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摘 要 近年来，隐蔽通信在社交网络中的广泛应用加剧了网络安全风险，使得可靠防御面临新的挑战。在防御方

面，以往的研究主要集中在隐写检测等被动防御。然而，目前被动防御存在一些漏洞，一方面，在低负载率下，隐写检

测的虚警率和漏检率过高，使得隐写检测尚未达到百分百正确率，导致无法可靠判别；另一方面，因在社交网络等现

实场景中无法获得载密图像的负载率、质量因子和隐写算法种类等先验知识，导致隐写分析人员难以对秘密信息进

行定位和提取。因此，隐写检测为主的被动防御无法及时应对实际应用场景。针对上述问题，本文提出一种针对图

像隐写的隐蔽通信主动防御方法，使得在通信双方毫无察觉的情况下彻底阻断秘密信息的传输。首先，分析不同噪

声模型对载密图像的破坏程度，选取效果最好的椒盐噪声(Salt-and-Pepper noise, S&P)进行秘密信息的破坏，得到

噪声图像;其次，通过对中值滤波层和高斯滤波层的原理性分析，发现中值滤波层和高斯滤波层适用于恢复噪声图像

质量和破坏秘密信息，基于此，设计一个端到端的图像恢复网络(Recovery Network, Rec-Net)，得到高质量的“干

净”图像。Rec-Net既维持社交网络通信双方传递图像的视觉效果和秘密信息破坏效果，又不改变图像的存储空间

大小;最后，鉴于误码率和清除率准则在未知隐写和完整秘密信息序列等先验知识前提下无法度量主动防御效果，本

文提出一种新的基于改变率的隐写主动防御图像评价准则，同时能够快捷准确度量图像中秘密信息破坏的主动防

御效果。所提方法不仅对不同隐写的隐蔽通信具有通用性，而且满足社交网络实时性要求。实验结果表明，在不同

数据集下，本文方法均具有高秘密信息破坏效果和高图像质量，能够达到100%的防御成功率，阻断社交网络中的隐

蔽通信，其中“干净”图像的误码率最高可达到53%。同时，在不同负载率的数据集下，本方法与SC-Net方法和AO-
Net方法进行对比，在秘密信息破坏方面各提升5.61%和0.56%;在图像质量方面各提升4.44%和34.8%.
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Abstract In recent years, the wide application of covert communication in social networks has 
exacerbated network security risks, making reliable defense face new challenges.  In terms of 
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defense, previous research mainly focuses on passive defense such as steganalytic.  However, 
there are some loopholes in passive defense.  On the one hand, under low payload, the false alarm 
rate and miss detection rate of steganalytic are too high, so that steganalytic has not yet reached 
the 100% accuracy rate, resulting in the inability to reliably discriminate.  on the other hand, due 
to the impossibility of obtaining the a priori knowledge of the payload of the stego image, the 
quality factor, the type of steganography algorithms in the real scenarios such as the social 
networks.  It is difficult for steganalysts to locate and extract secret messages.  Therefore, the 
passive defense based on steganalytic can not cope with the practical application scenarios in a 
timely manner.  To address the above problems, this paper proposes an active defense method for 
image steganography, which can completely block the transmission of secret messages without the 
awareness of both parties.  Firstly, we analyze the damage degree of different noise models to the 
stego image, and select the most effective Salt-and-Pepper noise (S&P) to destroy secret 
messages and obtain the noise image.  secondly, we analyze the original rationality of the median 
and gaussian filter layers, and find that the median and gaussian filter layers are suitable for 
restoring the quality of noise image and destroying secret messages.  Based on this, an end-to-end 
image recovery network (Rec-Net) is designed to obtain high-quality “clean” image.  Rec-Net 
maintains the visual effect of the image and the effect of destroying secret messages transmitted by 
both parties in the social networks without changing the size of the image storage space.  Finally, 
given that the bit error rate and removal rate criteria are unable to measure the active defense effect 
under the premise of a priori knowledge of the unknown steganography and the complete sequence 
of secret messages, this paper proposes a new active defense steganographic image evaluation 
criterion based on the change rate.  The evaluation criterion can quickly and accurately measure the 
active defense effect of the destruction of secret messages in the image.  The proposed method is 
not only generalized for covert communications with different steganography, but also meets the 
real-time requirements of social networks.  The experimental results show that the proposed 
method has high secret messages destruction effect and high image quality in different datasets, 
and can achieve 100% success rate in blocking covert communication in social networks, and the 
highest BER of the “clean” image can reach 53%.  Meanwhile, under the datasets with different 
payloads, this method is compared with the SC-Net method and the AO-Net method, and each of 
them improves 5. 61% and 0. 56% in terms of secret messages destruction; and each of them 
improves 4. 44% and 34. 8% in terms of image quality.

Keywords active defense; robust steganography; convolutional neural network; salt-and-pepper 
noise; covert communication

1 引 言

隐写［1］是一门将秘密信息隐藏到图像、视频、文
本等载体中进行隐蔽通信的技术。作为图像隐写的

对立面，隐写分析［2-5］是对它的防御，它通过对载体

进行检测，判断其中是否隐藏秘密信息，以及指出载

体中秘密信息的容量和位置，提取秘密信息，甚至破

坏秘密信息。根据防御方式不同，本文将其分为被

动防御技术和主动防御技术。被动防御技术不修改

载密图像的内容，主要包括隐写检测［6］、隐写定

位［7-9］、隐写提取等。其中，隐写检测判断图像为载

体图像还是载密图像；隐写定位是判断载密图像中

秘密信息的位置；隐写提取是通过具体了解先验知

识的前提下从载密图像中提取秘密信息。主动防御

技术是对被动防御技术的补充和提升，通过主动修

改载密图像内容来破坏秘密信息，利用神经网络的

表征能力实现对秘密信息的过滤，阻断社交网络平

台中不法用户隐蔽通信。目前，在社交网络等现实

场景中载密图像的负载率参数、隐写算法种类等先
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验知识获取难度较大，使得隐写分析人员对载密图

像的检测以及秘密信息的定位和破译较为困难。一

方面，被动防御技术对载密图像的检测无法阻止隐

蔽通信；另一方面，即使技术人员花费大量时间与精

力得到载密图像中的秘密信息，仍然难以保证破译

秘密信息的时效性，无法有效阻止隐蔽通信滥用事

件发生。因此，在社交网络中隐蔽通信主动防御更

具有实际应用优势。
针对隐蔽通信主动防御，研究者已经提出了一

些方法。本文将其分为两类，第一类是利用卷积神

经网络的主动防御方法。朱等人［10］受到 DnCNN［11］

网络的启发，提出了一种包含攻击模块和优化模块

的深度学习网络（简称AO-Net），AO-Net能够在破

坏秘密信息的能力和图像质量两方面达到较好的均

衡。张等人［12］受到 DnCNN 网络架构的启发，提出

一种针对水印的主动防御方法，通过测试三种不同

的鲁棒水印算法 Block DCT、BSS-C、ULPM 证明

该网络可以对水印图像达到实时防御的目的。李等

人［13］提出一种基于残差学习的卷积神经网络主动防

御方法，通过在网络中提取 7 个特征块的方式提高

水印主动防御能力，利用超深分辨率（Very Deep 
Super Resolution， VDSR）技术［14］，提升图像质量。
第二类是利用对抗神经网络的主动防御方法。王等

人［15］提出针对隐写的生成式对抗网络（Generative 
Adversarial Networks， GAN）主动防御方法，通过

GAN 训练 n 种算法的载密图像到载体图像的映射

模型，使得在应用阶段载密图像经过 n 次无替换抽

样的映射模型下达到破坏秘密信息的目的。该文［16］

提出一种 DDSP（Deep Digital Steganography Purifier）
网络，DDSP 网络利用预训练的自动编码器作为生

成器破坏秘密信息，并且通过判别器对生成的干净

图像与对应的载体图像进行判别，从而在不牺牲图

像质量的情况下针对隐写进行主动防御。Zhu等人［17］

提出两种针对隐写的Scaling-Net和SC-Net主动防

御方法，其中，Scaling-Net 适用于社交网络中的超

大尺寸图像，SC-Net适用于普通尺寸图像。以上两

类主动防御方法都是依靠神经网络强大的端到端学

习能力和表征能力，一方面在破坏秘密信息的能力

上取得较好的效果，另一方面也在图像的不可感知

方面有较大提升。
图像隐写主动防御技术目前面临着诸多难点和

挑战。其中，难点在于：（1）现有主动防御方法主要

关注于固定模式和正态分布扭曲等破坏方式，以达

到对秘密信息破坏的目的，而嵌入秘密信息的模式

及分布无迹可寻，导致破坏未知隐写嵌入时秘密信

息误码率低，从而降低图像隐秘信息的阻断率；（2）
卷积层的局部性和低冗余性使得中心像素值在感受

野内映射时发生改变，使得现有方法缺失有效像素

值，导致无法重构干净图像，从而不可避免地造成图

像退化的问题，阻碍隐写主动防御在实际场景的推

广和使用。（3）现有主动防御评价准则所需的隐写算

法、嵌入率以及完整秘密信息序列等，在公开信道场

景下通常难以获得，导致无法定量评估主动防御效

果。挑战在于：（1）随着社交网络的发展，在主动防

御平台破坏秘密消息中，往往存在大量冗余网络，造

成计算资源的浪费和时空成本的增加，难以在实际

应用中满足图像隐写防御方法对时效性的需求；
（2）目前隐写方法层出不穷，例如生成式隐写等均

给隐写主动防御带来新的挑战。
目前，图像隐蔽通信主动防御的研究引起广泛

关注，其方法虽然能够在一定程度上对秘密信息的

提取进行干扰，但是仍存在一定的局限性：（1）现有

主动防御方法对载密图像处理后，“干净”图像的误

码率仍较低。（2）现有主动防御方法生成的“干净”
图像质量被削弱。（3）现有主动防御方法使用频率最

高的误码率难以操作，无法给出定量评价结果。
考虑到上述问题，本文拟提出一种基于S&P和

Rec-Net的图像隐蔽通信主动防御方法。该方法的

应用场景是社交网络中公开通讯方式传递的图像。
本文通过加入 S&P 噪声的方式破坏潜在的载密图

像中的秘密信息。另外，将破坏后的图像进行一定

程度的恢复，使得最终得到的“干净”图像质量不低

于“发布”图像质量，能够综合考虑秘密信息破坏与

恢复图像质量两个因素。本方法能够使接收方即使

获得载密图像但仍然无法成功获取秘密信息，达到

在社交网络中图像隐蔽通信主动防御的目的。本文

的主要贡献如下：
（1） 对比分析不同噪声模型对社交网络中“发

布”图像的破坏程度后，选取破坏能力最好的 S&P
噪声无差别攻击载体图像和载密图像，即在载体图

像和载密图像中叠加椒噪点和盐噪点，使得载密图

像中存在的秘密信息被覆盖和过滤，从而得到破坏

秘密信息后的噪声图像，进而达到主动防御的

目的。
（2） 鉴于噪声图像中存在明显黑白像素点，影

响图像的视觉效果，在图像恢复卷积神经网络Rec-
Net中，本文增加更适用于优化 S&P噪声图像质量

兼顾破坏秘密信息的中值滤波层和高斯滤波层，既
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维持社交网络通信双方传递图像的视觉效果又不改

