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Abstract Images and text serve as fundamental carriers for conveying emotions in daily human
communication. Sentimental image captioning requires models to not only accurately describe the
visual content but also appropriately express underlying visual sentiments. Compared with the
conventional image captioning task that focuses purely on factual semantics, sentimental image
captioning emphasizes the affective alignment between visual elements and linguistic expressions,
making it particularly valuable for applications such as social media recommendation and human-
computer interaction. Existing sentimental image captioning methods typically rely on large-scale
pairs of images and sentimental captions. However, their annotation process is expensive, labor-

intensive, and error-prone. Moreover, existing sentimental-related datasets mainly focus on
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single modality data with sentiment class labels or paired with texts crawled from social media
posts that have large discrepancies with image descriptions, which cannot be used as the training
data for sentimental image captioning. To address this limitation, we propose a novel task called
unsupervised sentimental image captioning, which aims to generate image descriptions using
inherent sentiments without requiring any paired image-sentence data for training. The main
challenge lies in how to enable the model to express the underlying sentiment of the image by
To tackle this

challenging task, we propose a method that integrates commonsense knowledge of sentimental

incorporating appropriate sentimental elements without any supervision.

relationships into the caption generation process. This is inspired by the fact that human
sentimental expressions usually follow certain rules and have specific describing patterns for
different entities and emotion combinations. Our method consists of four key components,
including a commonsense knowledge base of sentimental relationships, a factual sentence
decoder, a sentimental sentence decoder, and a visual information extraction module.
Specifically, the commonsense knowledge base of sentimental relationships is constructed from an
external corpus, where the sentimental relationship represents the correlation between an entity
and a sentimental description in a specific sentiment. Our method adopts a two-phase generation
strategy, which first generates a factual sentence with masked sentimental parts, and then fills the
masked parts with highly image-relevant sentimental words inferred from the commonsense
sentimental relationships. To effectively train the model using unpaired images and sentimental
corpus, we design a novel sentimental reward in reinforcement learning that aligns generated
sentimental captions with commonsense knowledge. This new reward is calculated by evaluating
how reasonable the generated sentimental words are, according to the commonsense knowledge of
sentimental relationships, in order to encourage the model to pay more attention to the sentimental
part of a sentence. Moreover, to address the problem of existing metrics that independently
evaluate the content relevance and sentiment consistency, we propose a new metric called
SentiCLIPScore. This novel metric jointly assesses both the factual and sentimental aspects of
captions, where the content relevance is measured by the pre-trained multimodal model CLIP,
and the sentimental consistency is synthetically measured by the sentence sentiment class and the
constructed sentimental relationship knowledge base. Experiments on the COCO and Flickr30k
image datasets demonstrate the efficacy of our method. Compared with unsupervised baselines,

our method improves SentiCLIPScore by 4% and 13% on COCO and Flickr30K, respectively.

Keywords unsupervised sentimental image captioning; commonsense; sentimental relationship;

visual sentimental analysis
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TR BERN Z R BB IR Can 4548 FE 23S A4 ST
ARG ASh A T HIE PR I 52 fife 45 3l g 2, G5 )5
R EE

4 = %

4.1 HUEE

SRR AR SO A w8 L #E COCO Bl 4 5
Flickr30K %% #i5 4 i B & b b f7 50 . Horp,
COCO Ay 7 113287 7k EEH F Y1125 5000 7k F4
FHF B031E , 5000 5K G T3 L 55 5K EUR AR AR 1
T HAER . COCO Y 2t H i 1 3 w001 v 1
/4], 5 SentiCap" ™ i 4 4892 ) BN 15 7] F 3977 41
TH R A — A, R A B R o Flickr30K 41
T 31783 5k % , Hidr 29783 5K F FI145: . 1000 5K F
F 5 UE L 1000 5k B F 3 . R 15 I8 4 28 %
EmotionROT*" | ArtPhoto™” . Twitter]** il
Twitter [T PO~ G B4 B B 4 il 25, 2
7 1685 5K AR BRRUR 175 8% (1) A 2308 5K {4 R TR AR 155
JEIY B LA B 655 5K T6 B 15 8% 0 v v RO T
plES
4.2 XWEE

