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摘 要 航空发动机嵌入式系统对编译器的安全性和稳定性有极高要求。模糊测试是发现其缺陷的关键技术，但

现有方法生成的测试程序缺乏多样性，难以触发中后端缺陷，且难以检测危害最大的静默误编译错误。本文提出了

一种基于大语言模型的编译器模糊测试方法LLMCfuzz。该方法包括变异提示生成、测试生成和差分测试三个阶

段。在变异提示生成阶段，构建包含嵌入式程序和测试套件的种子程序库，通过多样性引导策略选择变异算子并生

成变异提示。在测试生成阶段，利用大语言模型生成具有复杂数据流和控制流的变体程序，同时设计变量追踪机制

监测静默误编译错误，并通过前端错误反馈优化提示模板。在差分测试阶段，结合随机差异测试与不同优化级别测

试以检测中后端缺陷。实验结果表明，LLMCfuzz 在行覆盖率上较现有方法提高 2.78% 至 21.08%，并成功发现

5种误编译错误，其中包括3种静默误编译错误。
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Abstract The correctness of compilers is a non-negotiable cornerstone of safety for embedded 
systems within aero-engines, where even minuscule software flaws can precipitate catastrophic 
failures.  In the domain of aerospace software verification, ensuring compiler reliability presents a 
unique set of formidable challenges.  First and foremost, aero-engine compilers must adhere to 
stringent safety standards like DO-178C, which enforce prohibitions on high-risk language 
features and demand specialized optimizations for target-specific hardware (e. g. , PowerPC).  
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This high degree of customization often introduces subtle defects.  Secondly, a critical problem 
known as silent miscompilation arises, where the compiler generates functionally incorrect machine 
code without issuing any warnings, posing an extreme threat to system integrity.  Thirdly, the entire 
development process operates within a cross-compilation environment, where testing necessitates a 
complex workflow of host-side compilation, target-side execution, and verification via peripheral 
interfaces like serial ports. Existing fuzzing methodologies, both traditional and Large Language 
Model (LLM) based, exhibit significant deficiencies when applied to this safety-critical context.  
Conventional fuzzers, such asCsmith, generate programs that often lack the structural complexity to 
trigger deep optimization bugs and may violate aviation-specific coding standards.  Moreover, they 
are inherently incapable of detecting the most dangerous silent miscompilation errors.  While LLMs 
offer a promising new direction for test case generation, current approaches are generic and have 
failed to demonstrate efficacy for C compilers, let alone adapt to the unique constraints of the aero-
engine cross-compilation workflow.  They struggle to produce compliant, semantically rich 
programs that can effectively stress the compiler’s backend. To address these multifaceted 
challenges, this paper introduces LLMCfuzz, a novel and systematic fuzz testing framework 
specifically engineered for C cross-compilers and driven by Large Language Models.  The 
methodology of LLMCfuzz is architected into three distinct, synergistic stages.  Specifically, in the 
initial mutation prompt generation stage, we establish a foundational seed library from real-world 
embedded programs and employ a diversity-guided strategy to systematically select mutation 
operators, which generate sophisticated prompts to instruct the LLM.  Subsequently, during the 
core test generation stage, LLMCfuzz harnesses LLMs to produce variant programs with intricate 
data and control flows designed to stress optimization routines while adhering to aviation 
constraints.  Critically, to solve the intractable problem of detecting silent miscompilations, we 
introduce an innovative variable tracking mechanism.  This mechanism directs the LLM to inject 
non-intrusive monitoring statements, tracking runtime variable values which are then outputted via 
the target’s serial port for cross-environment verification.  Furthermore, a self-optimizing feedback 
loop uses frontend errors to dynamically refine prompt templates.  Finally, the differential testing 
stage employs a two-pronged strategy, combining testing across different compiler versions with 
testing across various optimization levels to comprehensively uncover backend defects. Experiments 
conducted on a production-grade aero-engine compiler demonstrate the superior performance of our 
approach.  The results show that LLMCfuzz improves line coverage by 2. 78% to 21. 08% 
compared to state-of-the-art methods.  Crucially, it successfully identified five previously unknown 
miscompilation errors, including three critical silent miscompilation errors and two explicit ones, 
with four being unique discoveries of our method.  The proposed framework represents a pioneering 
application of LLMs to the rigorous domain of safety-critical compiler testing, offering a significant 
advancement in ensuring the reliability of embedded aerospace software.

Keywords aeroengine embedded systems; compiler defects; large language model; compiler 
fuzzing; program mutation

1 引 言

编译器是航空发动机嵌入式系统的核心组件之

一，其正确性和稳定性直接关系到系统的整体安

全。任何编译器错误都可能导致严重的系统故障，
甚至引发灾难性事故［1］。例如，F-16战斗机的控制

系统曾因编译器生成的错误代码导致飞控指令失

效，从而引发了飞行事故。三菱重工在其航空发动

机的控制软件中，曾因编译器误编译导致发动机控
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制系统出现异常，虽然没有导致直接事故，但该问题