变图像的存储空间大小。
（3） 误码率无法在未知隐写算法和未知秘密信

息序列的情况下得到评价结果，在实际应用中具有

较大局限性。针对上述问题，本文提出一种隐写主

动防御图像评价准则——改变率，该准则能够在未

知隐写算法与完整秘密信息序列等先验条件下更加

快速简便地度量载密图像中秘密信息的破坏效果。
本文的其余部分组织如下：第2节介绍本工作的

动机；第 3节阐述本文提出的主动防御方法；第 4节

介绍隐写主动防御图像评价准则；在第 5节中，验证

本文方法的有效性；最后一部分对本文进行总结与

展望。

2 动 机

本文动机主要包括两个方面，分别是“加噪”主
动防御的动机和隐写主动防御图像评价准则的

动机。
2. 1　“加噪”主动防御的动机

近些年来，图像的隐写检测取得长足的发展，检

测准确率也已达到较高的水平。目前，一些层出不

穷的生成式隐写算法［18］给检测带来巨大挑战。鲁棒

图像隐写技术是指在非完美传输通道下嵌入隐秘信

息，实现隐蔽通信。Luo等人［2］提出一种抗 JPEG压

缩检测的自适应隐写算法 DMAS。DMAS 利用基

于量化表的自适应抖动调制算法、基于侧信息的嵌

入代价计算算法以及 RS 码，能够保证嵌入信息对

JPEG压缩的鲁棒性。在DMAS基础上，Chen等人［4］

提出自适应隐写算法 GMAS。该算法通过双层

STCs 的三元嵌入并合理扩展嵌入域，显著提高

GMAS的鲁棒性与安全性。与此同时，社交网络存

在的图像数量巨大，且规格类型多样，不乏存在隐写

算法与负载率未知的载密图像，这导致载体失配问

题。上述问题使得隐写分析从基础科学研究到实际

应用的转化过程减慢。对于经过普通隐写算法嵌入

秘密信息后的载密图像而言，裁剪、美化、融合、拼贴

等轻量级的数字图像处理能够达到破坏载密图像中

秘密信息的效果。然而，对于目前较为流行的鲁棒

隐写技术［19-25］而言，一方面，简单的有损信道无法达

到破坏其秘密信息的目的；另一方面，由于在低载荷

下隐写检测结果的虚警率和漏检率过高，导致最终

对载密图像的分类结果不够准确，即图像隐写检测

在防止鲁棒隐写秘密通信方面尚未达到实际应用要

求。此外，安全部门即使确认社交网络传输的是载

密图像，可能仍无法使用 IP 定位找到接收方的位

置，依然不能阻止接收方的不法行为。
因此，图像隐写分析需要主动防御技术。该技

术对社交网络中所有的图像进行处理，使得无论是

否检测到载密图像，接收方都无法从载密图像中提

取秘密信息，从而达到图像隐蔽通信主动防御的目

的。图 1展示在社交网络中图像隐写检测和图像隐

蔽通信主动防御的一般过程。
由图 1（a）可知，社交网络中图像隐写检测的一

般过程分为两大类。第一类是传统的隐写检测方

法，第二类是基于深度学习的隐写检测方法。传统

的隐写检测方法对上传到社交网络中的图像进行特

征提取、特征增强和分类检测。基于深度学习的隐

写检测方法主要通过神经网络强大的表征学习能力

对图像进行分类检测。无论是传统还是基于深度学

习的图像隐写检测方法，接收方无法直接阻止秘密

信息的传输。由图 1（b）可知，主动防御能够使得接

收方无法提取秘密信息，从而成功阻止秘密信息的

传输。
本文根据方式不同，将主动防御分为两类，如

图 1（b）所示。第一类方法是通过去除隐写噪声的

主动防御方法，简称“去噪”方法。由于隐写可被认

为是在图像中加入一些高频弱噪声信号，因此，使用

去噪网络或者图像滤波能够破坏其中的秘密信息。
此类方法具有减少人工干预的优势，但在破坏秘密

信息效果方面有待提高。一方面，载密图像具有特

征隐蔽性的特点，与载体图像高度相似，通过常规图

像领域的去噪网络进行训练较为困难；另一方面，使

用图像滤波对秘密信息进行破坏则会降低图像的视

觉质量。第二类方法是通过叠加噪声的形式破坏秘

密信息，简称“加噪”方法。“加噪”方法本质是通过孤

立噪声点对载密图像像素点进行无差别覆盖，实现

破坏秘密信息的目的。该方法的优势在于无论载密

图像中的秘密信息嵌入在哪个区域，“加噪”方法都

能够全面地破坏秘密信息。鉴于此，本文考虑使用

“加噪”方法对载密图像进行攻击，达到隐蔽通信主

动防御的目的。
2. 2　隐写主动防御图像评价准则的动机

隐写主动防御图像评价准则是在一定的标准下

对秘密信息破坏效果进行定量度量，为主动防御方

法的有效性提供判定依据。目前较为常用的准则有

误码率（Bit Error Rate， BER）［12］和清除率（Removal 
Rate， RR）［10］。误码率是秘密信息中错误的比特数
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占总比特数的比率。计算误码率时需要提前知晓隐

写算法、隐写负载率、载密图像质量因子与完整的秘

密信息序列，并对载密图像中嵌入的秘密信息进行

提取，才能与发送方嵌入的秘密信息序列进行比较，
从而得到错误比特数，导致该准则在社交网络等实

际场景下难以应用。即使侥幸得到上述各种先验知

识，提取秘密信息的过程也较为烦琐，无法快速给出

定量评价结果。清除率评价方法的计算过程如下

所示。
RR = 1 - 2 × BER - 1 （1）

可见：清除率评价方法的计算需要使用到误码

率，因此在误码率无法计算时，也同样无法得到清除

率的结果。因此清除率和误码率类似，都具有相同

的局限性。鉴于上述可知，本文提出一种在无任何

先验条件下即可对秘密信息破坏效果进行度量的评

价准则。

3 提出的方法

针对被动防御的局限性，本文提出基于S&P和

Rec-Net的图像隐蔽通信主动防御方法（简称SPRN
方法），在“发布”图像中加入S&P噪声，破坏社交网

络中潜在载密图像的秘密信息，以达到主动防御的

目的。本节将从SPRN方法原理、S&P主动防御和

Rec-Net图像恢复三个方面对SPRN方法进行详细

阐述。
3. 1　SPRN方法原理

针对隐写检测在社交网络中的局限性，本文提

出 SPRN 方法，通过修改图像内容的方式破坏秘密

信息，使接收方即使获得载密图像仍无法成功获取

秘密信息。该方法既维持图像质量，又破坏隐藏在

其中的秘密信息，从而实现图像隐蔽通信主动防御

的目的。本方法主要包括两部分，如图2所示。

图像发送

载体图像

载密图像

提取

特征 增强后的特征

增强 分类检测

检测网络

图像输入 图像输出

图像接收

提取

完整秘密信息

载密图像载体图像

无法阻止秘密信息的传输

图像隐写检测
一般过程

传输

隐写 

传统
的隐
写检
测方
法

基于深度学习的
隐写检测方法

叠加和噪防御

...

去隐写噪声网络

“干净”图像

提取

...

恢复网络

图像输入
“去噪”破坏

输入 输出

传输

噪声图像

“干净”图像噪声

无秘密信息

成功阻止秘密信息的传输

隐写 

图像发送

图像隐蔽通信主动防御
一般过程

“去噪”方法

“加噪”方法

（a） 社交网络中图像隐写检测的一般过程

（b） 社交网络中图像隐蔽通信主动防御的一般过程

图1　社交网络中图像隐写检测和图像隐蔽通信主动防御的一般过程
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图 2 中，第一部分为 S&P 主动防御，在该阶段

“发布”图像中加入 S&P 噪声，得到噪声图像，达到

破坏秘密信息的目的。第二部分为Rec-Net图像恢

复，通过训练好的带中值滤波层与高斯滤波残差块

的 Rec-Net 对噪声图像进行优化，使得在无人察觉

的情况下恢复该图像的质量，并维持第一部分中主

动防御效果。最终，接收方将会接收到“干净”图像，
且无法提取秘密信息。
3. 2　S&P主动防御

在计算机视觉领域，图像噪声和图像滤波都对

图像产生不同程度的影响。隐蔽通信主动防御可以

通过加入噪声和滤波的方式破坏载密图像中的秘密

信息。图像噪声通常是存在于图像中的干扰信息或

者无关信息，对图像的分辨率会有较大影响。常见

的噪声有 S&P 噪声、高斯白噪声、泊松噪声等。通

过分析文献［26］发现，如果恰当使用噪声就能够成

功防御隐蔽通信，这是因为在载密图像中加入噪声

点便会覆盖掉该图像中嵌入秘密信息的像素点，噪

声点越随机，秘密信息被破坏得越多。由于高斯白

噪声与泊松噪声的概率密度函数分别符合高斯分布

与泊松分布，它们的噪声点不具有严格随机性，破坏

秘密信息较少。并且，泊松噪声依赖于信号本身，对

于不同强度的信号会导致噪声点出现概率不同，无

法达到破坏秘密信息的目的，不能成功防御隐蔽通

信。由于S&P噪声是脉冲噪声，它以纯噪声的形式

出现在被污染的位置（称为缺失像素），并且随机地

改变一些像素值，能够在缺失像素上，擦除载密图像

在该位置的所有秘密信息，故可成功防御隐蔽通

信。为了验证上述分析的可信性，本文采用DMAS
和 GMAS 隐写算法，得到质量因子为 95 的 30 张载

密图像，在其中分别加入均值和方差均为 0. 01的高

斯白噪声、泊松噪声、噪声水平为 0. 5 的 S&P 噪声

以及标准差为 0. 5的高斯滤波，以此为例，使用误码

率准则评价主动防御效果，如表1所示。

表 1 可知，在主动防御 DMAS 隐写时，加入高

斯滤波、泊松噪声、S&P 噪声与高斯白噪声得到图

像误码率最小值分别为 0. 4556、0. 4541、0. 4948 和

0. 4771，其中 S&P 噪声主动防御 DMAS 隐写得到

图像误码率值最高。在主动防御GMAS隐写时，加

入高斯滤波、泊松噪声、S&P 噪声与高斯白噪声得

到 图 像 误 码 率 最 小 值 分 别 为 0. 4587、0. 4473、
0. 4967 和 0. 4607，其中 S&P 噪声主动防御 GMAS

图2　本方法的整体框架

表1　主动防御方法效果对比

隐写

算法

DMAS

GMAS

主动防御

方法

高斯滤波

泊松噪声

S&P噪声

高斯白噪声

高斯滤波

泊松噪声

S&P噪声

高斯白噪声

负载率

0. 01
0. 4572
0. 4573
0. 5041
0. 4771
0. 4587
0. 4867
0. 4979
0. 4607

0. 02
0. 4556
0. 4541
0. 5087
0. 483

0. 4891
0. 4473
0. 4967
0. 4708

0. 03
0. 4809
0. 4679
0. 4948
0. 4802
0. 4656
0. 4804
0. 5074
0. 4826

0. 04
0. 4897
0. 4815
0. 4951
0. 4811
0. 4815
0. 4751
0. 5048
0. 4867

0. 05
0. 4856
0. 4875
0. 4999
0. 4826
0. 4954
0. 4819
0. 4972
0. 4784
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隐写得到图像误码率值最高。以上数据均表明

S&P噪声能够成功破坏秘密信息，其主动防御效果

远高于其他主动防御方法。
本文以主动防御DMAS隐写为例，在载密图像

中加入不同噪声水平的S&P噪声（实验环境设置见

5. 1），主动防御效果如图 3所示。

由图 3可知，横坐标表示不同负载率，纵坐标表

示误码率，不同噪声水平使用不同颜色的折线表示，
颜色由图例所示。以上折线数据表明 S&P 噪声主

动防御DMAS隐写的误码率结果在 0. 485与 0. 515
之间，即均在 0. 5处波动。以噪声水平 0. 5为例，当

负载率为 0. 05 时，载密图像的误码率最大为

0. 5131；当负载率为 0. 04 时，载密图像的误码率最

小为 0. 4925。由此可知不同负载率下载密图像的

误码率均值为 0. 5021，秘密信息序列不能被恢复。
因此，不同噪声水平的S&P噪声均能够对载密图像

中秘密信息进行破坏，实现主动防御隐写的目的。
综合上述原因，在本阶段采用叠加S&P噪声进

行主动防御，这里S&P主动防御方式定义如下：

I (m，n)=
ì

í

î

ïïïï

ï
ïï
ï

0 r1 < p&r2 < 0.5
255 r1 < p&r2 ≥ 0.5
I ( )m，n r1 ≥ p

（2）

其中，I (m，n)表示图像位于坐标 (m，n)处的像素

值，p ∈ (0，1)为给定的噪声水平，r1 和 r2 分别是在每

个像素上生成的两个随机值，前者决定像素是否会

被污染，后者控制像素是最大值还是最小值。
在此阶段，本文在“发布”图像中加入 S&P 噪

声，实现对图像的无差别攻击，从而达到主动防御的

目的。这一过程具体表述如下。

ì
í
î

ïïïï

ïïïï

C + M = S
C ∪ S = θ
θ + I = θn

（3）

其中，θ和 θn 分别表示“发布”图像和噪声图像，C和

S别表示载体图像和载密图像，M和 I分别表示秘密

信息和噪声信息。
3. 3　Rec-Net图像恢复

在 SPRN 方法的 S&P 主动防御阶段中得到噪

声图像，该图像中的秘密信息虽然已经遭受到攻击，
但是由于 S&P 噪声中随机的椒噪点和盐噪点的叠

加会对图像视觉效果层面造成一定的影响，针对上

述问题，受到梁等人［27］的启发，本文设计一个端到

端的图像恢复网络（Recovery Network， Rec-Net），
用于维持社交网络中“干净”图像的质量效果。
3. 3. 1　Rec-Net整体架构

噪声图像中存在的随机黑白点在像素层面会表

现在图像像素峰点上的最大值和最小值，使得图像

邻域像素点间的值相差过大，这势必会影响社交网

络通信双方的正常传递，使得接收方能够轻易察觉

到图像的变化。因此，本文设计Rec-Net，目的是使

接收方接收到的“干净”图像既无秘密信息又无像素

极值点（椒噪点和盐噪点），且更加接近“发布”图像，
在不影响视觉改观的同时，存储空间大小的变化也

在可接受范围。Rec-Net的整体架构如图 4所示。
在 Rec-Net中，输入为 S&P主动防御阶段生成

的噪声图像，输出为秘密信息被破坏掉的“干净”图
像 。 Rec-Net 首 先 从 三 层 中 值 滤 波 层（Median 
Layers）开始，得到与噪声图像大小一致的中值滤波