AR STV I AT R A A A E 2 [R]
23R IBYA B B R HA A EE T k.
MEAEE D, SEBENENSHBYEE D, ¥ E RN
512, Tl ot O 26 1) B ik 2 46 J3E 15 1k 2048, a3l 1E
I 4E F L) SentiCLIPScore MK 3 78 [ 4 {0. 5,
1.0,2.0,4. 0} M A48 R, AR IS EA,,
A, AP E 4. 0F12. 0. F TS St ik
FR R 280, BRE M 0. 6, TR I8 06 2 8 i N, DU
5 A 300 YN Zhad #2R H Adam A L8, I 25
Wy BOKr 27 2] 3P 5E N 4 X 1074, I B Beds 27 2 R
BEE R4 X 1077,

B T v A A7 AR R I SR F AR S8
tH 1% SentiCLIPScore $8#5 (48 5 2 S-CLIP) [7] B X
H5 MG 0 =5 SRR T I RS WA A FE A T
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PRI, 73 B08R o R IR AR B s o e Ah , R R
FHE LR FRIEAT T PFI0 o A0 45 1 1) 25 5 R A M 1Y)
BLEU . METEOR"" i1 CIDEr*, LA J% 1 5] 17 Jg&
G FE W BT SRR 2 (AR5 R cls) T34 TR =K
JE RS R ppD o Horr, 18IS A HER R 3RR A LY
8 5 UG AT AR [RGB 43 L, B LSTM Fl—
A4 T 1 J2 M L ) IR IR A S AR AR, LA I
HRHE ENZR)E BA 99% oy RiEr 3. F3¥H
BB B SRILM T B AL 52 5, 52820 v
V15 7 0 3 — 5. R T AT 2 B Al ) 415 38
7T T, L A L B ) 17 R
4.3 ALt

F A A TG W B 1 B A U A iR v
XF LY s 4 25 BT T W B PRG3R T 1% UTC SR FH P il
AN ) 7 2 B 2 Y W AT 55 o T8 B0 A T W B Lk T
25 s (DUICH . F) F I B 2 A B R U 25— A~
] [ X = A AL L (2O UTC T o A
FIFEXT N (R BRI 25—l Sz AR . 7E Flickr30K
5HCOCOMEMER g Rk 1R . ETEEN
S, T E I A1 R R T AR R

*1

e 5 HpepE = eI Bk b T A i N S —
I 2R A BRI S FobR T AR s e N 25T H Y
PENFE BRI A 25 0, AR 5 A =g 8% 1Y)
LA ERE. T LUE B AR SO AR A EE 4R 1Y B
H G FARIA R T e i S-CLIP 43040, ixX 2 W
TG OGS G - r -850 BV AT A e o 7 A A
o 5 UL R, X Al P 2 AR AR SO Y S-
CLIP 43550t o] A7 505 e 3 415 3R 7 P9 25 R 8% 1
LB . A, SEEREE IR — PR R T A IR
& (ppD ZE VAL AR AL H AR P RE AT A SR B . ELAA T
L AUIC T (1 CIDEr 30 807T LA %S4 15 2
BT BRSSO Z () B RS N I OC &R 304 B
(AR T S5 S E R PR Jr T e LA 25, T H: ppl F8 AR A
A F i Ko 25, UTCHA 15 IR HE R 2 (cls) %
HH AR A i e ke PG a9 i 3 7 TR AR AEAS 2 (HL
Hoppl S BURBERBE . LR R FEfih =
S 5 S 7 K Y PR A R T ppl 17
TR RLIX 5y 7 PR RE LA R B S R R IR ) 4 34 o
L Bz ol Hep . 3 — WSS IE R AR SCHE Y T
K H SentiCLIPScore PEA 8458 I SIHLITZE

TE Flickr30K #EE UK COCOHEE L ST MEEL A RN LER

Flickr30K ##i4E

COCO #¥¥a4E

i ik Bleu-1 Bleu-3 METEOR  CIDEr ppl(y) cls(%) S-CLIP Bleu-1 Bleu-3 METEOR  CIDEr ppl(y) cls(%) S-CLIP
UIC* 41.2  10.0 9.5 10.7 16.2 81 0.092 54.1 22.1 15.7 37.8 12.8 1.2 0.020

