

  算法2的输入为按照表4中安全需求信息输出

格式进行描述的安全需求文本answerList,其中14
个维度分别对应14类安全需求信息的输出文本,字
典histBase包含所有历史安全需求提取结果、对应

来源文本以及降维后的安全需求特征向量,参数k
为输出相似历史安全需求的数量。算法的第2~5
行首先将每一个维度的需求文本根据输出格式进行

条目化,并识别每个维度对应的条目数量,从而进行

安全特征向量化。算法的第6行将向量化后的安全

特征进行PCA降维。
算法的第7~10行计算初步安全需求特征向量

answerVec与所有历史安全需求特征向量之间余弦

相似度,并以历史安全需求序号histCase[ID]为索

引,添加到余弦相似度序列cosineList中。算法的

第11行对余弦相似度序列cosineList进行降序排

列。算法的第12-18行从降序排列后的余弦相似度

列表sortedCosineList中选出相似度最高的k 个历

史安全分析结果,并将历史安全分析结果的需求和

来源文本逐个添加到相似需求列表similarList中。

3.3.3 基于少样本提示词的安全需求提取

在本文方法中,少样本提示词需要结合3.3.2
节筛选得到的相似示例完成安全需求提取。该过程

可被形式化为:
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fLLM(Pfew)={(s1,A1),(s2,A2),…,(sn,An)}
(9)

其中,Pfew 表示指导LLM 进行安全需求提取所使

用的少样本提示词,其具体含义见公式(3),Ai 和si

的含义同公式(5)(6)。
本文使用少样本提示词框架对安全需求提取少

样本提示词建模,所建模少样本提示词如表5所示。
该提示词通过任务描述强调了LLM 需要按照示例

中的输入和输出关系,结合其中包含的领域知识和

经验,来对待分析需求进行安全需求提取。并在输

入输出示例部分向LLM提供筛选得到的相似历史

安全需求和相应的需求案例文本,从而向LLM 提

供领域知识和历史安全需求提取经验。

表5 安全需求提取少样本提示词建模

提示词结构 提示词内容

任务描述
请参照以下示例及示例提取结果的输入输出关

系,使用此思路,提取出目标案例中包含的信息

输入输出示例 [<示例需求>
 

<示例需求安全分析结果>]
待分析需求 <待分析需求文本>

其他输出要求
仅从案例中提取存在的信息,案例中不包含的无

需进行联想生成归纳,若为无则输出‘无’

图6提供了一个由算法1在此基础上生成的完

整少样本提示词示例。

图6 少样本提示词示例

4 实验设计

本节介绍数据集及其构建过程,以及评估实验

设计,包括评估指标、实验设置和研究问题。

4.1 基准数据集

  PROMISE数据集①和PURE数据集[61]是当前

需求工程领域的主流数据集,其中PROMISE数据

集包含来自15个项目的625条条目化需求,均标注

具 体 的 需 求 类 别,因 此 常 被 用 于 需 求 分 类 任

务[62-63]。PURE数据集则包含有79个完整的需求

文档,当前被广泛应用于需求建模[64]、需求分类[65]

等任务。然而以上数据集主要关注于软件的需求信

息,缺少系统架构等安全需求分析所必需的系统信

息。同时,当前需求数据集以英文为主,无法满足中

文需求工程任务的需要,因此本文任务无法应用于

以上数据集。
为解决此问题,本文收集整理了3个来自不同

安全关键领域的具体案例,分别为AFTI/F-16验证

机 飞 行 控 制 系 统 (Flight
 

Control
 

System,简 称

FCS)[66-68]、车用自动巡航控制系统(Cruise
 

Control
 

System,简称CCS)[69-70]、机载自动油门系统(Auto-
matic

 

Throttle
 

Control,简称 ATC)[66]。案例均由

领域专家依照安全关键软件实践中的需求要求编制

形成需求文档,需求文档包含案例的系统架构、功能

需求、安全性设计等信息。考虑到当前LLM 对长

文本的处理能力有限,同时为保证每一条需求文本

包含完整的安全上下文信息,本文将3个案例的需

求文档按自然段进行拆分,形成最终的数据集,其基

本信息如表6所示。数据集中共包含42条具体需

求,FCS、CCS、ATC案例分别包含15、14、13条需

求,需求平均长度为174字。根据需求涵盖的信息

进行分类,在合计42条需求中,35条需求包含系统

架构信息,29条需求包含功能需求信息,18条需求

包含安全性设计信息,数据集中大部分需求涵盖一

个方面以上的信息。
在针对数据集中的42条具体需求进行安全需

求信息标注过程中,本文组织2位来自北京控制与

电子研究所的领域专家,分别独立从42条需求文本

中识别图3安全需求领域模型中的硬件组件、故障

等实体和软件硬件运行关系、故障发生位置等实体

间关系。在数据标注开始前事先根据标注标准进行

培训,之后由两名专家独立进行标注,两名专家标注

结果中一致的内容将被保留,存在分歧的部分被进

一步讨论修改,标注结果由第一作者进行审查,并按

照表4的输出格式进行整理,作为安全需求提取的

基准。
相比于现有的需求数据集,本文数据集为中文,

包含了3个来自于不同安全关键领域的需求案例,
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即航空装备领域、车载电子领域和民用航空领域,且
均从安全需求提取角度进行了整理,标注了安全需

求相关的实体及其关系,保证了系统架构、软件功能

等信息的完整性。

表6 安全关键软件需求数据集基本信息

案例 案例领域
需求包含字符数量 涵盖对应类型信息需求数量

最小 最大 平均 系统架构 功能需求 安全性设计

案例包含

需求数量

FCS 航空装备 92 367 165 14 10 10 15
CCS 车载电子 77 376 172 11 8 3 14
ATC 民用航空 89 293 186 10 11 5 13

完整数据集 77 376 174 35 29 18 42

4.2 评估指标

  对安全需求提取过程来说,提取结果的准确性

和全面性同样重要,识别错误和缺漏均有可能为系

统带来未知的风险,因此本文选择F1值作为LLM
安全需求提取性能的综合评估指标。F1值综合考

虑了准确率(Precision)和召回率(Recall),是二者

的调和平均值,其中准确率评估LLM 提取安全需

求的准确性,即在LLM提取的所有安全需求中,基
准安全需求所占比例;召回率评估LLM 提取安全

需求的全面性,即LLM 正确提取的安全需求占目

标需求所包含所有基准安全需求的比例。准确率、
召回率和F1的计算由公式(10)、(11)和(12)定义:

Precision=
TP

TP+FP
(10)

Recall=
TP

TP+FN
(11)

F1=
2·Precision·Recall
Precision+Recall

(12)