特征图，目的是去除该图像中的极值点；其次是一层

高斯滤波层（Gauss Layer），得到由 64个特征通道组

成的特征图，目的是消除中值滤波层产生的窗口模

糊化和块状化；然后是 16组高斯滤波残差块（Gauss 
Residual blocks）与 中 值 滤 波 层（Median Layers、
Gauss+BN、Gauss+BN+Prelu 和 Conv+BN+
Relu）、16 组高斯滤波残差块（Gauss+BN、Gauss+
BN+Prelu 和 Conv+BN+Relu），目的是将去极值

点与去窗口模糊化相结合，得到邻域像素差值更小

的 特 征 图 。 网 络 中 最 后 一 层 为 卷 积 层（Conv 
Layer），目的是生成三个通道RGB的图像。

Rec-Net 能够实现对噪声图像的恢复，使得社

交网络接收方能够接收没有秘密信息并且视觉质量

较好的图像，本文将该网络反向传播的问题定义为

公式（4）。

图3　不同S&P噪声水平的主动防御效果对比
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Loss = θ - θc
2

2 （4）
其中，θ为“发布”图像，θc为网络生成的“干净”图像。
Rec-Net 在整个网络训练过程中都使用公式（4）作

为损失函数，能够使训练过程更加容易收敛。具体

过程是通过公式（4）计算出 θc 和 θ之间的差异值，在

反向传播过程中再通过公式（4）去更新 Rec-Net 中
每层的各个参数，以此用来降低 θc 和 θ 与之间的差

异，最后 Rec-Net生成的 θc 更加接近 θ，从而达到恢

复具有不同程度 S&P 噪声污染的潜在 θc 的目的。
下面将详细描述 Rec-Net 中的中值滤波层、高斯滤

波层以及高斯滤波残差块。
3. 3. 2　基于中值滤波层的极值点优化

对于本文方法的第一阶段破坏秘密信息之后，
噪声图像中的 S&P 噪声点较为明显，S&P 噪声点

在图像像素层面体现在极值点上，椒噪点为最小极

值点，盐噪点为最大极值点。极值点在图像上的表

现为黑色像素点和白色像素点，影响视觉效果。而

一般的卷积层主要用于提取图像特征，不能够清除

图像中的所有极值点，由于存在上述问题，因此，需

要考虑其他方法。
中值滤波作为一种传统的非线性滤波，本质上

是一种统计排序滤波器，它用局部窗口的中值替换

给定窗口中居中的像素，能够在消除噪声的同时保

持较好的图像细节。一个 2-D中值滤波的输出可用

公式（5）表示。
gmedian (x，y)= median

( m，n )∈ N ( )x，y
[θn (m，n) ] （5）

其中，θn (m，n)和 gmedian (x，y)分别是噪声图像和中

值滤波处理后的图像，N ( x，y )为 ( x，y )的 N 邻域，
邻域越大图像平滑的效果越好，但邻域过大，平滑会

使边缘和轮廓信息损失得越大，从而使输出的图像

变得模糊，因此需合理选择邻域的大小，通常为 3×
3 或 5×5。受文献［27］启发，在图像上重复应用中

值滤波，直到所有极值点被固定大小的局部窗口中

的中值所取代，使得噪声图像中的极值点被消除。
因此，本文使用中值滤波来代替卷积层，称为中值滤

波层。
Rec-Net 不是直接对图像进行中值滤波操作，

而是作为网络中的中值滤波层对图像中不同特征通

道的椒盐噪点进行过滤。网络使用中值滤波层的滤

波核大小为 3×3。通过这种方式，Rec-Net 基本上

去除了不同特征图中的极值点，然后结合中值滤波

特征用于预测更好的“干净”图像。其中，中值滤波

层和传统卷积层相同，都是以移动窗口的方式应用

于特征通道的每个元素，如图5所示。
图 5中，由 RGB通道组成的 Lena图像对应于 3

个特征通道，分别是红绿蓝三个特征通道，中值滤波

层在该图像中应用三次。以R通道为例说明中值滤

波层的应用过程，在该通道中取 3×3 的像素点矩

阵，如
é

ë

ê

ê
êê
ê
ê ù

û

ú

úú
ú
ú

ú198 215 214
198 215 214
199 216 215

，找出该矩阵像素点中的中

值（214），用该值替换中心像素点（像素值 215）的

值，得到
é

ë

ê

ê
êê
ê
ê ù

û

ú

úú
ú
ú

ú198 215 214
198 214 214
199 216 215

。通过改变噪声图像中的

图4　Rec-Net的整体架构

992



4期 马媛媛等：基于S&P 和Rec-Net 的图像隐蔽通信主动防御方法

局部窗口像素中心点的值，使得局部窗口中邻域像

素点的值差异变小，从而达到消除最大极值点和最

小极值点的目的。G 和 B 通道采用相同的处理过

程，消除每个通道的极值点，从而对图像实现中值

滤波。
3. 3. 3　基于高斯滤波层与高斯滤波残差块的图像

恢复

经过Rec-Net中值滤波层的噪声图像虽然能够

去除噪声图像中 90% 以上的椒盐噪点，但是，中值

滤波层会使得该图像中部分区域变得窗口模糊化和

块状化，未能有效保持噪声图像的边界信息与细节

的处理。从而造成接收方收到的图像质量下降，并

影响秘密信息破坏效果。而与中值滤波不同，高斯

滤波是一种线性平滑滤波，是对整幅图像进行加权

平均的过程。经过高斯滤波处理后的图像中每一个

像素点的值，都由其本身和邻域内的其他像素值经

过加权平均后得到，能够在过滤秘密信息的同时降

低图像相邻局部窗口中边界像素点值的差别，并且

能够使噪声图像中边缘细节的保持效果更好，从而

达到减少窗口模糊化和块状化的目的。因此，本文

通过使用高斯滤波层破坏秘密信息，并改善图像中

存在模糊化和块状化的区域。高斯滤波层是使用一

组可学习的卷积运算代替高斯滤波器（固定参数的

平滑滤波器），在该层中使用 64 个高斯滤波器生成

64个特征通道，其中高斯滤波器的滤波核大小固定

为3×3用于Rec-Net网络的训练。
传统的线性整流单元（Rectified Linear Unit， 

ReLU）激活函数见公式（6），它能增加网络特征提

取能力，但会导致神经元坏死问题，使得网络训练过

程中拟合能力下降。为了缓解这一困局，对 ReLU
激活函数进行改进，在该激活函数中加入变量 ，称

为参数整流线性单元（Parametric Rectified Linear 
Unit， PReLU）激活函数，见公式（7）。PReLU 激活

函数区别于ReLU激活函数，如图6所示。

ReLU ( x )=ì
í
î

x， x > 0
0， x ≤ 0

（6）

PReLU ( x )=ì
í
î

x， x > 0
ax， x ≤ 0

（7）

这里，a 的值会随着网络训练的反向传播进行

更新。PReLU能够在不增加计算量的前提下，改善

Rec-Net 过拟合问题，使得网络训练过程中收敛更

快。进而在一定程度上缓解神经元坏死的问题。于

是，本文在高斯滤波层中选择 PReLU 作为激活函

数，用来为Rec-Net提供非线性关系，提高该网络的

表征和拟合能力。
由于 Rec-Net 网络的层数较多，单独训练会使

图5　中值滤波层的应用示例

图6　ReLU与PReLU激活函数对比
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得模型的复杂度上升，也使得训练变得困难，进而导

致网络退化。因此，本文在网络中加入残差学习的

思想，使得网络中的数据可以实现跨层流动，避免因

网络层数增加导致网络梯度消失问题。本文将嵌入

高斯滤波层的残差块称为高斯滤波残差块。它由

Gauss+BN、Gauss+BN+Prelu 和 Conv+BN+
Relu组成。如图 4所示，Rec-Net中带中值层的高斯

滤波残差块与不带中值层的高斯滤波残差块分别训

练 16组，能更好地去除噪声图像中的极值点以及全

面恢复该图像中的残缺信号，使得接收方能够得到

视觉质量佳且提取不出秘密信息的“干净”图像。

4 隐写主动防御图像评价准则

为了在无任何隐写先验条件下更加快捷的描述

载密图像中秘密信息的破坏效果，本文提出一种新

的隐写主动防御图像评价准则——改变率（Change 
Rate， CR）。另外，为了验证所提准则的可信性，本

文采用相关性分析来对其有效性进行阐明。
4. 1　改变率

CR是“发布”图像与接收方接收到的“干净”图
像的像素改变量占总像素数的比率。它是对图像整

体变化程度的一种描述。 CR 的计算公式如下

所示。

CR = 1
HW ∑

m，n

D ( )m，n （8）

D (m，n)=ì
í
î

1， θ ( )m，n ≠ θc( )m，n
0， otherwise

（9）

其中，H与W分别表示图像的高度与宽度，m与 n分

别表示图像像素点的横坐标和纵坐标，D ( m，n )表
示衡量图像像素改变次数，若改变的次数越多，则破

坏秘密信息越多。同时，CR越大，隐写主动防御效

果越好。
4. 2　相关性分析

为了描述 CR 与 BER 对评价结果的一致性，通

常通过两事物之间联系紧密程度关系进行相关性分

析和评估，因此，本文采用协方差Cov和皮尔森相关

系数 ρ 对两者进行相关性度量，并衡量它们之间的

偏差关联程度。Cov和ρ的计算公式如下所示。
Cov ( X，Y )= E (XY )- E (X ) ·E (Y ) （10）

ρXY = Cov ( X，Y )
D ( X ) D (Y )

（11）

其中，变量X和Y分别表示为X =[ x1，x2，x3，⋯，xn ]

和 Y =[ y1，y2，y3，⋯，yn ]，E (X )为 X 的期望，D (X )
为X的方差，X̄表示X的平均值，P为概率。公式（11）
中 ρXY 是描述变量 X和Y之间的线性相依性和联动

性强弱的一种度量。ρ ∈ [ - 1，1]，ρ越接近 1，表明X
和Y之间正相关越强，越接近-1，表明X和Y之间负

相关越强。根据 4. 1 节中的实验设置和过程，本节

数据来源随机选择 30幅载密图像（质量因子为 95），
并在载密图像中加入噪声水平 0. 4（即 p=0. 4）的

S&P 噪声得到相应的噪声图像，通过 Rec-Net得到

“干净”图像，以 30 幅“干净”图像为例，得到一组

实验数据（包括 30幅“干净”图像的CR和BER），如

图7所示。

在图 7中，横坐标表示随机选择的图像，左纵轴

表示 CR，右纵轴表示 BER，橙色正方形点表示 CR
值，绿色圆形点表示 BER 值，橙色线条和绿色线条

分别表示CR值和BER值的折线。
根据图 7中的数据点对CR和BER的Cov进行

计算，得到它们的相关性度量结果，过程如下：
（1） 计算 CR 与 BER 的方差，分别为 D ( CR )=

4. 368 × 10-3，D ( BER )= 2. 4983 × 10-4。
（2） 由公式（10）得到 CR 与 BER 的协方差

Cov ( CR，BER )，结 果 为 Cov ( CR，BER )= 6. 4 ×
10-4，可得该结果为正，由此可知CR与BER之间的

协同关系是同向变化的，即为正相关。
（3） 根据 D ( CR )、D ( BER ) 和 Cov ( CR，BER )

计算得到ρ = 0. 6132。
根据上述结果，能够看出 CR 和 BER 数据点值

之间具有较高的相似度。为了更好地对CR和BER
进行相关性分析，本节从函数角度说明 CR 与 BER
的关联程度，对图 7中 30张图像的 CR值与 BER值

图7　CR与BER的结果对比
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使用 Allometric1 函数进行非线性拟合，其中 CR 与

BER拟合曲线参数值如表2所示。

表 2中， Allometric1函数的原型为 y = axb，a和

b 分别是函数的两个系数；Reduced Chi-Sqr 为标准

误差；Residual Sum of Squares 是残差平方和，用于

度量二者曲线的差异程度；R-Square（COD）表示回

归拟合效果。其中，根据 CR 与 BER 的拟合曲线函

数能够得到CR趋近BER的 0. 5倍，故CR的基准值

为 0. 05。根据表 2 中的参数值，生成 CR 与 BER 的

拟合曲线图，如图8所示。

如图 8所示，横坐标表示随机选取的图像，左纵

轴表示CR，右纵轴表示BER，橙色正方形数据点和

绿色圆形数据点分别代表 CR值和 BER值，橙色曲

线和绿色曲线分别代表CR拟合曲线和BER拟合曲

线。由图 8 可知，CR 拟合曲线和 BER 拟合曲线走

向趋势基本一致，可得二者之间的相关程度较高。
结合图 7 中折线走向也看出，在误差允许范围内，
CR 与 BER 的折线走向趋势大致相同，意味着两者

结果一致。这也说明本文提出的隐写主动防御图像

评价准则CR与BER的评价结果具有一致性。

综合上述可知，CR 与 BER 具有相同的评价能

力，CR能够在未知隐写算法、负载率与完整秘密信

息序列下发挥优势，且无需提取秘密信息。因此，图

像隐蔽通信主动防御中能够使用CR对秘密信息破

坏效果进行评价。
4. 3　基于CR的秘密信息破坏度量

为了更加详细地描述隐写主动防御图像度量过

程，本节给出一个基于 CR 的秘密信息破坏度量算

法，具体步骤如算法 1所示。
算法1. 基于CR的秘密信息破坏度量算法
输入：发送方发送的“发布”图像 θ 与接收方接收到的

“干净”图像 θc

输出：θ和 θc的改变率CR值

1：   For m=1： H Do /*H为图像的高度/
2：   For n=1：W Do /*W为图像的宽度/
3：       If θ (m，n)≠ θc(m，n) Then
4：            D ( m，n )= 1
5：       Else D ( m，n )= 0
6：       End If
7：         End For
8：   End For
9：   For m=1： H Do
10：  For n=1：W Do
11：     While D ( m，n )=1 Do
12：                     Sum=Sum+1 /*Sum为累加变量/
13：     End While
14：  End For
15： End For
16： Return Sum/HW