— vict 385 7.8 8.7 51 80 100.0 0.459 35.2 6.6 9.2 50 8.6 100.0 0.407
Ours  41.2  10.6 10. 6 13.1 22.0 93.3 0.545 54.9 21.5 17.5 37.6  16.5 90.4 0.598

UlC*  41.9 11.2 10.2 9.6 15.6 6.2 0.066 55.0 23.1 16.7 45.3 13.5 6.3 0.080

o, UICT 40.7 113 10.0 3.0 10.7 100.0 0.547 33.7 2.2 8.4 3.2 6.7 100.0 0.429
b Ours 42.7 11.3 10.8 10.6  19.6 82.2 0.552 56.8 23.4 18.4 45.8 16.3 84.1 0.568
UIC*  41.7 9.9 10.2 9.7 13.8 84.4 0.367 54.6 21.8 16.4 43.3 9.0 93.6 0.524

L UICT 463 126 1.1 13.2 9.3 98.9 0.507 60.5 27.6 19.2 60.0 7.8 99.7 0.646
i Ours  44.9 11.5 11.2 12,7 11.7 98.7 0.499 61.0 26.9 18.8 59.4 8.9 99.6 0.653
UIC*  41.6 10.2 10.0 9.5 10.4 48.6 0.234 54.6 22.1 16.3 43.1 8.0 57.6 0.334

ig uict 434 11.1 10.2 8.7 11.3 99.4 0.503 49.7 18.4 14.8 37.5  11.7 99.8 0.555
Ours  43.5 11.3 11.0 1.9 16.3 93.9 0.522 59.1 25.1 18.5 52.3  11.8 94.7 0.625

xR T IR OR RN 2T iR 77k, SentiCLIPScore 455 g S-CLIP . A58 43 55 & e IHLAR ]

WA N 2 vh s . 54 W T T A dE
155 AL 15 41 34 7 2% Insenti-Cap R XU 1k 16 14
i34 75 7 StyleNet' '™ .\ MemCap""* . MPDCap"**' A I
TridentCap"*”, 4% 3¢ J7 1k 76 W A R FH L& - 4] 7
BELNELT ARIHAECOCO 3G T 54 W
B 5 A 2 A I B R Ccls) BT 1 IR R R
(ppD o ZEE R B T HRR A BOC R W IR T
A HERINE B VR T o T W AR B A R R A B

S FEORSONEAAR IET R B s T2k
Bk

) WO Ao o 5 AR B R T L B
25 3Ly BLIP2™ \ LLaVA™ LI & MiniGPT4"", L)
“Describe this image with the inherent sentiment
reflected by the image” JH&7~ 1] , SEINZFEAS 14 17 Jgk
Al G R LR B JF 8 25 R 5 A SO s AT 3 1 .
COCO¥UREE LA RT3 FT/R . LR LIFE
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F2 TECOCO#IEE 515 RL A 7% (Insenti-Cap ) T XU 4& 1k Bl 4514 77 3% (StyleNet, MemCap, MPDCap,
TridentCap ) K% bk 25 R
ik i itk W kS Blew-1  Bleu-3 METEOR CIDEr  ppl(v) cls(%)  S-CLIP

StyleNet!" P A% AL 45.3 12.1 12.1 36.3 24.8 45.2 -

MemCap™! & ki 51.1 17.0 16.6 52.8 18.1 96. 1 -

MPDCap™* = &AL 52.3 18.2 17.0 54.8 13.2 99.3 -

- TridentCap®” & A Ak 55.1 23.5 18.7 69.0 14.9 100. 0 -
Insenti-Cap'™”! S T AL 59.7 25.3 20.9 61.3 13.0 98.5 725
AL 7 Ak 54.9 21.5 17.5 37.6 16.5 90. 4 598