其中,TP 为LLM 提取的基准安全需求数量,FP
为LLM 提取的非基准安全需求数量,FN 为LLM
未提取到的基准安全需求数量。

由于安全需求的提取结果因人而异,因此基准

安全需求集合不是标准答案。在评估LLM 安全需

求提取能力时,本文首先将LLM 提取的安全需求

与领域专家的分析结果进行文本比对,识别LLM
正确提取且表述一致的情况,之后由两位领域专家

进一步进行审查以检查与基准安全需求一致但表述

有差异的识别结果,并将其标注为与基准安全需求

一致,从而形成最终的评估结果。

4.3 基线方法

  考虑到当前LLM 在需求工程的 NLP任务中

表现出了优秀的能力和灵活性,且先前并无与本文

方法目标一致的其他方法,本文选择基于LLM 的

通用需求提取方法作为基线方法进行对比,从而评

估本文方法相比于现有需求提取方法的效果。
另一方面,本文方法使用LLM 提取目标需求

的安全需求特征,并在此基础上检索相似示例构造

少样本提示词,进行安全需求提取。作为一种RAG
方法,其核心差异在于示例检索策略,因此本文选择

基于主流示例选取策略RAG方法所构建的少样本

提示作为基线方法进行对比。
基于以上分析,本文从两个角度选择基线方法:

(1)目前公开发表最优的基于LLM的通用需求提取

方法,对比基线确定为zsl-ner方法[71];(2)基于目前

主流示例检索策略RAG方法构建的少样本提示,对
比基线确定为基于词频-逆向文件频率(Term

 

Fre-
quency-Inverse

 

Document
 

Frequency,TF-IDF)示例选

取策略、基于语义相似度示例检索策略。

①zsl-ner方法[71]。该方法是目前性能最优的

需求提取方法,它基于LLM 来识别需求中的命名

实体,相比于基于机器学习的需求提取方法,该方法

不仅在需求信息的识别任务上取得了最优的效果,
而且可以根据需要提取指定的目标需求信息,同时

也可以针对中文文本进行需求提取任务。

②基于 TF-IDF[72]的示例选取策略。TF-IDF
结合了词频和逆文档频率衡量词语在语料库中的重

要性,使用TF-IDF评估文本相似度从而选取相似

案例是当前RAG实践的主流策略[73]。实验中,本
文将整个数据集作为语料库,并使用中文分词广泛

应用的jieba分词器①对需求文本进行分词。通过

计算目标需求与数据集中其他需求在TF-IDF向量

上的余弦相似度,选择相似度最高的需求文本及安

全分析结果作为示例形成少样本提示。

③基于语义相似度的示例选取策略,这是当前

RAG实践中主要应用的策略,通常通过文本的语义

相似度来识别相关文本信息,广泛使用基于BERT
的模型作为检索器[74]。因此,本文选择谷歌公司的

BERT-base-chinese预训练语言模型[42]作为检索器

计算需求文本之间的语义相似度,并选择语义相似

度最高的需求文本及安全分析结果作为示例形成少
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样本提示,从而与本文方法进行对比。BERT-base-
chinese模型包含110万个参数,可以有效地捕捉中

文文本中的语义信息。

4.4 基础LLM
  由于本文关注于中文语境下的安全需求提取,
为了分析不同LLM对于安全需求提取任务的完成

情况,本 文 实 验 采 用 了 ERNIE-4.0-8K、GLM-3-
Turbo、Qwen-Turbo三个中文LLM。

4.5 研究问题与实验设置

  本文共设置2个研究问题(Research
 

Question,

RQ),分别探究本文方法所提取的安全需求质量和

方法效果的影响因素:
研究问题1:本文方法指导LLM提取的安全需

求质量如何?
基于不同方法提取得到的安全需求质量,对比

分析本文方法和基线方法在安全需求提取任务上的

应用效果。
研究问题2:哪些因素会对本文方法提取的安

全需求质量产生影响?
该研究问题探究基础LLM、示例数量、相似度

案例选择策略、应用领域、方法设计五个方面对本文

方法性能的影响。具体RQ如下:
(1)RQ2.1:基础LLM 对本文方法提取的安全

需求质量有何影响?
不同LLM在自然语言理解、领域知识掌握等

方面的性能差异,可能会对下游任务性能造成影响。
本RQ 通过对比分析本文方法框架下所选三个

LLM的安全需求提取任务性能,探究基础LLM 对

安全需求提取质量的影响。
(2)RQ2.2:示例数量对本文方法提取的安全需

求质量有何影响?
现有研究表明,少样本提示中示例数量过少可

能导致LLM无法学习到充分的知识,而示例数量

过多则可能对LLM 造成干扰[75]。因此,针对所选

择的三种LLM,对比分析了不同示例数量少样本提

示下,LLM安全需求提取任务的完成效果。
(3)RQ2.3:相似度案例选择策略对本文方法提

取的安全需求质量有何影响?
本文采用RAG来选择更有针对性的历史安全

需求案例,从而增强LLM 的需求提取能力。一般

认为,相似度越高的案例,增强效果越好。但也有研

究表明低相似度案例同样可以增强LLM 的任务性

能[76]。为探究不同的安全需求特征相似度选择策

略对本文方法效果的影响,该RQ将历史安全需求

案例按与目标需求的安全特征相似度排名,把历史

安全需求案例按相似度由高到低均匀划分为五组,
并从每一组选择相似度最高的案例来构造提示词,
形成五个相似度选择策略,分别为Hst_Strategy(最
高相似度选择策略)、H_Strategy(高相似度选择策

略)、M_Strategy(中等相似度选择策略)、L_Strate-
gy(低相似度选择策略)和Lst_Strategy(最低相似

度选择策略),从而可以对比分析不同选择策略对安

全需求提取效果的影响。
(4)RQ2.4:本文方法在不同应用领域下的安全

需求提取性能如何?
本文方法通过向LLM 提供领域知识从而提升

LLM的安全需求提取性能,而不同应用领域的知识

并不通用,这可能对本文方法在不同安全关键领域

上的性能和适用性产生影响。因此该研究问题围绕

航空装备、车载电子、民用航空三个不同安全关键领

域,对本文方法在不同应用领域的安全需求提取性

能进行分析。
(5)RQ2.5:本文方法中基于零样本提示的安全

特征提取设计和PCA降维设计对本文方法提取的

安全需求质量有何影响?
本文方法使用零样本提示提取安全特征,并据

此为少样本提示选择相似示例,同时应用PCA将安

全需求特征向量降维,以避免特征被重复考虑从而

影响示例选取结果。该研究问题通过消融实验探究

基于零样本提示的安全特征提取设计和PCA降维

设计的有效性。由于安全特征是本文方法为少样本

提示选取相似示例的核心依据,针对基于零样本提

示的安全特征提取设计的消融实验将使用随机示例

选择策略,从数据集中随机抽取需求文本及其安全

需求信息提取结果,作为示例构造少样本提示词进

行安全需求提取,重复进行三次实验,最终结果取平

均值。PCA降维设计的消融实验则不会在相似示

例选取的过程中对安全特征向量进行降维。

5 实验结果与分析

按照第4节中的实验设计,本节针对实验结果

展开分析。

5.1 研究问题1:本文方法指导LLM 提取的安全

需求质量如何?