利用算法 1可以得到CR评价准则的计算结果，
为后续在实验过程中充分利用CR进行度量提供了

理论依据。此外，本节对计算 CR与 BER结果所需

要的先验知识进行对比，如表3所示。

由表 3可知，CR皆不需要上述的先验知识即可

计算结果，而BER需要上述全部的先验知识才能得

到结果。因此，在社交网络等实际应用场景中本文

提出的CR隐写防御评价准则具有较大优势。
BER同CR类似，都是对秘密信息破坏程度进行

表3　CR与BER拟合曲线参数值

先验知识

载密图像所对应的隐写算法

载密图像的负载率

载密图像的质量因子

原始嵌入秘密信息长度

原始嵌入秘密信息完整序列

CR

不需要

不需要

不需要

不需要

不需要

BER

需要

需要

需要

需要

需要

表2　CR与BER拟合曲线参数值

拟合参数

Equation
Plot

a

b

Reduced Chi-Sqr
Residual Sum of Squares

R-Square(COD)

Allometric1函数拟合参数值

y = axb

CR

0. 3151±
0. 040 46

−0. 114 31±
0. 051 55

0. 004
0. 1119

0. 116 63

BER

0. 504 69±
0. 009 21

−0. 0038±
0. 006 96

2. 560 24E-4
0. 007 17
0. 010 56

图8　CR与BER的拟合曲线趋势图
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度量，但是二者计算过程中时间开销有所区别。由

于 BER在实际场景中无法计算，为了便于与 CR对

比，本文以具体的鲁棒隐写DMAS、固定隐写负载率

为 0. 1、质量因子 95 的载密图像、载密图像分辨率

m×n以及 s个秘密信息序列为例，对 CR 与 BER 的

计算过程和时间复杂度进行对比分析，如表4所示。

表 4中“计算过程”表示CR与BER需要的计算

过程，“时间复杂度”表示计算 CR与 BER值的时间

复杂度。“√”表示需要该计算过程，“×”表示不需要

该计算过程，“--”表示不存在时间复杂度。这里获

得主动防御方法的“发布”图像和“干净”图像，无论

使用哪种评价准则，都是必须要有的步骤。计算“干

净”图像的宽度和高度是图像属性值的计算，时间复

杂度为O (1 )。从表 4中能够看出CR需要的时间复

杂度仅为 O (1 )。 而 BER 需要的时间复杂度为

O ( mn + s )。 显 而 易 见 O ( CR )≪ O ( BER )，因 此

CR需要的计算过程较少，时间复杂度较低。
以图 7 中选取的 30 张载密图像为例，计算此

30张载密图像CR值与BER值的平均运行时间，如

表5所示。

从表 5中能看出 CR 时间开销中需要花费的时

间较少，仅在 10−2数量级；而 BER 的平均计算时间

达到 4. 545 s。因此，CR 评价方法的计算时间远远

低于BER的计算时间。
综上可知，在 CR 与 BER 对图像隐蔽通信主动

防御的评价结果具有一致性的基础上，CR 的时间

复杂度与平均计算时间远低于 BER。并且与 BER
不同，CR的计算过程不必获取隐写算法、负载率和

秘密信息序列等先验知识，因此，在社交网络中使用

CR对秘密信息破坏程度度量更具有实用性。

5 实验结果与分析

为了分析 SPRN 方法的有效性，本文从实验设

置和评价准则、秘密信息破坏程度、图像质量效果、
消融实验与对比实验四个方面进行一系列实验验证

及相应说明。
5. 1　实验设置和评价准则

本节包括两部分：实验设置和评价准则 . 下面

分别对这两部分进行详细的说明。
5. 1. 1　实验设置

实验过程中所使用的处理器型号为 11th Gen 
Intel（R） Core（TM） i5-11300H 3. 11 GHz。为了更

好验证实验效果的准确性，本文在 BOSSbase 1. 01
和 BOWS2 数据集中各取 100 张图像进行验证，将

“发布”图像转换成质量因子为 65、75、85和 95的频

域图像，并选取六种算法进行隐写（Payloads=
0. 01~0. 1，步长 0. 01），如表 6所示。为了便于表达

实验结果，本文在图表中将 BOSSbase 1. 01 数据集

简称 B1，BOWS2 数据集简称 B2，鲁棒隐写算法

DMAS和GMAS分别简写D和G，普通隐写算法 J-
UNIWARD、nsF5、S-UNIWARD 和 WOW 分别简

写成 J、F、S和W。

表4　CR与BER计算过程和时间复杂度对比

计算过程

获得“发布”图像

获得“干净”图像

计算“干净”图像的宽度和高度

比较“发布”图像和“干净”图像像素点值

提取“发布”图像中秘密信息的比特位值

计算“发布”图像中嵌入秘密信息的总长度

提取“干净”图像中秘密信息的比特位值

遍历信息比特位值

计算“干净”图像中秘密信息错误比特位值的总长度

CR

计算过程

√
√
√
√
×
×
×
×
×

时间复杂度

--

--

O ( 1 )
O ( 1 )
--

--

--

--

--

BER

计算过程

√
√
×
×
√
√
√
√
√

时间复杂度

--

--

--

--

O ( mn )
O ( 1 )

O ( mn )
O ( s )
O ( 1 )

表5　CR与BER平均计算时间对比

评价方法

CR

BER

平均计算时间/s
0. 014
4. 535

表6　六种隐写算法

鲁棒隐写算法

DMAS[2](D)
GMAS[4](G)

普通隐写算法

空域

S-UNIWARD[3](S)
WOW[5](W)

频域

J-UNIWARD[3](J)
nsF5[6](F)
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在网络训练阶段，为了加快网络的训练速度，本

文在BOSSbase 1. 01中任意选择 100张图像进行预

处理。首先，对每张图像使用三次样条插值方法缩

放成大小为 256×256 的预处理图像；其次，对每张

预处理图像按照步长为 25 划分成 9 个 64×64 的小

块；最后，对每个小块按照 0. 1~0. 9 的噪声级别生

成 9张噪声图像作为网络的训练集。Rec-Net网络

的参数设置如表7所示。

5. 1. 2　评价准则

评价准则主要包括两个方面，第一方面是秘密

信息的破坏效果评价准则，本文采用 BER 与所提

CR进行衡量。BER见公式（17）和（18）。第二方面

是秘密信息破坏后“干净”图像的质量恢复效果评价

准 则，本 文 采 用 均 方 误 差（Mean Square Error， 
MSE）、峰值信噪比（Peak Signal to Noise Ratio， 
PSNR）和结构相似度（Structural Similarity Index 
Measure， SSIM）来进行度量，公式如下所示。

BER = Me

Mt
=

∑
i

M ( )i
Mt

（12）

其中，Mt表示嵌入秘密信息的总长度，Me表示秘密信

息的序列。BER的结果越大，表示清除秘密信息越

多，隐写破坏的效果越好。文献［8］中描述当BER>
0. 1时，秘密信息序列不能被恢复。因此，BER>0. 1
时，说明图像中的秘密信息被破坏。

MSE = 1
HW ∑

m = 0

H - 1

∑
n = 0

W - 1

[ ]θ (m， )n - θc(m， )n
2

（13）

PSNR = 20 log10 ( MAXθ

MSE ) （14）

SSIM = ( 2μθ μθc
+ k1

2 L2 )( 2σθθc
+ k2

2 L2 )
( μθ

2 + μθc

2 + k1
2 L2 )( σθ

2 + σθc

2 + k2
2 L2 )
（15）

其中，μθ 和 μθc
分别是 θ和 θc 的平均值，σθ

2 和 σθc

2 分别

是 θ和 θc 的方差，σθθc
是 θ和 θc 的协方差，L为图像像

素值的范围，k1 和 k2 是常数，分别取 0. 01 和 0. 03。
MSE 越小，代表该图像相互映射的误差越小，图像

间的相似程度越高，也就是该图像的质量越好。相

反地，PSNR与SSIM越大，表示该图像的质量越好。
5. 2　秘密信息破坏实验

本节针对鲁棒隐写和普通隐写进行实验，验证

SPRN 方法对图像隐蔽通信主动防御的有效性，包

括两部分：主动防御鲁棒隐写和主动防御普通隐写。
5. 2. 1　主动防御鲁棒隐写

根据 5. 1 节中的实验设置，本文方法对两种鲁

棒隐写算法 DMAS 和 GMAS 进行主动防御，破坏

其嵌入的秘密信息。在不同负载率下，SPRN 方法

生成 50 张“干净”图像的 BER 和 CR 取均值作为最

终的实验结果，如表8~表9所示。
由表8可见，在B1数据集与不同负载率下，本方

法破坏秘密信息后，“干净”图像的 BER和 CR均值

为 0. 4849 和 0. 3014，分别是基准值（秘密信息序列

不能被恢复时 BER=0. 1， CR=0. 05）的 4. 849 倍

和 6. 028倍，表明本方法成功破坏秘密信息，实现主

动防御。在B1数据集与不同质量因子下，随着负载

率的减小，“干净”图像的误码率不断增加，即主动防

御能力不断增强，也验证本方法在低负载率下的有

效性。在 B2 数据集与不同负载率下，在质量因子

95、负载率为 0. 06 bpnac 时，“干净”图像的 BER 值

最大为 0. 5025. 并且“干净”图像的BER和CR均值

为 0. 4814 和 0. 2868，分别是基准值的 4. 814 倍和

5. 736 倍。以上数据表明，在不同数据集与不同质

量因子下，本方法都能够达到破坏秘密信息的目的，
成功实现主动防御DMAS鲁棒隐写。

由表 9 可见，在 B1 数据集和不同负载率下，以

质量因子 85 为例，本方法破坏秘密信息后，“干净”
图像的BER和CR最大值分别是 0. 5050和 0. 2717。
本方法破坏秘密信息后，在不同质量因子（65、75、85
和 95）下，“干净”图像的 BER 均值分别是 0. 4873、
0. 4900、0. 5011 和 0. 4905，CR 均值分别为 0. 2774、
0. 2671、0. 2710和 0. 2226。以上数据表明在不同质

量因子下，本方法均能够成功破坏秘密信息。在B2
数据集和不同质量因子下，本方法破坏秘密信息后，

“干净”图像的 BER 均值分别为 0. 4924、0. 4824、
0. 4818 和 0. 5003，CR 均值分别为 0. 3066、0. 3122、
0. 2993 和 0. 2023。结果表明本方法能够成功防御

GMAS 鲁棒隐写。在 B2 数据集与不同质量因子

下，随着负载率的减小，“干净”图像的误码率不断增

加，即主动防御能力不断增强。以上数据表明，在不

表7　Rec-Net参数设置

参数名称

图像数量

图像大小

训练集比例

验证集比例

S&P噪声级别

学习率Learning rate
批量大小Batch_size

数值

8100
64×64

0. 8
0. 2

0. 1~0. 9(步长0. 1)
0. 001

32

997
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同数据集、负载率以及质量因子下，本方法破坏秘密

信息后，“干净”图像具有不同的BER和CR值，且该

结果远远超过秘密信息的不可恢复值。因此，本方

法能够在社交网络中实现防御 GMAS 鲁棒隐写的

目的。
5. 2. 2　主动防御普通隐写

本文方法对四种普通隐写算法 J-UNIWARD、
nsF5、S-UNIWARD 和 WOW 进行主动防御，破坏

其嵌入的秘密信息。本文在使用频域隐写算法时，

对“发布”图像采用 4. 1节的实验设置中的质量因子

进行压缩，而对空域隐写算法的“发布”图像不进行

压缩。本文对破坏 J-UNIWARD 隐写算法采用

BER 与 CR 两种评价指标进行评价，而其余普通隐

写算法则采用CR评价指标进行评价。实验分别对

不同负载率下 SPRN 方法生成的 50 张“干净”图像

取平均值作为最终的结果，如表10~表11所示。
由表 10 可知，在 B1 数据集上，质量因子为 95、

负载率为 0. 03bpnac时，本文方法破坏秘密信息后，

表9　主动防御GMAS得到“干净”图像的BER和CR值

数据集

B1

B2

质量

因子

65

75

85

95

65

75

85

95

指标

BER

CR

BER

CR

BER

CR

BER

CR

BER

CR

BER

CR

BER

CR

BER

CR

Payloads
0. 01

0. 5025
0. 2766
0. 4937
0. 2664
0. 5015
0. 2706
0. 4889
0. 2219
0. 4981
0. 3059
0. 4957
0. 3116
0. 4942
0. 2988
0. 5038
0. 2017