StyleNet"” S A AL 43.7 10.6 10.9 36.6 25.0 56.6 -

MemCap™’ i A% AL 49.2 18.1 15.7 59. 4 18.9 98.9 -

MPDCap™*® & k24 49.3 18.4 16.3 55.0 13.0 96. 5 -

—_— TridentCap™’ b AA&1E 55.7 24.5 18.9 71.3 13.6 100.0 -
Insenti-Cap"'® po Ak 59.1 24.3 19.4 53.3 12.3 95.5 0.632
A i it Ak 56.8 23.4 18.4 45.8 16.3 84.1 0.568
‘ Tnsenti-Cap'™”! P T 73.5 41.2 24.7 97.5 8.4 98.9 0.690
i AL i R4k 61.0 26.9 18.8 59. 4 8.9 99.6 0.653
it Tnsenti-Cap'™”! po T 69.0 34.7 22.9 82.5 9.2 97.5 0. 686
i ik AL o i Ak 59.1 25.1 18.5 52.3 11.8 94.7 0.625

i ARSI EAE S-CLIP 73 %0 b B2 & T W 200
O A T B B GRS AR AR A A
5T B s AR A TR L BRAT T R AR A A U

HERR R . LR X A R T X T I 2Rl s i =
RERUTI 75 o A2 ol B TR e PR 517 S 14 i K S Al
HAR ik o ik — 2D B A SO R BB (L

*3 ZECOCOHBELEMINGMREBSTREMIILER

1F % Fik Bleu-1 Bleu-3 METEOR CIDEr ppl( v ) cls(%) S-CLIP
BLIP2! 65.8 40.0 25.7 101.6 34.6 0.5 0.077
LLaVA® 17.0 7.4 17.8 0.0 155.9 8.4 0.083
TR MiniGPT4"! 17.7 6.9 14.0 0.4 134.5 2.8 0. 069
AR 54.9 21.5 17.5 37.6 16.5 90.4 0.598
BLIP24! 60.0 36. 1 23.6 98.5 32.5 1.3 0.079
LLaVAPY 16.7 6.9 17.0 0.0 167.7 2.2 0.083
TH % MiniGP T4 18.3 6.9 14.3 0.2 145.6 2.4 0.070
EN'S 56.8 23.4 18.4 45.8 16.3 84.1 0.568
BLIP2H! 62.5 37.3 24.3 99.6 14.0 99.1 0.078
LLaVA™ 16.7 7.1 17.2 0.0 246.2 91.0 0.083
rhp: MiniGPT4"! 18.3 7.1 14.3 0.3 126. 1 94. 1 0.070
KNS 61.0 26.9 18.8 59. 4 8.9 99. 6 0. 653
BLIP2 62.8 37.6 24. 4 99.7 14.3 59.8 0.078
e LLaVA® 16.7 7.1 17.3 0.0 240.5 56.7 0.083
175 Ik MiniGPT4"! 18.2 7.0 14.2 0.3 130. 4 57.5 0.070
AL 59.1 25.1 18.5 52.3 11.8 94.7 0. 625

4.4 HEAZIE

B X AR SC T TP R I TG R R TRURNE L B
JEICE 2. AF COCO % 42 L dE 47 18 il 52 55 ok
B E HA R 45 B 4 iR, Hod “K7 R &
BOCFRH IR RMCRIE TR . (HEE
() J2 5 B 1% B 0T AL il LA S R U S

fitlh 17 O R R R B B BR B 2 T BOZ il o vk 5K
Mo KR A PSRRI AT 55 AT SR
DLEH L EB BRI RFIREOLT A7
g - KR A WS ST B N I TN
ST A B R O R AL AR I EE B . XS L
FRAPKNIRAE AT 58 AT R T UA N,
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& IR I OT 22 2 Il 25 3 BUIE A G Y 8 bR Pk fig K
W& T R, 14N cls  ppl DA S S-CLIP ., B iE T 3% %2 Jih
TER PR BB A H R b AR .
bR A AL TEB HE bR A8, 0 0 55 A S R E N AT
Hrax 2L 77 v A B A OA BT iAo N PR X
5 G =5 52 A TR R IR A BE AT AT 48
TR A B B F R 1 2 34, 4r AR R Al
I T A% 3R A1 RS ARG 58 AN A DL S B —

Ho AMRLAY . F L HERR L BN 10 2 35
or BRI IR Y N A 5 BB e 2 0 A K OE 4 —
B N TPEZE R LR 3, Pl Fm kAR BIR
[ 7 S0 o B B A S O T ik T 2
ARSI % () A PN 2 AR B A D5 i AR T A
TR 3 T RS B A OGN B I 0T R R
HR R AT AT — 0T A 2 S B RO B R B A R
5 2T PURIR L BN JEO0 3 il i A Rtk