  本文方法与基线方法在三个LLM 上的安全需

求提取性能如表7所示。
(1)对比当前最优的基于LLM的需求提取方法:
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表7 基线方法和本文方法的安全需求提取性能(F1)

安全需求

特征角度
基础LLM

基线方法   

zsl-ner

基于主流示例检索策略的RAG方法

基于TF-IDF 基于语义相似度

1-shot 2-shot 1-shot 2-shot

本文方法

1-shot 2-shot

系统架构

ERNIE-4.0-8K 64.31 73.92 76.12 75.17 76.92 63.08 69.08
GLM-3-Turbo 46.41 55.24 54.93 60.66 61.35 53.26 55.10
Qwen-Turbo 8.99 41.90 44.63 53.61 40.76 43.69 41.16

系统功能

ERNIE-4.0-8K 28.66 46.04 46.74 50.50 43.69 44.59 52.98
GLM-3-Turbo 19.50 33.24 31.07 35.90 36.87 33.78 37.23
Qwen-Turbo 6.42 30.09 29.73 16.75 27.47 29.90 35.27

软件安全

ERNIE-4.0-8K 26.79 42.65 48.67 43.05 42.01 47.00 50.75
GLM-3-Turbo 15.07 34.69 34.95 23.53 35.65 18.35 41.79
Qwen-Turbo 7.84 13.49 19.61 8.86 15.98 15.42 20.20

整体性能

ERNIE-4.0-8K 42.19 55.30 57.02 58.33 55.34 51.72 58.53
GLM-3-Turbo 29.10 41.83 39.82 43.66 45.39 39.02 44.73
Qwen-Turbo 7.55 30.43 33.15 23.27 29.21 30.73 33.30

  相比于zsl-ner基线方法,本文方法的整体性能

在所有 LLM 均有显著的提升,提升分别达到了

16.34%、15.63%和25.75%。从安全需求特征角

度来看,zsl-ner在系统架构特征维度上,使用ERN-
IE-4.0-8K和 GLM-3-Turbo模型取得了接近本文

方法的性能,仅有4.77%和8.69%的差距;而在系

统功能和软件安全特征维度上,zsl-ner在三个LLM
上与本方法的差距均在15%以上。

zsl-ner方法作为一种基于LLM 的零样本提示

方法在需求命名实体识别任务上的F1值可以达到

98%[71],但在本文实验中其性能则与本文方法存在

显著的差距,这表明传统基于命名实体识别的需求

提取方法无法有效识别安全需求。同时,虽然zsl-
ner可以在系统架构方面达到与本文方法相近的水

平,但是在系统功能和软件安全角度则由于无法向

LLM提供领域知识而导致性能差距较大。可见,识
别系统功能和软件安全相关信息需要提供更多的领

域知识支撑。
综上,本文方法相比于当前最优的zsl-ner方

法,可以向LLM提供更有针对性的领域知识,从而

在安全需求提取任务上取得了显著的性能提升。
(2)对比基于目前主流示例检索策略RAG方

法所构建的少样本提示:
两种目前主流示例检索策略RAG方法所构建

的少样本提示中,基于TF-IDF和语义相似度策略

方法在性能存在小幅差异。从整体性能来看,本文

方法相比于基于TF-IDF和语义相似度策略基线方

法,本文方法在 GLM-3-Turbo模型上的性能相比

于最优的语义相似度策略方法有0.66%的下降,但
ERNIE-4.0-8K和Qwen-Turbo两个模型上相比于

次优方法分别有0.5%和0.15%的提升,可见本文

方法在整体性能上与语义相似度策略相近,并略有

优势。
进一步从安全需求特征角度来看,本文方法在

识别系统架构信息上的性能相比于基于TF-IDF和

基于语义相似度方法较弱。而在提取系统功能方

面,本文方法相比于次优方法在三个LLM 上的F1
值则分别提升了2.48%、0.36%和5.18%。在软件

安 全 上,本 文 方 法 相 比 于 次 优 方 法 则 分 别 有

2.08%、6.14%和0.59%的提升。可见本文方法相

比于基于TF-IDF和语义相似度的RAG方法,在安

全需求提取任务上的提升主要体现在系统功能和软

件安全两个方面,而在系统架构方面则相对较弱。
这主要是因为在需求文本中系统架构信息通常语义

清晰且表达明确,而系统功能和软件安全信息则较

为抽象,无法仅依靠语义进行识别,需要结合领域经

验提取。因为基于TF-IDF和语义相似度的RAG
方法分别倾向于选择存在更多相同词语和语义相似

的示例,这两类在提取系统架构信息上的提升更为

显著。相比之下,本文方法从安全特征角度识别的

相似案例则可以为LLM提供更加切合的领域知识

和经验,在提取系统功能和软件安全信息上具有更

好的性能。
综上,本文方法的安全需求提取性能略优于基

于语义相似度的RAG方法。具体优势体现在系统

功能和软件安全信息的提取能力上,但是相比于基

于文本特征的 TF-IDF和语义相似度检索策略来

说,在提取系统架构方面的性能有所不足。
由RQ1结果可见,现有通用的需求信息提取方

法并不适用于安全需求信息的提取,该类方法无法
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向LLM提供针对性领域知识。本文方法以及基于

TF-IDF和语义相似度的RAG方法,则可以通过选

取相似 示 例 向 LLM 提 供 领 域 知 识 而 有 效 提 升

LLM的安全需求提取性能。可见相似案例可以向

LLM提供针对性的领域知识和经验,从而提升安全

需求提取任务性能。而本文方法与基于TF-IDF和

语义相似度的RAG方法在提取不同角度安全需求

信息上的性能差异则说明,不同RAG方法的示例

选取策略可以向LLM 提供不同的领域知识,进而

加强LLM在提取特定安全需求信息上的性能。如

Firesmith所述[77],安全需求涉及功能、接口、数据

等多个方面,包含很多不同的类别。而提取安全需

求中不同类别的信息,亦有着不同的领域知识需要。
因此,如何针对目标案例特征向LLM 提供充分多

样的领域知识,是未来进一步提升LLM 的安全需

求提取性能的关键。

5.2 研究问题2:哪些因素会对本文方法提取的安

全需求质量产生影响?