0. 02
0. 4885
0. 2768
0. 4938
0. 2667
0. 5050
0. 2705
0. 4917
0. 2222
0. 4981
0. 3062
0. 4978
0. 3117
0. 4967
0. 2989
0. 5002
0. 2018

0. 03
0. 4919
0. 2767
0. 4895
0. 2667
0. 5035
0. 2705
0. 4900
0. 2221
0. 4963
0. 3060
0. 4972
0. 3116
0. 4932
0. 2987
0. 4989
0. 2018

0. 04
0. 4842
0. 2770
0. 4905
0. 2669
0. 4962
0. 2708
0. 4947
0. 2224
0. 4952
0. 3061
0. 4936
0. 3117
0. 4905
0. 2991
0. 5001
0. 2022

0. 05
0. 4858
0. 2772
0. 4952
0. 2669
0. 5015
0. 2707
0. 4936
0. 2226
0. 4935
0. 3064
0. 4897
0. 3120
0. 4886
0. 2993
0. 5001
0. 2022

0. 06
0. 4804
0. 2773
0. 4913
0. 2673
0. 5009
0. 2710
0. 4921
0. 2225
0. 4918
0. 3065
0. 4817
0. 3121
0. 4810
0. 2992
0. 4999
0. 2021

0. 07
0. 4878
0. 2778
0. 4896
0. 2672
0. 5012
0. 2712
0. 4923
0. 2228
0. 4899
0. 3068
0. 4771
0. 3124
0. 4756
0. 2996
0. 5008
0. 2025

0. 08
0. 4878
0. 2776
0. 4854
0. 2676
0. 5004
0. 2713
0. 4883
0. 2228
0. 4887
0. 3071
0. 4716
0. 3126
0. 4724
0. 2997
0. 4993
0. 2025

0. 09
0. 4810
0. 2783
0. 4868
0. 2676
0. 5011
0. 2714
0. 4884
0. 2233
0. 4867
0. 3074
0. 4607
0. 3127
0. 4668
0. 2998
0. 5005
0. 2028

0. 10
0. 4831
0. 2785
0. 4843
0. 2681
0. 4996
0. 2717
0. 4850
0. 2237
0. 4859
0. 3076
0. 4592
0. 3131
0. 4588
0. 3000
0. 4996
0. 2031

表8　主动防御DMAS得到“干净”图像的BER和CR值

数据集

B1

B2

质量

因子

65

75

85

95

65

75

85

95

指标

BER

CR

BER

CR

BER

CR

BER

CR

BER

CR

BER

CR

BER

CR

BER

CR

Payloads
0. 01

0. 4957
0. 3143
0. 4956
0. 2990
0. 5014
0. 3034
0. 4959
0. 2825
0. 4970
0. 2596
0. 4814
0. 2517
0. 4875
0. 2857
0. 4962
0. 2770

0. 02
0. 4952
0. 3148
0. 4909
0. 2994
0. 4990
0. 3036
0. 4958
0. 2825
0. 4970
0. 2598
0. 4823
0. 2518
0. 4771
0. 2859
0. 4995
0. 2775

0. 03
0. 4857
0. 3152
0. 4837
0. 2998
0. 4956
0. 3037
0. 4940
0. 2826
0. 4976
0. 2602
0. 472

0. 2522
0. 4701
0. 2861
0. 4999
0. 2776

0. 04
0. 4828
0. 3156
0. 4782
0. 3003
0. 4930
0. 3039
0. 4942
0. 2827
0. 4989
0. 2610
0. 4647
0. 2528
0. 4698
0. 2862
0. 4976
0. 2779

0. 05
0. 4761
0. 3165
0. 4725
0. 3006
0. 4913
0. 3040
0. 4937
0. 2831
0. 4976
0. 2613
0. 4578
0. 2531
0. 4629
0. 2866
0. 5018
0. 2781

0. 06
0. 4755
0. 3171
0. 4698
0. 3011
0. 4909
0. 3044
0. 4904
0. 2834
0. 4990
0. 2620
0. 4558
0. 2536
0. 4582
0. 2869
0. 5025
0. 2787

0. 07
0. 4770
0. 3177
0. 4659
0. 3017
0. 4893
0. 3046
0. 4891
0. 2835
0. 4997
0. 2627
0. 4527
0. 2541
0. 4573
0. 2872
0. 5017
0. 2790

0. 08
0. 4729
0. 3185
0. 4654
0. 3024
0. 4901
0. 3049
0. 4892
0. 2837
0. 4998
0. 2633
0. 4513
0. 2544
0. 4599
0. 2876
0. 5024
0. 2795

0. 09
0. 4730
0. 3193
0. 4618
0. 3030
0. 4887
0. 3052
0. 4876
0. 2843
0. 4996
0. 2639
0. 4449
0. 2551
0. 4563
0. 2878
0. 5020
0. 2800

0. 10
0. 4726
0. 3203
0. 4606
0. 3036
0. 4861
0. 3055
0. 4874
0. 2846
0. 5013
0. 2645
0. 4443
0. 2555
0. 4581
0. 2882
0. 5018
0. 2803
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“干净”图像的BER取得最大值为 0. 5052；质量因子

为 75、负载率为 0. 02bpnac 时，“干净”图像的 BER
取得最小值为 0. 4952。表明本文方法破坏秘密信

息后，“干净”图像的BER值均在 0. 4952~0. 5052之

间，由于BER>0. 1时，说明图像中的秘密信息被破

坏。在B2数据集不同质量因子上，本文方法破坏秘

密信息后，“干净 ”图像的 BER 最小值分别为

0. 4961、0. 4981、0. 4991和 0. 4989，表明“干净”图像

的BER值不低于 0. 49，说明图像中的秘密信息百分

百被破坏。由此可知，SPRN 方法能够成功破坏 J-
UNIWARD嵌入的秘密信息，使得接收方无法完整

提取秘密信息序列。故本方法能够在社交网络中达

到主动防御 J-UNIWARD隐写的目的。
表 11可见，在B1和B2数据集中，SPRN方法破

坏 J-UNIWAR嵌入的秘密信息后，“干净”图像的CR
最大值分别为0. 3037和0. 3060，最小值分别为0. 2860
和 0. 2262，其中最小值分别是基准值的 5. 72 倍

和 4. 524倍；在不同数据集下，本方法破坏隐写算法

nsF5嵌入的秘密信息后，“干净”图像的 CR 最大值

分别为 0. 2972 和 0. 3062，最小值分别为 0. 2855 和

0. 2246，其中最小值分别是基准值的 5. 71 倍和

4. 492倍；当负载率为 0. 07 bpnac时，以B2数据集为

例，本方法破坏隐写算法S-UNIWARD和WOW嵌

入的秘密信息后，“干净”图像的CR值最大为0. 3041

表11　主动防御 J-UNIWARD、nsF5、S-UNIWARD和WOW得到“干净”图像的CR值

数据集

B1

B2

算法

J

F

S
W

J

F

S
W

质量

因子

65
75
85
95
65
75
85
95

65
75
85
95
65
75
85
95

Payloads
0. 01

0. 2973
0. 2865
0. 2908
0. 2863
0. 2972
0. 2862
0. 2906
0. 2863
0. 2914
0. 2912
0. 3059
0. 2936
0. 2987
0. 2267
0. 3062
0. 2935
0. 2986
0. 2247
0. 3039
0. 3040

0. 02
0. 2972
0. 2864
0. 2906
0. 2861
0. 2972
0. 2863
0. 2906
0. 2861
0. 2912
0. 2913
0. 3059
0. 2935
0. 2987
0. 2265
0. 3059
0. 2932
0. 2988
0. 2248
0. 3040
0. 3039

0. 03
0. 2973
0. 2864
0. 2906
0. 2860
0. 2967
0. 2862
0. 2905
0. 2861
0. 2911
0. 2911
0. 3059
0. 2934
0. 2986
0. 2262
0. 3057
0. 2932
0. 2986
0. 2247
0. 3039
0. 3039

0. 04
0. 2973
0. 2864
0. 2907
0. 2862
0. 2969
0. 2861
0. 2905
0. 2861
0. 2911
0. 2912
0. 3060
0. 2935
0. 2988
0. 2266
0. 3058
0. 2934
0. 2985
0. 2248
0. 3038
0. 3038

0. 05
0. 2971
0. 2864
0. 2907
0. 2864
0. 2968
0. 2863
0. 2906
0. 2858
0. 2911
0. 2911
0. 3058
0. 2934
0. 2989
0. 2264
0. 3056
0. 2933
0. 2986
0. 2249
0. 3040
0. 3039

0. 06
0. 2974
0. 2863
0. 2906
0. 3036
0. 2968
0. 2862
0. 2905
0. 2857
0. 2910
0. 2909
0. 3059
0. 2934
0. 2988
0. 2268
0. 3056
0. 2932
0. 2984
0. 2246
0. 3039
0. 3040

0. 07
0. 2972
0. 2863
0. 2905
0. 3036
0. 2969
0. 2859
0. 2905
0. 2859
0. 2913
0. 2912
0. 3060
0. 2935
0. 2989
0. 2266
0. 3055
0. 2931
0. 2985
0. 2249
0. 3041
0. 3040

0. 08
0. 2974
0. 2863
0. 2906
0. 3037
0. 2967
0. 2860
0. 2905
0. 2858
0. 2911
0. 2912
0. 3060
0. 2936
0. 2986
0. 2263
0. 3052
0. 2928
0. 2986
0. 2246
0. 3038
0. 3040

0. 09
0. 2972
0. 2866
0. 2906
0. 3037
0. 2964
0. 2859
0. 2905
0. 2855
0. 2912
0. 2911
0. 3059
0. 2936
0. 2986
0. 2265
0. 3052
0. 2932
0. 2985
0. 2248
0. 3038
0. 3038

0. 10
0. 2973
0. 2863
0. 2906
0. 2862
0. 2965
0. 2857
0. 2907
0. 2856
0. 2911
0. 2912
0. 3060
0. 2935
0. 2988
0. 2266
0. 3052
0. 2928
0. 2984
0. 2246
0. 3041
0. 3039

表10　主动防御J-UNIWARD得到“干净”图像的BER值

数据集

B1

B2

质量因子

65
75
85
95
65
75
85
95

Payloads
0. 01

0. 5040
0. 4988
0. 5012
0. 5008
0. 5032
0. 4994
0. 5008
0. 5000

0. 02
0. 5001
0. 4952
0. 5019
0. 5026
0. 4961
0. 4995
0. 4991
0. 4991

0. 03
0. 5007
0. 4990
0. 5016
0. 5052
0. 4982
0. 4996
0. 5002
0. 4989

0. 04
0. 4981
0. 5004
0. 4996
0. 4996
0. 4984
0. 5046
0. 5019
0. 5011

0. 05
0. 4974
0. 4982
0. 4988
0. 4994
0. 5000
0. 4985
0. 5010
0. 4994

0. 06
0. 4990
0. 4960
0. 4993
0. 4957
0. 4979
0. 4993
0. 5000
0. 4993

0. 07
0. 5023
0. 4997
0. 5004
0. 4995
0. 5006
0. 4981
0. 5014
0. 5006

0. 08
0. 5009
0. 5009
0. 4994
0. 4994
0. 5017
0. 5000
0. 5014
0. 5001

0. 09
0. 4989
0. 5019
0. 5018
0. 4994
0. 5002
0. 5007
0. 5008
0. 5016

0. 10
0. 5011
0. 5026
0. 5017
0. 5008
0. 4998
0. 4983
0. 4995
0. 4995

999
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和 0. 3040，分别是基准值的 6. 082倍和 6. 08倍。由