F4 COCOHIEELBRRBXAFERMAK)EBHETRERM(R)WHMIELER

ik K R Bleu-1 Bleu-3 METEOR CIDEr ppl(¥) cls(%) S-CLIP
X X 52.6 20.5 17.3 35.1 20.7 88.0 0.574
N/ X 53.9 20.9 17.4 36.9 19.1 88.5 0.588
piAv3
N/ N/ 54.9 21.5 17.5 37.6 16.5 90. 4 0. 598
X X 56. 1 23.0 18.1 44.6 17.0 79.6 0.533
J X 56. 1 23.1 18.3 44.8 17.5 78.9 0.533
TE
N/ N/ 56.8 23.4 18.4 45.8 16.3 84.1 0. 568
X X 59.9 26.2 18.8 56.9 11.6 99.2 0.650
N X 60.3 26.5 18.8 58.4 10.0 99. 6 0.653
ek
N N 61.0 26.9 18.8 59.4 8.9 99.6 0. 653
o X X 57.8 24.4 18.3 49.9 15.0 93.1 0.611
o v X 58.4 24.7 18.4 51.4 13.4 93.3 0.616
e N N/ 59.1 25.1 18.5 52.3 11. 8 94.7 0. 625
skt TR
=% ma¥e  wsEs ZE AN BN R B €
100 100
a0 a0
20 80
70 70
g GG
5 R
450 50
ﬁ 40 f. 40
30 30
20 20
238 23.1
10 10
14.3 . 77 11.1
O Brx BBR K 0
Pl BEK BBRR A7
(245) (265) (2.73) (224) 227 (2.49)

K3 HRESEE N TIFIE R . KRR R H LR AR ROT R K

4.5 TS

&l 4 e T oW BR 4 0 i S AR SO R AR Y
1B BRI . ML Z T AR SO AR B 4 A
Jo R, fE % R “gorgeous flower” | “lonely
street” #EMf L MR N 28 . BLAh, “UIC T 7 HjE—
R Hb A B G AR A7 1) 15 2% ] “nice ™ “dead” s
AR TN SEBRNE R 2T . K5k

]

TN T BRI BOG F R R IT TR DA SO I OT 2 il Oy vk
FASOT LA NS R . HETATIAGBCRE
P AR SOy PR R 5 GO ¢ B4 B R A Ot
. B 40 “pretty woman” fl “rotten banana” , & f% ik
B R . AT ANl I BT 3 2 il o A SCO7
RE A% A ol T U 3 0 o ST A HL T AR B i 3R ) an A=
BT “cuddly cat TN 5EiZ 1Y “nice cat”.
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disg i b ik

COCO: Acloseupofa
vase with many flowers.
UIC*: A vase filled with
flower on a table.
ATk Gorgeous

flower in a vase on a table.

COCO: A woman walking down
the road with a pink umbrella.
UIC*: A woman holding an
umbrella in the rain.

AT A person with an
umbrella walking down the lonely
street.

COCO: Many different
dishes of food on a table.
UICtt: A group of people are
traveling down a nice street.
AL i A table topped
with plate of awesome food

and a drink.

COCO: A large jetliner flying over
a small farm near a forest.

UICti: A dead woman standing in a
field with her horse.

A% Anairplane flying in

the gloomy sky above a tree.

B4 ARSO S OB 407 UIC” \“UIC T 7 75 COCO Bt g 1 i 5 Ak R 45 51 vl ¥4k (L < COCO” %3 COCO

B GO R B S S A D

ALVl rs A AR

T R

5 AL HIE

COCO: A woman hitting a
ball with a tennis racquet.
BRI R A
woman is swinging a tennis
racket at a ball.

ATk A pretty woman
is swinging a tennis racket
at a ball.

COCO : A basket of bananas
and some apples on a table.
FEBRHS 26 R3H: A bunch
of banana sitting on a table.
ACJ7iE: A bunch of rotten
banana sitting on a table,

COCO: A black and white
cat laying on a desk by a
laptop.

FEERNT T H AN : A nice
cat laying on a desk next to a
laptop.

A5 A cuddly cat laying
on a desk next to a laptop.

| COCO = A blue boat docked
next to a table full of people.

i FERRTT RT3 A boatin
| a body of shallow water next

8| 0 the building.

(S0 A0 A boat in a body of
! _dirty water next to the building.