  (1)RQ2.1:基础LLM 的不同对本文方法提取

的安全需求质量有何影响?
由表7可见,本文方法在使用ERNIE-4.0-8K

模型时,本文方法在所有安全需求特征维度上的安

全需求提取性能上都取得了最优。使用 GLM-3-
Turbo时的性能相比于 ERNIE-4.0-8K 有一定差

距,但比使用Qwen-Turbo的性能更优。造成这一

结果的主要原因在于LLM 本身的性能差异,然而

提取安全需求信息是一个综合性任务,LLM的自然

语言理解与生成能力、知识掌握、示例学习能力等方

面均会对其性能产生影响。
从差距情况来看,本文方法使用 Qwen-Turbo

模型 时 与 使 用 ERNIE-4.0-8K 模 型 的 差 距 可 达

25.23%。从安全需求特征角度来看,三个LLM 在

软件安全上的性能差距最大,达到了30%以上,而
在提取系统架构和系统功能上的性能差距则在

20%左右。综上,基础LLM 性能对本文方法的影

响体现在所有三个维度信息的提取上,其中软件安

全方面的影响最大。
综上,本文方法在综合性能更强的基础LLM

上获得的性能提升更大,该结果与已有将LLM 应

用于 软 件 工 程 任 务 的 研 究 一 致[23,64],说 明 基 础

LLM本身性能对包括安全需求提取在内的下游任

务性能有很大影响,基础LLM 在自然语言处理能

力、知识掌握、示例学习等方面的性能提升都会进一

步提升下游任务的性能。考虑到本文方法在不同

LLM上的适用性,该结果也意味着方法在未来更先

进LLM上的提升潜力。
(2)RQ2.2:示例数量对本文方法提取的安全需

求质量有何影响?
本文方法在包含不同示例数量少样本提示词下

的 性 能 如 图 7 所 示。其 中,ERNIE-4.0-8K 和

GLM-3-Turbo两个模型在少样本提示词中包含2
个示例时取得最优效果,而 Qwen-Turbo则在包含

3个示例时取得最优效果。三个LLM 的最优性能

相比于仅包含1个示例的少样本提示来说,均有高

于5%的性能提升。可见,在一定示例数量范围内,
包含更多示例的少样本提示可以提升LLM 的任务

性能,这与其他相关研究的观察相一致。
从图7中也可以看出,三个LLM分别在2-shot

和3-shot达到性能峰值之后,均随着少样本提示包

含的示例数量增加出现了性能下降的趋势。通过对

结果的审查发现,部分提取到的安全需求中包含了

与任务和待分析需求无关的示例信息。由此推测,
示例数量过多可能会引入无关信息干扰LLM 对任

务的理解,从而影响LLM的任务性能。

图7 不同少样本提示示例数量下本文方法性能折线图

综上所述,少样本提示中包含的示例数量会对

本文方法的安全需求提取性能造成影响,在本文所

选的三个LLM上,少样本提示词中包含2~3个示

例时性能最佳,之后随着示例数量的增加反而会造

成安全需求提取性能的下降。该结果与现有研究一

致,即示例达到一定数量后,少样本提示中更多的示

例数量难以提升甚至会降低LLM 的任务性能[75]。
该结果说明,在使用本文方法进行安全需求提取时,
选取少量的高质量示例即可获得更优的效果,同时

少量的示例也意味着更低的成本。该结论可为后续

本文方法应用提供示例数量选取的依据。
(3)RQ2.3:相似度案例选择策略对本文方法提

取的安全需求质量有何影响?
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通过应用相似度示例的五个选择策略,LLM
提取安全需求的性能如表8所示。可以发现,基
于 Hst_Strategy构建的1-shot提示词在 GLM-3-
Turbo和Qwen-Turbo上,以及2-shot提示词在三

个模 型 上 均 有 着 最 好 的 性 能,1-shot提 示 词 在

ERNIE-4.0-8K上的性能略低于最优性能,但也非

常接近。
其中,ERNIE-4.0-8K上基于Lst_Strategy构

建的 1-shot提 示 词 性 能 优 于 Hst_Strategy,在

ERNIE-4.0-8K和Qwen-Turbo上基于Lst_Strate-
gy构建的2-shot提示词也表现出了优于M_Strate-
gy的性能。Lst_Strategy策略选择的相似度最低

示例相比于Hst_Strategy选择的相似度最高示例,
与目标需求在安全需求特征上的差异最大。本文结

合现有研究结果分析认为,这是因为低相似度示例

向LLM提供了与目标需求安全需求特征差异较大

的信息[75],提升了LLM 的泛化能力,从而提高了

LLM安全需求提取的性能。

表8 不同相似度选择策略所获得的安全需求提取性能(F1)

示例数量 使用LLM Hst_Strategy H_Strategy M_Strategy L_Strategy Lst_Strategy
ERNIE-4.0-8K 51.72 50.36 49.17 48.85 52.13

1-shot GLM-3-Turbo 39.02 37.99 38.76 37.42 38.18
Qwen-Turbo 30.73 30.04 28.33 29.70 27.23
ERNIE-4.0-8K 58.53 54.72 53.80 52.28 55.10

2-shot GLM-3-Turbo 44.73 40.81 39.12 39.16 38.81
Qwen-Turbo 33.30 31.32 28.01 28.64 29.61

  综上所述,高相似度案例可以提升LLM 的安

全需求提取效果,但LLM 的安全需求提取效果并

不完全随示例的相似度降低而降低,低相似度案例

可能会向LLM 提供更为多样的知识,从而通过提

升LLM的泛化能力提高LLM 的安全需求提取性

能。该结果与现有研究的结论一致[75]。意味着在

本文所提出的安全需求相似度示例选择策略下,可
以通过选择最相似示例提升LLM 的任务能力,或
选择最不相似示例提升LLM 的泛化能力,从而达

到提升LLM 的任务性能的目的。该结果也显示,
不同相似度示例组合可能通过平衡LLM 的任务能

力和泛化能力,进一步提升LLM 的安全需求提取

任务性能。由于示例组合策略并非本文研究范畴,
本文不做深入。

(4)RQ2.4:本文方法在不同应用领域下的安全

需求提取性能如何?
本文针对方法在数据集中不同领域案例下的性

能表现进行了方差分析(Analysis
 

of
 

Variance,简称

ANOVA),该方法被广泛用于比较三个或以上组别

之间的均值差异。因此本文使用 ANOVA分析探

究本文方法在三个LLM上不同应用场景下性能的

差异显著性,分析结果如表9。

表9 本文方法在不同应用场景ANOVA分析结果(p 值)

LLM 1-shot 2-shot

ERNIE-4.0-8K 0.549 0.063

GLM-3-Turbo 0.497 0.704

Qwen-Turbo 0.546 0.169

  由表7可见,本文方法构造的1-shot和2-shot
提示词在三个LLM上不同的应用场景下均没有显

著的性能差异。这是因为本文方法构建的安全需求

领域模型只涵盖了通用的安全关键软件领域概念而

没有引入特定领域下的概念。
图8以箱型图形式展示了本文方法在三个应用

场景下的性能,其中图8(a)和8(b)分别展示了使用

1-shot和2-shot提示词的本文方法在三个应用场

景下的性能。其中,来自车载电子领域的CCS案例

的上四分位数、中位数、下四分位数在大多数情况下

都是较高的,可见方法在车载电子领域的安全需求

提取性能更为优秀。而来自航空装备领域的FCS
案例在所有LLM 的1-shot和2-shot方法上,都有

着较低的上四分位数、中位数,说明本文方法在此类

案例上的性能较弱。推测这是由LLM 在不同领域

的知识差异所导致,因为航空装备领域公开信息相

较于车载电子领域更少,LLM训练语料中两个领域

的信息存在规模差异导致了LLM 在不同应用领域

上的性能差异。
综上,在不同应用领域上本文方法性能存在差

异,但差异并不显著。差异具体体现在方法在公开

信息更多的安全关键领域上有更好的应用效果,而
在公开信息较少的领域则效果相对较弱。该结果表

明在将本文方法迁移至其他领域时,需要注意LLM
自身的领域知识水平对方法性能的影响。同时,由
于本文关注于安全关键系统中的通用概念,在将本

文方法应用于新领域时,仍需参照领域的权威标准
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图8 不同应用场景下安全需求提取性能箱型图