此可知，在不同负载率下，本文方法能够主动防御多

种普通隐写。
综上，对于主动防御鲁棒隐写和普通隐写而言，

本文方法破坏秘密信息后，“干净”图像的 BER 与

CR的结果远远高于基准值 0. 1和 0. 05（秘密信息序

列不能被恢复时 BER=0. 1，CR=0. 05）。并且在

不同数据集与负载率下，二者的值均趋于稳定。验

证SPRN方法能够有效地破坏社交网络中潜在载密

图像中的秘密信息，并无需考虑隐写者使用的具体

隐写算法、质量因子以及负载率等因素，实现社交网

络中隐蔽通信主动防御的目的。
5. 3　图像质量恢复实验

在 SPRN 方法第一阶段使用 S&P 噪声破坏载

密图像中隐藏的秘密信息，将会导致图像的质量发

生一定变化，本节针对鲁棒隐写和普通隐写进行一

系列实验，验证本文方法对图像质量恢复的有效性，
包括三部分：主动防御鲁棒隐写、主动防御普通隐写

以及实验结果展示。图像质量恢复实验的过程与秘

密信息破坏实验类似，本实验采用 PSNR、SSIM 以

及MSE对“干净”图像进行评价。
5. 3. 1　主动防御鲁棒隐写

与 4. 2节中的实验类似，在使用相同数据集下，
本文方法主动防御鲁棒隐写 DMAS 和 GMAS，将

Rec-Net生成“干净”图像的PSNR、SSIM以及MSE
的平均值作为实验结果，如图9~11所示。

图 9（a）和（b）中横轴表示 DMAS 和 GMAS 的

不同负载率，纵轴表示PSNR值，数据用不同颜色的

折线显示。这里，具体的算法和质量因子如图例所

示。例如黑色折线表示在质量因子为 65中，本方法

主动防御DMAS后，得到“干净”图像的PSNR。由

图 9（a）可知，在不同质量因子与不同负载率下，本

方法主动防御DMAS后，“干净”图像的PSNR值介

于 36 和 39 之间。本方法主动防御 GMAS 后，“干

净”图像的 PSNR 值介于 41和 43. 5之间。因此，在

B1数据集中不同质量因子下，实验结果表明本方法

对图像质量恢复的有效性。由图 9（b）可知，在不同

质量因子与不同负载率下，本方法主动防御DMAS
后，在质量因子为 75 时，“干净”图像的 PSNR 值达

到 45. 5，在质量因子为 95 时，“干净”图像的 PSNR
值为 39. 5。故“干净”图像的 PSNR 值分布虽然较

为分散，但都达到社交网络传输图像的质量要求。
本方法主动防御GMAS后，“干净”图像的PSNR值

介于 41和 45之间，因此，由上述可知在B2数据集中

不同质量因子下，本文方法都能够恢复噪声图像的

质量。
图 10（a）和（b）中横轴代表 DMAS和 GMAS的

不同负载率，纵轴表示 SSIM 值，不同质量因子的

SSIM 值用不同颜色的折线显示。这里，具体的算

法和质量因子如图例所示。由图 10（a）可知，在不

同质量因子和不同负载率下，本方法主动防御

DMAS 后，“干净”图像的 SSIM 值均介于 0. 93 和

0. 96之间。本方法主动防御GMAS后，“干净”图像

的SSIM值在 0. 975波动。在B1数据集以及不同质

量因子下，以上数据表明本文方法能够恢复噪声图

像质量。由图 10（b）可知，在不同质量因子和不同

负载率下，本方法主动防御 DMAS 后，在质量因子

为 75 时，“干净”图像的 SSIM 值达到 0. 9915，在质

量因子为 95 时，“干净”图像的 SSIM 值为 0. 976。
“干净”图像的SSIM值都符合社交网络传输图像的

质量要求。本方法主动防御GMAS后，“干净”图像

的 SSIM 值 0. 99 处波动。因此，在 B2 数据集中，以

图9　主动防御DMAS和GMAS得到“干净”图像的PSNR
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上数据均表明本文方法恢复噪声图像质量的有

效性。
图 11（a）和（b）中横轴代表 DMAS和 GMAS的

不同负载率，纵轴表示 MSE 值，不同质量因子的

MSE值用不同颜色的折线显示。这里，具体的算法

和质量因子如图例所示。由图 11（a）可知，在不同

质量因子与不同负载率下，本方法主动防御DMAS
后，“干净”图像的 MSE 值均介于 14 和 24. 5 之间。
本方法主动防御GMAS后，“干净”图像的MSE值在

6以下。以上表明在B1数据集中不同质量因子下，
本文方法都能够恢复噪声图像的质量。由图 11（b）
可知，在不同负载率下，本方法主动防御DMAS后，
质量因子 95 时，“干净”图像的 MSE 值在 9. 8 和

10. 5之间，质量因子为 75时，“干净”图像的MSE值

在 2. 1 以下。本方法主动防御 GMAS 后“干净”图
像的 MSE 值在 2. 8 和 7 之间。以上数据表明在 B2
数据集中，SPRN能够恢复噪声图像的质量。

5. 3. 2　主动防御普通隐写

与 4. 2节中的实验类似，在相同数据集下，本文

方法主动防御普通隐写，将 Rec-Net 生成“干净”图
像的 PSNR、SSIM 以及 MSE 的平均值作为实验结

果，如图12~图16所示。
如图 12~ 图 16 所示，横坐标表示负载率，

图 12~图 16（a）坐标表示不同负载率下 PSNR 值，
（b）纵坐标表示不同负载率下 SSIM 值，（c）纵坐标

表示不同负载率下 MSE 值。其中，图 12~图 15 表

示本方法主动防御 J-UNIWARD和nsF5后，“干净”
图像的不同图像质量指标，图 16表示本方法主动防

御S-UNIWARD和WOW后，“干净”图像的不同图

像质量指标。由图 12~图 16可知，本方法主动防御

四种普通隐写，各组图像的PSNR值介于 40~45之

间，SSIM值介于 0. 95~1之间，MSE值都在 6以内，
同时在不同负载率下的差距很小，在一定程度上表

明本方法不仅对恢复噪声图像有效，也表明本方法

对不同隐写算法具有普适性。

图10　主动防御DMAS和GMAS得到“干净”图像的SSIM 图11　主动防御DMAS和GMAS得到“干净”图像的MSE
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5. 3. 3　实验结果展示

从测试图像中随机选择 8 幅图像，视觉效果与

具体评价标准值在图 17与表12分别展示。
图 17从上到下依次是载密图像、噪声图像、“干

净”图像。通过实验结果表明，破坏秘密信息之后，
通过网络恢复的“干净”图像和载密图像没有明显视

觉差别。

如表12所示，图6. jpg的BER值与CR值分别达

到 0. 5336 和 0. 3691；PSNR 值与 MSE 值分别达到

40. 4960和 5. 8007。随机选择的 8张图像的BER值

都达到 0. 5以上，同时，图像的 PSNR 值在 40以上。
以上数据表明本方法对秘密信息破坏和图像质量恢

复是有效的。同时，从另一方面也说明本文的方法

在主动防御社交网络中的隐蔽通信方面是有效的。

图13　主动防御 J-UNIWARD 和 nsF5（QF75）得到“干净”
图像的评价结果

图12　主动防御 J-UNIWARD 和 nsF5（QF65）得到“干净”
图像的评价结果
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综上可知，对于鲁棒隐写和普通隐写而言，本文

方法破坏秘密信息后，“干净”图像的 PSNR、SSIM
和MSE值均符合社交网络中发送图像的要求，并且

在不同数据集与负载率下，“干净”图像的 PSNR、
SSIM和MSE值均趋于稳定。以上数据表明SPRN
方法能够有效恢复噪声图像的质量。因此，针对图

像隐蔽通信，本文方法能够成功进行防御，并使得通

信双方在毫无察觉的情况下彻底阻断秘密信息的

传输。
5. 3. 4　社交网络实验结果

由于实际场景图像往往会经过多次压缩，为了

验证在社交网络中所提方法的有效性，本文对质量

因子为 65 与 75 的测试图像，再次采用质量因子 65
与 75进行压缩。在该情况下对 DMAS隐写进行防

图14　主动防御 J-UNIWARD 和 nsF5（QF85）得到“干净”
图像的评价结果

图15　主动防御 J-UNIWARD 和 nsF5（QF95）得到“干净”
图像的评价结果
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御，得到不同负载率下的主动防御评价效果，如

表13和表14所示。

由表 13 和表 14 可知，在经过多次压缩下，
SPRN 方法主动防御 DMAS 隐写得到“干净”图像

的 PSNR、SSIM 和 MSE 均符合社交网络传递图像

的要求。干净图像的BER和CR均超过破坏秘密信

图 16　主动防御S-UNIWARD和WOW得到“干净”图像的

评价结果

表12　“干净”图像评价结果对比

“干净”
图像

1. jpg
2. jpg
3. jpg
4. jpg
5. jpg
6. jpg
7. jpg
8. jpg

BER

0. 5248
0. 5156
0. 5218
0. 5223
0. 5116
0. 5336
0. 5203
0. 5317

CR

0. 2451
0. 2102
0. 2356
0. 2278
0. 2599
0. 3691
0. 2463
0. 1709

PSNR

42. 3801
44. 2492
41. 9672
42. 2294
41. 0880
40. 4960
42. 1201
46. 3700

SSIM

0. 9742
0. 9910
0. 9909
0. 9901
0. 9828
0. 9911
0. 9870
0. 9926

MSE

3. 7589
2. 4443
4. 1339
3. 8917
5. 0615
5. 8007
3. 9909
1. 4999

表14　SPRN主动防御重压缩载密图像（QF75）得到“干净”

图像的评价结果

Payloads

0. 01
0. 02
0. 03
0. 04
0. 05
0. 06
0. 07
0. 08
0. 09
0. 1

评价指标

PSNR

41. 5585
41. 5105
41. 5219
41. 4669
41. 4189
41. 3720
41. 3940
41. 3361
41. 3209
41. 1939

SSIM

0. 9891
0. 9891
0. 9890
0. 9888
0. 9888
0. 9886
0. 9885
0. 9883
0. 9881
0. 9879

MSE

4. 9377
4. 9680
4. 9576
5. 0251
5. 0626
5. 1152
5. 1090
5. 1631
5. 1903
5. 3355

CR

0. 3096
0. 3100
0. 3105
0. 3110
0. 3116
0. 3124
0. 3128
0. 3134
0. 3143
0. 3152

BER

0. 4953
0. 4903
0. 4724
0. 4724
0. 4613
0. 4510
0. 4470
0. 4464
0. 4419
0. 4340

表13　SPRN主动防御重压缩载密图像（QF65）得到“干净”

图像的评价结果

Payloads

0. 01
0. 02
0. 03
0. 04
0. 05
0. 06
0. 07
0. 08
0. 09
0. 1

评价指标

PSNR

37. 6653
37. 6484
37. 5881
37. 5907
37. 5504
37. 5277
37. 4999
37. 4627
37. 4501
37. 3864

SSIM

0. 9825
0. 9825
0. 9824
0. 9821
0. 9820
0. 9817
0. 9816
0. 9813
0. 9810
0. 9807

MSE

15. 9402
15. 8913
16. 0828
16. 0582
16. 1930
16. 2760
16. 3345
16. 4514
16. 5166
16. 6878

CR

0. 3725
0. 3727
0. 3733
0. 3742
0. 3748
0. 3759
0. 3767
0. 3776
0. 3785
0. 3798

BER

0. 4938
0. 4964
0. 4947
0. 4902
0. 4863
0. 4809
0. 4798
0. 5050
0. 4810
0. 4815

图17　随机选取 8幅图像
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息的基准值。因此，SPRN 方法能够抵御社交网络

中的多次压缩情况。
5. 4　消融实验和对比实验

本节分为两部分：Rec-Net 消融实验和对比

实验。
5. 4. 1　Rec-Net消融实验

为了验证 Rec-Net 高斯滤波层、高斯滤波残差

块和中值滤波层对秘密信息破坏与图像质量恢复

的影响，本小节选取BOWS2数据集中 50张“发布”

图像验证，然后将图像压缩成质量因子为 85的载体

图像。同时使用鲁棒隐写算法 DMAS 进行不同负

载率的隐写，其他的实验设置与 4. 1 节中一致。实

验结果如表 15所示。其中，本节将去掉高斯滤波层

（Without Gauss Layers）网络简写为 WGL-Net，将

去 掉 高 斯 滤 波 残 差 块（Without Gauss Residual 
Blocks）网络简写为 WGRB-Net，将去掉中值滤波

层（Without Median Layers）网 络 简 写 为 WML-
Net。

图像质量方面，在不同负载率下，Rec-Net所得

“干净”图像的 PSNR、SSIM 和 MSE 的均值分别是

42. 209、0. 99 和 4. 76。其中 WGL-Net 所得“干净”
图像的PSNR、SSIM和MSE的均值分别为 25. 257、
0. 693 和 231. 77。WGRB-Net 所得“干净”图像的

PSNR、SSIM和MSE的均值分别为 25. 378、0. 68和

229. 446。 WML-Net 所得“干净”图像的 PSNR、
SSIM 和 MSE 的 均 值 分 别 为 22. 661、0. 674 和

389. 58。以上数据表明 WGL-Net、WGRB-Net 和
WML-Net所得“干净”图像的PSNR、SSIM和MSE
值较低，说明它们不能够较好的恢复图像质量。验