B5 A SOy 1 SRS BRI AL 5 1L AF IO 3R 5 e COCO Bidia 4 T 15 JE AL Al iR 45 21 nT AL (L “COCO™ R 3

COCO K Fe i P 506 i F) 2 54 i)

5 ZiLSRE

AR SCHRE T S5 H TR TG B AL R
FERAE RO o WS IR MRE R B RO R
TS B HITR R L I A6 2 1 5 PRS0 o A O ) 4 JkoT
FH TR0 S A SR ik 2% 2 R il %071k fig
S TS USR] T OB (A 1 00T A 24
()15 BT 3R 2R K RGO 615 J8% » a2 1T A= i 5 R
A AAE A B A . 5 BEIRII AR SCHE 1)
SentiCLIPScore & br » HE 1 [] i Sz e H3 17 18 Ak R
iR 55 R S M S G L BRI
FIRETHEZ IR LG WA EE . &
COCO F1 Flickr30K £ 48 £ |- (% R 1 % L 52 40 5 7
TS B B UE T A ST IR A R

AR SCHBIFFE A T RN AR R b =28 0
TR BRI NS R IR A A S 240 J5 491 5
P AR TR IR AE . AR A AL X AT Uy ik
A4 e s 22l SO A b 4] 3 Tk b AR I
Fe S 20T BT IO 2R RURIRUAE L LUAR T A Al ik
AT R R SR Ty . SR 3 —WF 58 o i i
T 22 PRI LA AT E 155 ST R A AR O 2 A [ 1
TR 22 1 0 SOOI L LR T A2 2% ) R TR R
AREHERITE . AN R R SRR RO R WR
WA L LIRR B A 6 B A £ B 3 R R B 1S
IR AR AR H AT TETT 1]
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Background

The research presented in this paper belongs to the field of
vision-language understanding and generation, which lies at the
intersection of computer vision and natural language processing.
Within this field, image captioning has been a long-standing core
problem, aiming to generate natural language descriptions that
accurately reflect visual content. Over the past decade, this task
has evolved from describing factual semantics to capturing higher-
level attributes such as style and sentiment.

In particular, the task of sentimental image captioning
represents an important step toward sentiment-aware artificial
intelligence. It requires models to generate textual descriptions of an
image with the underlying emotion expressed by the image itself,
enabling more human-like communication and interaction.
However, the reliance on large-scale annotated image-sentence pairs
limits its scalability and adaptability to diverse real-world scenarios.

In this paper, we make the first attempt on unsupervised
sentimental image captioning, which aims to generate image
descriptions using inherent sentiments without any image-
sentence pairs for training. The available data for this task is an
image set and an external sentimental corpus, where the image set
and the sentimental corpus have no correlation. This paradigm
not only reduces dependence on costly human labeling but also
provides a pathway toward more autonomous and scalable
sentiment-aware systems.

Our method integrates external commonsense knowledge of
sentimental relationships into the caption generation process,
enabling the inference of appropriate emotional expressions
aligned with visual content. To acquire essential knowledge, we
investigate on constructing a commonsense knowledge base of
sentimental relationships, through mining the co-occurrence

frequencies between entities and sentimental words with different

we collect 105, 102

sentimental relationships to build the knowledge base, where each

sentiments from the corpus. In total,
sentimental relationship is represented by a quadruple. With the
support of the acquired knowledge, our unsupervised sentimental
image captioning method adopts a two-phase generation strategy.
It first produces factual captions with masked sentimental
components and then fills these masked parts with sentimentally
relevant words derived from the constructed knowledge base that
links entities to emotional expressions. Furthermore, we design a
sentimental reward within a reinforcement learning framework to
guide the model toward generating captions sentimentally aligned
with commonsense knowledge. To more accurately evaluate this
task, we also propose a novel metric, SentiCLIPScore, which
the

expressiveness of captions. Extensive experimental results on

jointly  measures factual accuracy and sentimental
COCO and Flickr30k demonstrate that our approach significantly
improves sentimental relevance and descriptive quality over
unsupervised baselines. Notably, it also surpasses strong VL.Ms
pre-trained on extensive paired image-caption data, even without
utilizing any paired image-caption data. These results confirm the
effectiveness of our method in bridging factual and emotional
understanding in visual captioning, offering a new step toward
sentiment-aware visual-language intelligence.
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