  

捕捉相关概念并建立领域概念模型,从而保证方法

在目标领域的适用性和有效性。本文方法领域元模

型与提示词元模型分离的设计,也在保证了将本文

方法应用于不同安全关键领域时的良好扩展性。
(5)RQ2.5:本文方法中基于零样本提示的安全

特征提取设计和PCA降维设计对本文方法提取的

安全需求质量有何影响?
消融实验结果如表10所示。从方法整体性能

的角度来说,基于零样本提示的安全特征提取设计

和PCA降维设计对本文方法在所有基础LLM 上

对安全需求提取性能均有积极作用,最高提升分别

可达11.57%和8.53%。且在2-shot上的性能提升

比1-shot更为显著,意味着基于零样本提示的安全

特征提取设计和PCA降维设计均可引导本文方法

为少样本提示选择更优的示例,从而获得安全需求

提取性能的提升。
从基础LLM 角度来说,基于零样本提示的安

全特征提取设计和PCA降维设计在ERNIE-4.0-
8K上的提升较 GLM-3-Turbo和 Qwen-Turbo来

说更为显著,意味着包含基于零样本提示的安全特

征提取设计和PCA降维设计的本文方法在性能更

优的基础LLM上可以获得更多的提升。

   
表10 消融实验结果(F1)

基础LLM 示例数量 方法设置
安全需求特征维度

系统架构 系统功能 软件安全
整体性能

ERNIE-4.0-8K

1-shot

2-shot

本文方法 63.08 44.59 47.00 51.72
w/o

 

零样本提示设计 62.15(-0.93) 33.70(-10.89) 21.21(-25.79) 41.99(-9.73)

w/o
 

PCA降维设计 70.13(+7.05) 37.34(-7.25) 31.09(-15.91) 48.48(-3.24)
本文方法 69.08 52.98 50.75 58.53

w/o
 

零样本提示设计 66.67(-2.41) 38.05(-14.93) 27.75(-23.00) 46.96(-11.57)

w/o
 

PCA降维设计 72.55(+3.47) 39.04(-13.94) 34.66(-16.09) 50.00(-8.53)

GLM-3-Turbo

1-shot

2-shot

本文方法 53.26 33.78 18.35 39.02
w/o

 

零样本提示设计 55.95(+2.69) 25.49(-8.29) 16.86(-1.49) 36.67(-2.35)

w/o
 

PCA降维设计 56.65(+3.39) 30.67(-3.11) 16.52(-1.83) 38.94(-0.08)
本文方法 55.10 37.23 41.79 44.73

w/o
 

零样本提示设计 55.67(+0.57) 22.94(-14.29) 21.51(-20.28) 35.44(-9.29)

w/o
 

PCA降维设计 56.84(+1.74) 32.66(-4.57) 26.94(-14.85) 41.34(-3.39)

Qwen-Turbo

1-shot

2-shot

本文方法 43.69 29.90 15.42 30.73
w/o

 

零样本提示设计 39.26(-4.43) 25.42(-4.48) 6.23(-9.19) 25.85(-4.88)

w/o
 

PCA降维设计 44.57(+0.88) 25.79(-4.11) 10.56(-4.86) 28.71(-2.02)
本文方法 41.16 35.27 20.20 33.30

w/o
 

零样本提示设计 32.81(-8.35) 28.03(-7.24) 8.89(-11.31) 25.21(-8.09)

w/o
 

PCA降维设计 47.82(+6.86) 25.18(-10.09) 17.32(-2.88) 31.25(-2.05)

  从特征维度角度来说,基于零样本提示的安全

特征提取设计在提取系统架构信息软件安全信息上

的提升较少,而在提取系统架构、系统功能信息上的

提升更为显著。该结论与RQ1结论一致,可见该设

计使本文方法能够从安全特征角度识别相似案例,
通过少样本提示为LLM从安全角度提供更为切合

的领域知识。
同样在特征维度,PCA 设计消融实验结果显
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示,本文方法在提取系统架构方面安全需求信息上

普遍存在性能下降情况,而在系统功能和软件安全

信息上则出现了显著的性能提升。这是因为PCA
降维后的特征向量保存了更多功能和安全方面的信

息,同时弱化了系统架构方面的信息,使得在选择示

例时更多地考虑了系统功能和软件安全信息的

相似性。
综上,本文方法中基于零样本提示的安全特征

提取设计和PCA降维设计对于安全需求提取性能

存在积极影响。其中二者均在提取系统功能和软件

安全维度信息上对方法有着显著的提升。该结果证

明了基于零样本提示的安全特征提取设计和PCA
降维设计的有效性。

6 案例研究

本节基于数据集中的FCS案例开展案例研究,
从工程师的安全性实践角度来评估本文方法所提取

的安全需求信息,进一步探究本文方法的实用性。

FCS案例整理自 AFTI/F-16电传操纵验证机

飞行控制系统的公开资料,飞行控制系统以飞行员

的操控指令、传感器所收集的外界物理信息和飞机

各组件运行状态为输入,计算实现对飞机的飞行姿

态控制。案例中共包含有15条具体需求,包括对系

统架构、系统功能、软件安全方面信息的描述。该案

例来自于真实工业实践,具有较为复杂的需求描述,
且包含大量安全需求分析所需考虑的信息,因此基

于该案例开展案例研究在一定程度上可以代表工业

实践中设计的关注要点。

6.1 案例研究过程

  案例研究基于先前实验结果开展,基础模型为

ERNIE-4.0-8K模型,使用2-shot少样本提示词和

Hst_Strategy相似度示例选择策略。
所有15条需求的安全需求信息提取结果分别

由四名飞行控制系统软件工程师独立评估,四名工

程师均具有安全需求分析经验,以及至少2年的飞

控系统软件开发和需求分析经验。工程师需要结合

自身领域知识和经验并依据其所关注的安全需求信

息,识别提取结果中正确、错误、遗漏的安全需求信

息,之后由第一作者将四位工程师的识别结果合并

为最终结果,并以此为基准评估本文方法捕捉工程

师所关注的安全需求信息能力,从而探究方法的实

用性。在此基准之上,使用准确率、召回率、F1值

三个指标对本文方法进行综合评估,指标的计算方

法见公式(10)、(11)和(12)。

6.2 案例研究结果

  表11展示了本文方法从FCS案例中提取得到

的安全需求信息数量以及捕捉工程师所关注安全需

求信息的效果。本文方法共从FCS案例中捕捉得

到256条安全需求信息,其中系统架构信息、系统功

能信息、软件安全信息分别捕捉得到113条、105
条、38条。

由评估结果可见,本文所提取的安全需求信息

在系统架构、系统功能、软件安全三个方面上的准确

率均达到了90%以上,说明本文方法所提取的安全

需求信息几乎都符合工程师的关注要点,可见本文

方法可以有效捕捉工程师所关注的安全需求信息。

表11 案例研究评估结果

安全需求

特征维度

LLM提取安全

需求信息数量

本文方法效果

Precision Recall F1
系统架构 113 94.69 79.58 86.48
系统功能 105 98.10 72.41 83.32
软件安全 38 97.37 57.58 72.36