证 Rec-Net 生成的图像在经过 S&P 隐写防御后都

能得到较好恢复。

破坏秘密信息方面，在不同负载率下，四种网络

所得“干净”图像的 BER 的均值相等均为 0. 5。
WGL-Net、WGRB-Net、WML-Net和 Rec-Net所得

“干净 ”图像的 CR 均值分别为 0. 3093、0. 304、
0. 2771 和 0. 3002。以上结果表明图像的 BER 和

CR 值均超过破坏秘密信息的要求，也验证本网络

的架构设置都不影响第一阶段 S&P 主动防御的效

果。综上，Rec-Net 架构的设置不仅保持第一阶段

破坏秘密信息的效果，也将噪声图像较好地恢复成

“发布”图像的质量。
5. 4. 2　对比实验

对比实验采用 BOWS2 数据集中 30 张载体图

像，并将图像压缩成质量因子为 75的 JPEG图像，在

表15　Rec-Net消融实验

网络

WGL-Net

WGRB-Net

WML-Net

Rec-Net

指标

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

Payloads
0. 01

25. 28
0. 67

231. 1
0. 5

0. 308
25. 39
0. 68

229. 2
0. 5

0. 303
22. 68
0. 68

389. 3
0. 49

0. 276
42. 63
0. 99
4. 7
0. 5

0. 299

0. 02
25. 26
0. 70

231. 6
0. 5

0. 309
25. 38
0. 68

229. 3
0. 5

0. 303
22. 60
0. 68

390. 7
0. 49

0. 276
42. 64
0. 99
4. 7
0. 5

0. 299

0. 03
25. 27
0. 70

231. 6
0. 5

0. 309
25. 38
0. 68

229. 2
0. 5

0. 303
22. 68
0. 68

388. 7
0. 50

0. 276
42. 65
0. 99
4. 7
0. 5

0. 299

0. 04
25. 26
0. 70

231. 4
0. 5

0. 309
25. 39
0. 68

229. 4
0. 5

0. 304
22. 68
0. 68

389. 0
0. 50

0. 277
42. 63
0. 99
4. 7
0. 5

0. 300

0. 05
25. 25
0. 70

232. 1
0. 5

0. 309
25. 38
0. 68

229. 26
0. 5

0. 304
22. 68
0. 67

389. 4
0. 50

0. 277
42. 63
0. 99
4. 8
0. 5

0. 300

0. 06
25. 27
0. 70

231. 3
0. 5

0. 309
25. 38
0. 68

229. 5
0. 5

0. 304
22. 70
0. 67

388. 3
0. 50

0. 277
42. 59
0. 99
4. 8
0. 5

0. 300

0. 07
25. 25
0. 69

231. 8
0. 5

0. 310
25. 37
0. 68

229. 6
0. 5

0. 304
22. 65
0. 67

391. 0
0. 50

0. 278
42. 59
0. 99
4. 8
0. 5

0. 301

0. 08
25. 25
0. 69

232. 1
0. 5

0. 310
25. 37
0. 68

229. 6
0. 5

0. 305
22. 68
0. 67

389. 2
0. 51

0. 278
42. 58
0. 99
4. 8
0. 5

0. 301

0. 09
25. 24
0. 69

232. 3
0. 5

0. 310
25. 37
0. 68

229. 6
0. 5

0. 305
22. 60
0. 67

389. 6
0. 50

0. 278
42. 57
0. 99
4. 8
0. 5

0. 301

0. 10
25. 24
0. 69

232. 4
0. 5

0. 310
25. 37
0. 68

229. 8
0. 5

0. 305
22. 66
0. 67

390. 6
0. 51

0. 278
42. 58
0. 99
4. 8
0. 5

0. 302
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每个负载率下分别生成 30 张载密图像。实验以鲁

棒隐写算法 DMAS和 GMAS以及普通频域隐写算

法 J-UNIWARD和nsF5为例，分别对比本文方法与

AO-Net［6］方法、SC-Net［13］方法、基于高斯白噪声的

主动防御方法以及基于图像 JPEG压缩的主动防御

方法。其中高斯白噪声的均值和方差为 0. 01，图像

JPEG的压缩因子为65。
（a） 主动防御DMAS和GMAS对比实验

在不同负载率下，五种方法主动防御DMAS和

GMAS的对比结果如表16~17所示。由表16可知，
在不同负载率下，与AO-Net［6］方法相比，SPRN方法

破坏秘密信息后，“干净”图像的 PSNR、SSIM、
MSE、BER与CR的结果分别提升2. 85%、0. 957%、
6. 958%、5. 461%和24. 258%。与SC-Net［13］方法相

比，SPRN 方法破坏秘密信息后，“干净”图像的

PSNR、SSIM、MSE、BER 与 CR 的结果分别提升

34. 795%、8. 189%、92. 577%、0. 559% 和 20. 43%。
与基于高斯白噪声的主动防御方法相比，SPRN方法

破坏秘密信息后，“干净”图像的 PSNR、SSIM 与

MSE的结果分别提升53. 017%、66. 8%和14450%。
“干净”图像的 BER 与 CR 基本一致。与基于图像

JPEG压缩的主动防御方法相比，SPRN方法破坏秘

密信息后，“干净”图像的 PSNR、SSIM、MSE、BER
与 CR的结果分别提升 7. 585%、0. 451%、50. 13%、
12. 602%和 18. 913%。由此可知，与其他方法主动

防御DMAS相比，SPRN方法既能高误码率破坏秘

密信息，又能提升图像视觉质量。由表17可知，不同

负载率下，与AO-Net［6］方法相比，SPRN方法破坏秘

密信息后，“干净”图像的 PSNR、SSIM、BER 与 CR
的 结 果 分 别 提 升 1. 292%、0. 664%、0. 923% 和

18. 01%。与SC-Net［13］方法相比，SPRN方法破坏秘

密信息后，“干净”图像的 PSNR、SSIM、BER 与 CR
的结果分别提升 33. 345%、7. 841%、0. 071% 和

14. 055%。 并且，在负载率为 0. 02、0. 03、0. 05、
0. 06、0. 07和 0. 09中，“干净”图像的BER值远超过

其他方法，而“干净”图像的MSE值介于AO-Net［6］方

表16　五种方法主动防御DMAS的结果对比

方法

SPRN方法

AO-Net[7]方法

SC-Net[8]方法

基于高斯白噪声的主动

防御方法

基于图像 JPEG压缩的

主动防御方法

指标

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

Payloads
0. 01

42. 770
0. 9907
4. 3199
0. 4989
0. 3041

41. 689
0. 9830
4. 5567
0. 4984
0. 0633

31. 744
0. 9188

58. 940
0. 4851
0. 1012

20. 047
0. 3279

644
0. 4974
0. 5595

39. 495
0. 9861
8. 7776
0. 4575
0. 1170

0. 02
42. 756

0. 9906
4. 3561
0. 4997
0. 3046

41. 680
0. 9829
4. 5646
0. 4853
0. 0632

31. 726
0. 9184

59. 090
0. 4966
0. 1013

20. 051
0. 3281

644
0. 5002
0. 5594

39. 485
0. 9861
8. 7933
0. 4565
0. 1171

0. 03
42. 716

0. 9906
4. 3881
0. 4987
0. 3050

41. 622
0. 9824
4. 6175
0. 4683
0. 0635

31. 711
0. 9178

59. 222
0. 4979
0. 1015

20. 045
0. 3284

644
0. 5048
0. 5596

39. 472
0. 9861
8. 8158
0. 4261
0. 1171

0. 04
42. 714

0. 9905
4. 3963
0. 5016
0. 3054

41. 579
0. 9821
4. 6610
0. 4570
0. 0634

31. 590
0. 9171

59. 412
0. 4931
0. 1016

20. 050
0. 3284

644
0. 4987
0. 5596

39. 459
0. 9860
8. 8353
0. 3903
0. 1171

0. 05
42. 691

0. 9905
4. 3991
0. 5002
0. 3060

41. 523
0. 9815
4. 7169
0. 4448
0. 0637

31. 679
0. 9163

59. 515
0. 4934
0. 1018

20. 051
0. 3286

644
0. 4985
0. 5598

39. 444
0. 9869
8. 8599
0. 3773
0. 1172

0. 06
42. 659

0. 9904
4. 4294
0. 4998
0. 3064

41. 476
0. 9809
4. 7691
0. 4378
0. 0637

31. 663
0. 9154

59. 709
0. 4915
0. 1020

20. 046
0. 3288

645
0. 5038
0. 5600

39. 430
0. 9858
8. 8831
0. 3575
0. 1172

0. 07
42. 633
0. 9903
4. 4679
0. 4976
0. 3070

41. 419
0. 9803
4. 8258
0. 4263
0. 0639

31. 637
0. 9143

59. 898
0. 4910
0. 1023

20. 050
0. 3290

644
0. 5023
0. 5597

39. 416
0. 9857
8. 9108
0. 3346
0. 1172

0. 08
42. 607

0. 9902
4. 5066
0. 4984
0. 3080

41. 364
0. 9797
4. 8837
0. 4132
0. 0640

31. 624
0. 9132

60. 037
0. 4947
0. 1025

20. 045
0. 3290

645
0. 5000
0. 5600

39. 398
0. 9856
8. 9383
0. 3215
0. 1173

0. 09
42. 579

0. 9901
4. 5044
0. 4989
0. 3082

41. 288
0. 9789
4. 9628
0. 4108
0. 0642

31. 606
0. 9120

60. 213
0. 4971
0. 1028

20. 047
0. 3293

644
0. 4963
0. 5599

39. 380
0. 9855
8. 9724
0. 3112
0. 1173

0. 1
42. 587

0. 9900
4. 5069
0. 4986
0. 3085

41. 232
0. 9783
5. 0275
0. 4044
0. 0645

31. 584
0. 9110

60. 400
0. 4961
0. 1032

20. 048
0. 3297

644
0. 4991
0. 5596

39. 364
0. 9854
8. 9974
0. 2997
0. 1174
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法和SC-Net［13］方法之间。与基于高斯白噪声的主动

防御方法相比，SPRN方法破坏秘密信息后，“干净”
图 像 的 PSNR、SSIM 与 MSE 的 结 果 分 别 提 升

52. 5%、66. 83% 和 13352%。“干净”图像的 BER 与

CR基本一致。与基于图像 JPEG压缩的主动防御方

法相比，SPRN方法破坏秘密信息后，“干净”图像的

PSNR、SSIM、MSE、BER 与 CR 的结果分别提升

3. 267%、0. 225%、24. 1%、1. 008% 和 14. 366%。
由此可知，与其他方法主动防御GMAS相比，SPRN
方法具有明显优势。

（b） 主动防御 J-UNIWARD和nsF5对比实验

在 不 同 负 载 率 下，五 种 方 法 主 动 防 御 J-
UNIWARD和nsF5的对比结果如表18~19所示。

由表 18可知，SPRN方法破坏秘密信息后，“干

净”图像的 PSNR、SSIM 以及 CR 值均比其他方法

高，“干净”图像的 MSE值比其他方法的值低，在负

载率为 0. 01、0. 02、0. 04、0. 05和 0. 06下，“干净”图
像的 BER 值远高于 AO-Net 方法和 SC-Net 方法。
与 AO-Net［6］方法相比，SPRN 方法破坏秘密信息

后，“干净”图像的 PSNR、SSIM、MSE、BER 与 CR
的 结 果 分 别 提 升 1. 659%、0. 662%、8. 852%、
0. 34%和 23. 711%。与SC-Net［13］方法相比，SPRN
方法破坏秘密信息后，“干净”图像的PSNR、SSIM、
MSE、BER 与 CR 的 结 果 分 别 提 升 33. 544%、

7. 69%、92. 976%、0. 437% 和 19. 903%。与基于高

斯白噪声的主动防御方法相比，SPRN 方法破坏秘

密信息后，“干净”图像的 PSNR、SSIM、MSE 与

BER 的结果分别提升 52. 723%、67. 51%、15 507%
和 0. 532%。“干净”图像的CR的值略低。与基于图

像 JPEG 压缩的主动防御方法相比，SPRN 方法破

坏秘密信息后，“干净”图像的 PSNR、SSIM、MSE、
BER 与 CR 的结果分别提升 3. 668%、0. 232%、
43. 168%、0. 551%和 20. 041%。由此可知，与上述