合计 256 96.48 72.52 82.80

相比之下,本文方法在召回率上的性能则较弱,
三个方面信息的召回率均在80%以下,说明本文方

法在识别工程师所关注安全需求信息的全面性上存

在局限,存在遗漏信息的情况。其中遗漏最为严重

的是软件安全信息,这与RQ1的结果一致。然而尽

管如此,本文方法仍然能够捕捉到工程师所关注的

大部分安全需求信息,这表明其安全需求提取实践

中的应用潜力。
通过对比案例研究与RQ1的F1结果发现,案

例研究的评估结果更佳,造成该差异的原因在于评

估基准的差异。通过进一步检查工程师的评估结

果,发现工程师更关注方法所提取信息的正确性,对
于输出格式正确性任务和安全性机制的划分关注较

少,这是导致该差异的主要原因。
通过分析工程师的评估结果,本文进一步对方

法提取结果的错误和遗漏原因进行探究。其中错误

主要体现在两方面:LLM领域知识的不足而导致的

安全需求信息分类错误,例如将“作动器接口装置”
划分为硬件组件而非接口;以及上下文信息理解不

足而导致的关系提取错误。
遗漏问题则主要体现在两个方面:LLM泛化能

力不足而导致的隐含信息遗漏、LLM领域知识不足

而导致的遗漏。以图9中展示的需求提取结果为

例,通常来说工程师或LLM 会结合上下文中的飞
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行控制计算机推测出运行于其上的飞行控制软件,
然而本文方法在提示词中明确要求LLM 仅关注于

案例中包含的信息,限制了LLM 的泛化能力,虽然

显著减轻了LLM 幻觉对提取结果的影响,但也导

致方法依据上下文推理隐含信息的能力受限。由此

可见,虽然LLM 的泛化能力可能向提取结果中引

入幻觉影响,但安全需求提取仍然需要泛化能力来

保证提取结果的全面性,因此如何有效地利用LLM
的泛化能力是未来研究的关键。另一方面,由于

LLM自身领域知识不足,方法未能识别侧杆、油门、
作动装置为硬件组件,同时未能将计算结果识别为

运行数据。针对LLM 领域知识不足的问题,正如

RQ1和RQ2.1的所述,未来可以通过进一步探究

如何向LLM提供更为充分多样的领域知识,或使

用综合性能更加强大的LLM来得以解决。

图9 案例研究结果

综上,虽然案例研究结果显示本文方法仍然存

在安全需求信息提取错误和遗漏的风险,但从准确

性和全面性角度来说与工程师的实践关注要点与具

有很高的一致性。虽然案例研究结果表明了本文方

法的应用潜力,但考虑到工业实践对提取结果正确

性和全面性的严苛要求,以及LLM 领域知识不足

等问题的影响,本文方法目前并不具备取代工程师

独立完成任务的能力,仅可作为辅助手段协助工程

师进行安全需求提取。正如其他基于LLM 的软件

工程任务解决方案[27],在将其输出结果应用于下游

任务前,工程师的人工检查和修正是不可或缺的。

7 讨 论

本节对实验结果的实践启示和局限性进行讨

论,并进一步讨论本文实验的有效性威胁。

7.1 有效性分析

  本节对本文实验的有效性威胁从结构有效性、
内部有效性、外部有效性三个角度展开讨论,并进一

步讨论了本研究的实践意义和局限性。

7.1.1 结构有效性

为减轻结构有效性威胁。本文整理了三个不同

领域的安全关键系统案例组成数据集,并在其上开

展实验。同时,本文使用F1指标评估方法提取安

全需求信息的性能,从而综合考虑所提取信息的准

确性和全面性。

7.1.2 内部有效性

内部有效性威胁主要来自于在评估流程中的人

工参与。为了尽可能减轻内部有效性威胁,本文首

先将LLM提取得到的安全需求与领域专家的分析

结果进行文本比对,识别LLM 正确获取且表述一

致的情况,之后由两位领域专家进一步进行审查以

检查内容与基准安全需求一致但表述有差异的识别

结果,并将其标注为与基准安全需求一致,从而形成

最终的评估结果,保证评估结果的正确性。

7.1.3 外部有效性

本文外部有效性威胁主要在于两点:(1)本文实

验在多大程度上可以代表现实工业实践? (2)本文

实验结果是否可以推广到其他安全关键系统领域?
对于第一个问题,本文实验所使用案例基于公

开信息由工程师按当前工业领域需求文档要求编写

而成。虽然规模存在差异,但尽可能保证了本文案

例在文本特点上与当前现实工业案例的一致。在实

验过程中,本文按照自然段对文档拆分开展实验,考
虑到LLM的上下文长度限制,现实实践中通常也

需要将文档拆分后进行提取。因此本文实验案例可

以代表现实工业案例。
对于第二个问题,本文实验选择的航空装备、车

载电子、民用航空三个领域案例虽然无法完全代表

所有安全关键领域,但是本文方法所提取的安全需

求信息整理自通用标准以及来自航空航天、汽车、装
备领域所依照的权威标准。虽然不同安全关键领域

存在不同的关注点,但是本文整理的通用信息仍然

能覆盖其中的大部分关注点。因此本文实验结果对

其他安全关键系统领域仍然具有参考价值。

7.2 局限性

  本文的局限性主要体现在以下方面:
(1)有限的案例规模。虽然本文数据集中所包

含的案例均整理自真实的具体安全关键系统案例,
但受限于有限的公开资料,数据集中的案例与真实
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安全关键系统需求相比规模有限。但由于本文案例

均依照现实工业需求文档编写要求进行编写,且在

文档的拆分过程中也保证了与现实工业实践的一

致,该局限并不会对本文方法在现实工业案例上的

应用情况产生影响。未来也将向数据集中追加更大

规模的案例。
(2)通用的安全需求概念。为保证本文在不同

安全关键领域上的通用性,本文参照相关文献和标

准识别了的通用安全需求概念并建立领域模型,为
安全需求提取提供指导。这意味着本文方法无法直

接被用于捕捉通用概念之外的信息,如有需要则需

对领域模型进行调整补充。
(3)未对方法的效率提升效果作进一步探究。

鉴于当前安全需求提取实践依赖人工,本文方法作

为自动化方法能否通过辅助工程师提取安全需求从

而提升任务效率是一个重要的问题。然而本文方法

关注于探究LLM在安全需求提取任务中的应用潜

力,实践中的效率提升并非本文的当前核心关注点,
未来会进一步探究。

8 相关工作

本文工作关注于通过自动生成的提示词与

LLM交互从而实现安全需求的自动提取,因此,本
文从安全需求提取、提示词自动生成和检索增强生

成三个方面对当前的一些代表性工作进行总结。

8.1 安全需求提取

  现实工业实践中广泛使用的包括 PHA[7]、

FMEA[8]等安全需求获取方法,均需要工程师人工

提取历史系统和目标系统中的安全需求相关信息,
并在此基础上完成通用软件安全需求裁剪和特定软

件安全需求获取工作[5,78]。相关标准和方法中均没

有明确规定所需提取的信息和具体流程,因此该任

务对工程师的分析经验和系统理解都提出了很高的

要求,具有很大的难度。因此出现了一系列基于模

板的安全需求提取方法,如Safety-RUCM[10]、RM-
RNL[79]等方法,这些方法通过用例模板引导工程师

捕捉提取关键的安全需求信息,降低安全需求提取

难度,同时通过受限自然语言降低安全需求描述的

二义性,但是此类方法仍然对使用者的系统理解有

着很高的要求,且当系统规模提升时,这些方法通常

会带来庞大的工作量。
近年来,一系列基于机器学习和自然语言处理

的自动化需求提取方法被提出。此类方法大多关注

于一般软件需求的提取任务。例如 Haris等人[80]

将需求描述的语法特征整理为需求样板,使用Spa-
cy

 

NLP基于需求样板从需求规格说明书中提取需

求描述语句。Jin等人[81]关注嵌入式系统的问题框

架建模问题,使用BERT模型从需求文本中提取实

体和关系,并基于这些信息构造问题框架模型。
亦有部分方法关注于系统的信息安全(Securi-

ty)需求信息提取,例如李广龙等人[17]提出了一种

从英文自然语言描述中获取安全需求的方法,该方

法使用基于深度学习的安全目标多标签分类模型识

别需求语句的安全目标,同时使用NLP方法从需求

文本中提取实体、实体关系,根据安全目标使用提取

信息匹配安全需求模板,从而实现安全需求的自动

获取。Riaz等人[15]使用k-NN模型识别文本中的

安全相关句子及其安全目标,并提供上下文特定的

模板以辅助工程师捕捉句子中的安全需求信息。
随着LLM的快速发展,其强大的自然语言处

理能力让需求提取领域得到了新的发展。比如Das
等人[71]针对从需求中识别命名实体的问题,提出了

一种名为zsl-ner的基于GPT-3模型的零样本提示

方法,该方法可以识别需求中的实体并进行分类,相
比于先前基于机器学习和神经网络方法有大幅的性

能提升。Jin等人[65]基于嵌入相似度选取与目标需

求文本相似的示例,构造少样本提示从信息物理系

统(Cyber-Physical
 

System,CPS)需求文本中提取

问题框架建模所需的实体和关联关系。
由于LLM具有丰富的人类知识,目前也有相

关研究探究了LLM在安全分析任务上的应用。比

如Nouri等人[82-83]针对危害分析与风险评估(Haz-
ard

 

Analysis
 

and
 

Risk
 

Assessment,HARA)任务提

出了一种基于提示词的流水线原型,并在工业环境

下探究了流水线效率和LLM 在安全分析任务上的

局限。Xia等人[84]使用LLM 进行风险分析和文本

生成辅助人工进行FMEA分析。Qi等人[85]和Di-
emert等人[86]则分别针对LLM 在系统理论过程分

析(System
 

Theoretic
 

Process
 

Analysis,STPA)和
危害分析中的辅助作用进行探究。这些方法关注于

应用LLM的泛化能力来直接根据已有信息生成安

全分析结果。
综上所述,当前安全领域中对LLM 的应用主

要关注于利用LLM泛化能力直接进行安全需求分

析,而LLM的幻觉影响则会对其分析结果合理性

造成影响。而本文关注的安全需求提取任务当前仍

然缺乏有效的自动化方法支持安全(Safety)需求提
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取,同时缺少相关数据集用于模型训练,导致当前安

全需求获取任务的门槛高、工作量大的问题仍然无

法解决。因此,本文针对当前现状提出一种基于

LLM无需训练的提示学习方法用于安全需求提取

任务。

8.2 提示词自动生成

  提示词指定了LLM 所需完成的任务,其质量

是LLM性能的重要影响因素[27]。手动设计的高质

量提示词通常需要对LLM 和任务领域有深入的了

解,并通过大量的试错迭代。为降低提示词设计过

程中的成本,当前有大量研究关注于提示词自动生

成任务,根据生成方法不同,该方面研究可以分为两

大类别:基于模板的提示词生成和基于生成式模型

的提示词生成。
(1)基于模板的提示词生成

当前有大量研究关注提示词构造技巧,提出了

包括少样本提示、思维链提示等可以显著提升LLM
性能的提示方法。这些提示方法通常有着固定的结

构,对其中部分的细节进行修改即可产生不同的提

示词,处理不同的下游任务。基于模板的提示词生

成方法正是来自于这种思想,将各类提示方法抽象

为提示词模板,通过模板捕捉提示词中的可变信息,
从而自动生成高质量提示词。例如Brown等人[20]

指出了零样本提示和少样本提示中的基本结构,为
之后的提示词模板构建提供基础。White等人[87]

归纳整理了常用的提示技巧,并形成提示词模式目

录,提高了提示词的可重用性和不同领域的适用性。

Sorensen等人[88]提出一种无需标注示例和直接访

问模型的提示词模板选择方法,该方法从一组提示

词模板中选择使输入和模型输出之间互信息最大的

模板,进行提示词构建。Clariso等人[89]针对包括

大语言模型、文本生成音乐模型、文本生成图像模型

等在内的生成式人工智能模型提示词特征进行分析

并建立了提示词元模型,并基于元模型设计了一种

领域特定语言(Domain
 

Specific
 

Language,DSL)用
于构建提示词,该DSL支持对各类模型的提示词进

行描述,并且可以实现不同LLM之间的迁移。
此类方法大大降低了构造高质量提示词的门槛

和工作量,减少了构造高质量提示词的迭代试错。
此类方法仍然需要人工介入,因此方法具有很高的

灵活性,所生成的提示词可被用于处理不同的下游

任务,但基于模板构造得到的提示词在框架层面不

会发生变化,意味着生成的提示词可能无法在其所

支持的所有下游任务上达到最优性能。

(2)
 