两种方法相比，本文方法对秘密信息破坏的同时仍

然保持较高的图像质量。
由表 19可知，一方面，在不同负载率下，SPRN

方法破坏秘密信息后，“干净”图像的PSNR和SSIM
值明显高于AO-Net［6］方法和SC-Net［13］方法，而“干

表17　五种方法主动防御GMAS的结果对比

方法

SPRN方法

AO-Net[7]方法

SC-Net[8]方法

基于高斯白噪声的主动

防御方法

基于图像 JPEG压缩的

主动防御方法

指标

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

Payloads
0. 01

42. 221
0. 9897
4. 7952
0. 4986
0. 2431

41. 724
0. 9832
4. 5267
0. 5002
0. 0632

31. 747
0. 9188

58. 874
0. 4997
0. 1016

20. 0419
0. 3276

645
0. 5057
0. 5597

40. 8558
0. 9874
5. 9109
0. 4974
0. 0999

0. 02
42. 199

0. 9896
4. 7833
0. 5017
0. 2436

41. 727
0. 9832
4. 5238
0. 5006
0. 0632

31. 735
0. 9187

58. 948
0. 4972
0. 1018

20. 0487
0. 3280

644
0. 5020
0. 5598

40. 8581
0. 9874
5. 9090
0. 4974
0. 0998

0. 03
42. 222

0. 9896
4. 7911
0. 5020
0. 2433

41. 690
0. 9830
4. 5580
0. 4996
0. 0633

31. 716
0. 9185

59. 057
0. 4990
0. 1021

20. 0489
0. 3280

644
0. 5031
0. 5596

40. 8501
0. 9874
5. 9168
0. 4988
0. 0999

0. 04
42. 204

0. 9896
4. 7995
0. 4999
0. 2439

41. 701
0. 9832
4. 5464
0. 4957
0. 0633

31. 696
0. 9183

59. 236
0. 5009
0. 1024

20. 0492
0. 3282

644
0. 4972
0. 5595

40. 8440
0. 9874
5. 9221
0. 4919
0. 0998

0. 05
42. 217

0. 9896
4. 7779
0. 4989
0. 2437

41. 691
0. 9831
4. 5591
0. 4951
0. 0634

31. 676
0. 9180

59. 396
0. 4976
0. 1027

20. 0542
0. 3283

643
0. 4927
0. 5594

40. 8417
0. 9874
5. 9266
0. 4999
0. 0998

0. 06
42. 194

0. 9896
4. 8032
0. 5007
0. 2436

41. 665
0. 9831
4. 5846
0. 4925
0. 0635

31. 660
0. 9177

59. 518
0. 4998
0. 1030

20. 0545
0. 3283

643
0. 5022
0. 5596

40. 8328
0. 9874
5. 9358
0. 4903
0. 0999

0. 07
42. 188

0. 9896
4. 8005
0. 5012
0. 2435

41. 656
0. 9830
4. 5922
0. 4885
0. 0635

31. 624
0. 9173

59. 820
0. 4988
0. 1034

20. 0436
0. 3280

645
0. 4974
0. 5596

40. 8254
0. 9874
5. 9438
0. 4853
0. 0999

0. 08
42. 218

0. 9896
4. 7848
0. 4995
0. 2436

41. 640
0. 9831
4. 6055
0. 4871
0. 0635

31. 591
0. 9169

60. 103
0. 5015
0. 1039

20. 0507
0. 3284

644
0. 5066
0. 5595

40. 8075
0. 9874
5. 9605
0. 4849
0. 0999

0. 09
42. 196

0. 9896
4. 7927
0. 4995
0. 2438

41. 626
0. 9830
4. 6184
0. 4786
0. 0637

31. 567
0. 9164

60. 335
0. 4987
0. 1043

20. 0499
0. 3285

644
0. 5022
0. 5596

40. 8028
0. 9874
5. 9707
0. 4778
0. 1000

0. 10
42. 232

0. 9896
4. 7268
0. 5004
0. 2434

41. 584
0. 9829
4. 6611
0. 4722
0. 0639

31. 528
0. 9160

60. 701
0. 5021
0. 1048

20. 0511
0. 3288

644
0. 4979
0. 5592

40. 7825
0. 9874
5. 9925
0. 4779
0. 1000
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表18　五种方法主动防御 J-UNIWARD的结果对比

方法

SPRN方法

AO-Net[7]方法

SC-Net[8]方法

基于高斯白噪声的主动防御方法

基于图像 JPEG压缩的主动防御方法

指标

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

PSNR

SSIM

MSE

BER

CR

Payloads
0. 01

42. 393
0. 9897
4. 1520
0. 5118
0. 3003

41. 723
0. 9832
4. 5221
0. 4985
0. 0632

31. 760
0. 9190

58. 793
0. 4908
0. 1013

20. 0498
0. 3278

645
0. 4860
0. 5597

40. 8557
0. 9874
5. 9130
0. 5070
0. 0999

0. 02
42. 341

0. 9896
4. 1679
0. 5099
0. 2999

41. 717
0. 9832
4. 5384
0. 5010
0. 0632

31. 759
0. 9190

58. 784
0. 5027
0. 1014

20. 0503
0. 3280

645
0. 5029
0. 5596

40. 8557
0. 9874
5. 9129
0. 4877
0. 0999

0. 03
42. 494

0. 9897
4. 0645
0. 5004
0. 3000

41. 721
0. 9832
4. 5316
0. 5007
0. 0632

31. 759
0. 9190

58. 798
0. 4983
0. 1013

20. 0513
0. 3285

644
0. 5083
0. 5597

40. 8551
0. 9874
5. 9131
0. 5003
0. 1000

0. 04
42. 391

0. 9896
4. 1391
0. 5092
0. 3008

41. 721
0. 9832
4. 5286
0. 5015
0. 0632

31. 760
0. 9190

58. 797
0. 5033
0. 1013

20. 0438
0. 3277

645
0. 4978
0. 5596

40. 8544
0. 9874
5. 9137
0. 4939
0. 0999

0. 05
42. 435

0. 9897
4. 1212
0. 5103
0. 3001

41. 725
0. 9832
4. 5268
0. 4991
0. 0632

31. 758
0. 9190

58. 800
0. 4996
0. 1013

20. 0514
0. 3279

644
0. 4992
0. 5596

40. 8554
0. 9874
5. 9132
0. 4958
0. 0999

0. 06
42. 436

0. 9897
4. 1145
0. 5123
0. 3003

41. 711
0. 9831
4. 5371
0. 5003
0. 0633

31. 759
0. 9190

58. 803
0. 5026
0. 1013

20. 0484
0. 3283

645
0. 4991
0. 5594

40. 8557
0. 9874
5. 9130
0. 5063
0. 0999

0. 07
42. 458

0. 9898
4. 0944
0. 4922
0. 3001

41. 713
0. 9831
4. 5387
0. 5018
0. 0633

31. 756
0. 9190

58. 829
0. 4992
0. 1013

20. 0498
0. 3280

645
0. 5001
0. 5595

40. 8551
0. 9874
5. 9132
0. 5010
0. 1000

0. 08
42. 406

0. 9897
4. 1040
0. 4976
0. 3004

41. 711
0. 9831
4. 5388
0. 5012
0. 0633

31. 756
0. 9190

58. 823
0. 5017
0. 1013

20. 0534
0. 3282

644
0. 4977
0. 5595

40. 8537
0. 9874
5. 9141
0. 4977
0. 1000

0. 09
42. 381

0. 9896
4. 1743
0. 5030
0. 3006

41. 724
0. 9832
4. 5261
0. 5031
0. 0632

31. 757
0. 9191

58. 792
0. 5015
0. 1013

20. 0556
0. 3285

644
0. 4982
0. 5594

40. 8542
0. 9874
5. 9146
0. 4982
0. 0999

0. 10
42. 372

0. 9897
4. 1735
0. 4966
0. 3009

41. 720
0. 9832
4. 5289
0. 5021
0. 0632

31. 754
0. 9190

58. 834
0. 4999
0. 1013

20. 0440
0. 3277

645
0. 5008
0. 5600

40. 8546
0. 9874
5. 9132
0. 5003
0. 0999

表19　五种方法主动防御nsF5的结果对比

方法

SPRN方法

AO-Net[7]方法

SC-Net[8]方法

基于高斯白噪声的主动防御方法

基于图像 JPEG压缩的主动防御方法

指标

PSNR

SSIM

MSE

CR

PSNR

SSIM

MSE

CR

PSNR

SSIM

MSE

CR

PSNR

SSIM

MSE

CR

PSNR

SSIM

MSE

CR

Payloads
0. 01

42. 322
0. 9904
4. 7335
0. 3131
41. 734
0. 9832
4. 5148
0. 0630
31. 764
0. 9190
58. 740
0. 1012

20. 0490
0. 3278

645
0. 5601

40. 8578
0. 9874
5. 9096
0. 0999

0. 02
42. 340
0. 9904
4. 7495
0. 3128
41. 706
0. 9831
4. 5429
0. 0632
31. 767
0. 9191
58. 693
0. 1012

20. 0444
0. 3275

645
0. 5597
40. 861
0. 9874
5. 9052
0. 0999

0. 03
42. 349
0. 9904
4. 7291
0. 3127
41. 720
0. 9831
4. 5311
0. 0631
31. 77

0. 9191
58. 654
0. 1011

20. 0523
0. 3277

644
0. 5592

40. 8639
0. 9874
5. 9009
0. 0998

0. 04
42. 316
0. 9904
4. 7627
0. 3129
41. 718
0. 9832
4. 5318
0. 0632
31. 774
0. 9191
58. 612
0. 1011

20. 0545
0. 3282

644
0. 5592
40. 868
0. 9874
5. 8948
0. 0998

0. 05
42. 313
0. 9904
4. 7612
0. 3128
41. 720
0. 9831
4. 5265
0. 0632
31. 776
0. 9192
58. 567
0. 1010

20. 0420
0. 3276

646
0. 5600

40. 8714
0. 9874
5. 8896
0. 0998

0. 06
42. 335
0. 9904
4. 7236
0. 3127
41. 716
0. 9831
4. 5359
0. 0632
31. 781
0. 9192
58. 517
0. 1010

20. 0504
0. 3277

645
0. 5594

40. 8758
0. 9874
5. 883

0. 0997

0. 07
42. 347
0. 9904
4. 7114
0. 3125
41. 716
0. 9831
4. 5336
0. 0633
31. 785
0. 9192
58. 452
0. 1009

20. 0473
0. 3276

645
0. 5598

40. 8801
0. 9875
5. 8775
0. 0997

0. 08
42. 354
0. 9904
4. 7144
0. 3123
41. 694
0. 9830
4. 5551
0. 0634
31. 788
0. 9193
58. 407
0. 1008

20. 0503
0. 3277

645
0. 5595

40. 8849
0. 9875
5. 8714
0. 0996

0. 09
42. 332
0. 9904
4. 7349
0. 3125
41. 701
0. 9831
4. 5544
0. 0634
31. 792
0. 9193
58. 352
0. 1008

20. 0457
0. 3274

645
0. 5596

40. 8893
0. 9875
5. 8655
0. 0996

0. 10
42. 369
0. 9904
4. 7031
0. 3122
41. 708
0. 9830
4. 5434
0. 0633
31. 797
0. 9194
58. 290
0. 1007

20. 0520
0. 3280

644
0. 5596

40. 8951
0. 9875
5. 8575
0. 0995
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净”图像的MSE值介于AO-Net［6］方法和SC-Net［13］

方法之间。与AO-Net［6］方法相比，SPRN方法破坏

秘密信息后，“干净”图像的 PSNR、SSIM 与 CR 的

结果分别提升 1. 497%、0. 746% 和 24. 942%。与

SC-Net［13］方法相比，SPRN 方法破坏秘密信息后，
“干净”图像的 PSNR、SSIM 与 CR 的结果分别提升

33. 223%、7. 747% 和 21. 167%。与基于高斯白噪

声的主动防御方法相比，SPRN 方法破坏秘密信息

后，“干净”图像的PSNR、SSIM与MSE的结果分别

提升 53. 047%、66. 91% 和 13617%。“干净”图像的

CR 的值略低。与基于图像 JPEG 压缩的主动防御

方法相比，SPRN方法破坏秘密信息后，“干净”图像

的 PSNR、SSIM、MSE 与 CR 的 结 果 分 别 提 升

3. 455%、0. 298%、24. 468% 和 21. 29%。以上结果

表明本方法生成“干净”图像的质量满足社交网络需

求，且质量较好。另一方面，在不同负载率下，
SPRN方法破坏秘密信息后，“干净”图像的CR结果

均高于另外两种方法，以上数据表明本文方法对秘

密信息破坏程度较高。
综上可知，在秘密信息破坏和图像质量恢复方

面，SPRN方法均优于其他两种方法。

6 总 结

现有的隐蔽通信防御大多数基于检测等被动防

御方法。针对检测在低负载率下虚警率和漏检率过

高，并且，面对社交网络中未知隐写、负载率等先验

知识情况下无法实时有效阻断隐蔽通信的问题，本

文提出SPRN主动防御方法。在第三方毫无察觉的

情况下，清除秘密信息，主动防御社交网络中的隐蔽

通信。所提方法分析不同的噪声对秘密信息的破坏

效果，选择叠加 S&P 噪声的方式破坏秘密信息，达

到主动防御的目的。由于 S&P 噪声中随机的椒噪

点和盐噪点的叠加会对图像视觉效果层面造成一定

的影响。因此，利用 Rec-Net 对图像进行视觉质量

恢复，实现对图像的优化。最后，得到无法提取出秘

密信息的“干净”图像，既保持图像的高视觉质量，又

不增加存储空间大小。此外，本文提出一种新的基

于 CR 的隐写主动防御图像评价准则，该准则能够

在未知隐写的先验条件下度量秘密信息破坏效果，
弥补误码率的不足。实验结果表明，在不同数据集

和负载率下，所提方法能够有效地破坏社交网络中

潜在载密图像中的秘密信息，实现隐蔽通信主动防

御的目的。同时，与先进方法SC-Net和AO-Net在

BOWS2 测试集上进行对比，结果充分表明在秘密

信息破坏和图像质量恢复方面，SPRN 方法具有较

大优势。该方法应用于社交网络平台，可通过主动

防御的方式实现阻断不法用户隐蔽通信的目的。
在未来的工作中，我们将致力于在秘密信息破

坏精准度与时效性两大方面进一步提升主动防御能

力，使主动防御具有更强的适用性，并为完善主动防

御评价体系提供理论支撑。
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Background
The content of this article belongs to the issue of 

steganography defense in the field of network information 
security.  At present, research on steganography defense 
mainly focuses on passive steganography defense， and there is 
relatively little research on active steganography defense.  This 
method can enable the receiver to successfully obtain secret 
messages even if they obtain the stego image, thus achieving 
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