基于生成式模型的提示词生成

基于生成式模型的提示词生成方法主要依赖于

LLM的自然语言生成能力,引导LLM 生成高质量

的提示词。例如Zhou等人[28]使用GPT-3等黑盒

LLM根据输入输出示例逆向生成候选指令,并将候

选指令结合测试样例作为提示词输入给LLM,根据

LLM输出的正确情况得到高质量的候选指令,并使

用迭代蒙特卡洛搜索方法,驱使LLM 生成更多相

似的指令变体并找到最优的提示词指令。但由于该

方法仍然是在离散空间中搜索,意味着搜索到的指

令仍然可能并非最佳指令。针对这个问题,Chen等

人[90]提出一种名为InstructZero的基于贝叶斯优

化的LLM指令优化方法,该方法使用LLM将软提

示转化为指令,输入到LLM 进行评估,评估结果通

过贝叶斯优化得到新的软提示,通过反复迭代生成

最优的任务指令。Pryzant等人[74]则利用LLM 来

发现其生成的提示词中的缺陷,并使用LLM 识别

的缺陷对所生成提示词进行优化生成新的提示词,
通过不断迭代来生成最优提示词。

以上文章均关注于零样本提示,对于少样本提

示和思维链提示来说,LLM的性能还会受到示例的

影响。针对这个问题,Zhang等人[50]认为示例的多

样性对LLM 性能存在影响,并提出了一种 Auto-
CoT的思维链提示自动生成方法,该方法将数据集

中的问题聚类为多个簇,并从中选择最具代表性的

问题,通过告知LLM 逐步思考的方式生成问题的

推理链,作为示例来构造相应的提示词。
基于生成式模型的方法相比于基于模板的方

法,可以进一步在指令和层面找到更优的提示,但此

类方法均需要与LLM 进行多次交互,相比于基于

模板的方法来说有着更高的使用成本。
综上所述,考虑到安全需求提取任务需要大量

相关领域知识支撑,而当前基于模板的提示词生成

方法大多从提示方法的角度关注于简单任务的提示

词的生成,基于生成式模型的方法则主要关注于简

单任务的指令优化,这些方法由于缺乏对特定领域

知识的考虑,而难以应用于安全需求提取任务。因

此,本文首先结合安全关键软件领域知识,设计专门

的安全需求提取提示词生成方法。

8.3 检索增强生成

  当前LLM在自然语言理解与生成能力上展现

出了强大的能力,可以生成媲美人类的流畅文本,但
其所生成的文本经常与期望或事实存在很大的差

距,甚至提供虚假信息,这也被称为幻觉[91]。RAG
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通过结合信息检索和文本生成技术,从外部知识库

中检索与用户查询内容相关的信息,与用户的原始

问题结合形成一个全面的提示词,引导LLM 生成

符合预期且正确的答案,从而避免LLM幻觉[92]。
从RAG的框架结构角度来进行划分,RAG可

被分为Naive
 

RAG[92]、Advanced
 

RAG[93]、Modular
 

RAG[94-95]三类。其中,Naive
 

RAG仅包含索引、检
索、生成三个步骤,是最简单的RAG方案。然而,
该方案可能因检索质量低等问题导致生成回答质量

较低。因此 Advanced
 

RAG针对检索阶段进行了

优化,此类方法显著提升了检索内容的质量及其与

问题的相关度,从而提升了此类方法生成回答的质

量。然而以上两类RAG均为链式结构,灵活性较

低,Modular
 

RAG则可以通过组合多种模块使方法

更加灵活应对各类需求。

9 总结与展望

全面准确的安全需求提取是安全关键软件安全

性的重要保证,但随着软件规模和复杂度的提升,安
全需求提取任务的工作量和对领域知识及经验的要

求也随之提升。针对这一现状,本文提出了一种面

向功能安全需求提取的模型驱动提示词生成与优化

方法,将安全需求提取所涉及的相关领域知识表示

为元模型以自动生成和优化提示词,引导LLM 结

合领域知识与历史经验完成软件安全需求提取任

务。通过使用来自航空装备、民用航空和车载电子

领域的需求案例对本文方法指导LLM 完成安全需

求提取任务的效果进行探究发现,本文方法可以有

效向LLM提供领域知识与经验,从而在提取安全

需求信息上获得性能提升。同时讨论了基础LLM、
少样本提示包含的示例数量、相似度案例选择策略、
应用场景、方法设计对本文方法的性能影响,并进一

步开展案例研究对本文方法的适用性进行探究,为
本文方法的应用提供了重要的参考。

本文认为,经典的模型驱动方法与提示工程的

结合,可以更好地将LLM 的自然语言处理能力和

丰富的知识应用于需求工程任务。因此,本文未来

的工作主要是两个方面:(1)尝试将模型驱动的提示

词生成迁移到通用的需求提取任务;(2)探索如何从

提示工程的角度提高需求提取任务的性能。
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Background
  When

 

conducting
 

software
 

safety
 

requirements
 

analysis,
 

it
 

is
 

necessary
 

to
 

comprehensively
 

consider
 

information
 

from
 

various
 

aspects,
 

including
 

system
 

architecture
 

and
 

system
 

functionality.
 

The
 

process
 

of
 

extraction
 

of
 

this
 

information
 

is
 

still
 

done
 

manually
 

with
 

the
 

collaboration
 

of
 

system
 

engineers
 

and
 

software
 

engineers,
 

which
 

results
 

in
 

a
 

significant
 

invest-
ment

 

of
 

manpower
 

and
 

the
 

risk
 

of
 

omission
 

of
 

safety
 

require-
ments.

 

How
 

to
 

reduce
 

the
 

risk
 

of
 

omission
 

of
 

safety
 

require-
ments

 

and
 

improve
 

the
 

efficiency
 

of
 

the
 

extraction
 

process
 

is
 

an
 

urgent
 

problem
 

to
 

be
 

solved.
Recently,

 

a
 

series
 

of
 

Large
 

Language
 

Models
 

(LLMs),
 

represented
 

by
 

ChatGPT,
 

LLaMA,
 

and
 

Qwen,
 

have
 

devel-
oped

 

rapidly.
 

LLMs
 

are
 

pre-trained
 

on
 

massive
 

corpora
 

and
 

have
 

excellent
 

natural
 

language
 

understanding
 

abilities
 

and
 

rich
 

human
 

knowledge.
 

They
 

also
 

have
 

the
 

characteristic
 

of
 

being
 

ready
 

to
 

use
 

without
 

the
 

need
 

for
 

additional
 

training,
 

providing
 

automated
 

solutions
 

for
 

software
 

engineering
 

tasks
 

that
 

lack
 

public
 

data,
 

such
 

as
 

safety
 

requirements
 

extraction.

This
 

paper
 

proposes
 

a
 

model-driven
 

prompt
 

generation
 

and
 

optimization
 

method
 

for
 

functional
 

safety
 

requirements
 

extraction.
 

The
 

method
 

extracts
 

and
 

represents
 

relevant
 

do-
main

 

knowledge
 

involved
 

in
 

safety
 

requirements
 

extraction
 

as
 

a
 

meta-model
 

to
 

automatically
 

generate
 

and
 

optimize
 

prompts.
 

The
 

method
 

first
 

automatically
 

generates
 

zero-shot
 

prompts
 

to
 

guide
 

the
 

LLM
 

to
 

obtain
 

safety
 

requirements
 

fea-
tures

 

from
 

target
 

requirements.
 

Then,
 

it
 

identifies
 

similar
 

cases
 

from
 

historical
 

safety
 

requirement
 

based
 

on
 

the
 

features
 

to
 

construct
 

few-shot
 

prompts,
 

guiding
 

the
 

LLM
 

to
 

combine
 

domain
 

knowledge
 

and
 

historical
 

experience
 

to
 

complete
 

the
 

software
 

safety
 

requirements
 

extractions
 

task.
 

This
 

method
 

reduces
 

the
 

demand
 

for
 

users
 

to
 

have
 

do-
main

 

knowledge
 

of
 

safety-critical
 

software,
 

and
 

thus
 

reduces
 

the
 

risk
 

of
 

omission
 

of
 

safety
 

requirements
 

due
 

to
 

engineers'
 

lack
 

of
 

domain
 

knowledge,
 

and
 

improves
 

the
 

efficiency
 

of
 

ex-
traction

 

process
 

while
 

ensuring
 

the
 

quality
 

of
 

safety
 

require-
ments.
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