的发现促使了进一步的编译器验证工作。
这些真实案例表明，航空发动机编译器的微小

错误都可能会导致系统出现致命缺陷，影响飞行器

的正常运行，甚至引发灾难性后果。因此，确保航空

发动机嵌入式系统中编译器的可靠性与安全性，是

保障系统稳定和飞行安全的关键。
不同于传统的 C语言编译器，航空发动机编译

器具有许多独特之处。首先是严格的安全性与可靠

性约束。航空发动机编译器需要遵循 DO-178C 等

航空电子标准，禁止动态内存分配、递归调用等高风

险操作，并强制类型安全与边界检查。其次是硬件

适配与定制优化需求。航空发动机编译器通常针对

PowerPC等嵌入式芯片定制，需要支持低延迟中断

处理、代码体积压缩以及硬件加速指令集的优化功

能，此类优化可能引入传统测试难以覆盖的静默误

编译错误。并且，航空发动机系统需要长时间无故

障运行，静默误编译错误可能会导致控制逻辑偏差

（如油门指令计算错误），但编译时无显式报错，传统

方法对此类错误的检测能力有限。
模糊测试是当前最成熟且广泛使用的编译器测

试方法。模糊测试的一般过程是生成大量语法正确

的测试程序并将它们输入到不同的编译器中，若编

译时发生任何意外或不一致的行为，都表明有编译

器出现了错误［2］。最著名的模糊测试方法Csmith［3］

和 YARPGen［4-5］等，在 C 语言编译器中已经发现数

百个错误。
随着大语言模型的发展，有研究者开始尝试将

大语言模型运用于软件测试领域中［6-8］。大语言模

型，尤其是代码生成大模型［9-10］，经过大量自然语言

和代码数据的训练，具有强大且智能的代码生成能

力。通过提示工程［11-13］，大语言模型能够根据给定

的任务描述生成特定的测试用例。目前已经有研究

将大语言模型应用于编译器模糊测试中［14-16］并且在

各种编程语言编译器和深度学习编译器中发现了大

量错误。
尽管传统的方法和基于大语言模型的方法都被

证实能够发现编译器错误，但它们依然存在缺陷。
首先，传统的方法生成的测试程序多样性不足。基

于生成的方法 Csmith 和 YARPGen，它们生成符合

语法规范的测试程序，但测试程序的多样性受限于

手动设计的生成规则；最先进的基于变异的方法

GrayC［17］，对种子程序积累微小的变异，从而生成大

量不具备触发编译器中后端错误能力的测试程序。

其次，几乎所有模糊测试方法都难以检测到危害性

最大的静默误编译错误［18］，而只能检测到危害性较

小的编译器崩溃错误和显式误编译错误；而且，目前

还没有专门针对C编译器设计的基于大语言模型的

方法。尽管 Fuzz4all［14］是一种通用的基于大语言模

型的方法，但是目前 Fuzz4all 尚未发现任何 C 编译

器的错误。
此外，现有方法均是为通用 C语言编译器设计

的（Linux 或 Windows 系统下），在航空发动机编译

器测试中面临严峻挑战。首先，基于生成的方法生

成的测试程序可能违反航空规范（如使用动态内存

分配），导致生成大量无效测试程序。其次，航空发

动机嵌入式系统使用交叉编译器，测试程序需要在

主机中被编译，然后在芯片中上电运行，程序需要依

赖串口模块进行输出，现有的所有方法都难以适

配。并且，航空发动机编译器针对芯片系统的定制

优化逻辑对代码变动高度敏感，需要生成兼具复杂

控制流、数据流并且合规的测试程序，然而现有方法

生成测试程序的结构较为简单，缺乏对编译器优化

缺陷的敏感的数据流与控制流结构。
针对上述问题，本文提出了一种基于大语言模

型的航空发动机编译器模糊测试方法 LLMCfuzz
（Large Language Model Based C Cross-compiler 
fuzzer）。本方法能够生成更加多样化、数据流和控

制流更为复杂的测试程序，并且通过变量追踪机制，
能够有效检测危害最大的静默误编译错误。首先，
LLMCfuzz设计了多种变异算子与相应的变异提示

模板，针对当前的种子程序，LLMCfuzz通过多样性

引导策略来选择变异算子，并生成相应的变异提

示。然后利用大模型生成数据流与控制流更为复杂

的变体程序。并且，LLMCfuzz 设计了一种变量追

踪机制，使用大模型为变体程序插入多个输出语句，
并通过串口输出来实现航空发动机编译器需要的跨

环境验证，这使得程序能够检测危害最大的静默误

编译错误。此外，LLMCfuzz 还收集具有前端错误

的变体程序及其错误信息，并用它们作为反馈来更

新变异提示模板，从而提高大语言模型生成有效测

试程序的能力。
本文的主要贡献如下：（1）提出 LLMCfuzz 方

法，首次将大语言模型应用于航空发动机嵌入式编

译器的模糊测试，突破了现有方法中规则驱动变异

的局限，更高效地生成具有复杂的数据流和控制流

结构的测试程序。LLMCfuzz在行覆盖率上较现有

方法提高 2. 78%至 21. 08%。（2）设计了一种创新的
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变量追踪机制，同时追踪全局和局部变量的值，使本

方法能够更精确地检测危害最大的静默误编译错

误。（3）LLMCfuzz在实际航空发动机编译器中成功

发现了5种误编译错误，其中包括3种静默误编译错

误 、2 种显式误编译错误 。 其中有 4 种错误为

LLMCfuzz的独有发现。
本文第 1节介绍编译器模糊测试的相关方法和

研究现状；第 2节介绍相关工作；第 3节介绍本文提

出的基于大语言模型的航空发动机编译器模糊测试

方法LLMCfuzz；第 4节介绍本文的实验设计并对实

验结果进行讨论；第5节总结全文。

2 相关工作

编译器模糊测试方法主要分为基于生成的方

法［3-5，19-21］和基于变异的方法［17，22-26］。此外，近年大语

言模型在软件测试领域的应用［6-8，27-29］也取得了一定

进展，包括基于生成与变异结合的模糊测试方法。
基于生成的模糊测试方法一般通过语法规约生

成测试程序。Csmith［3］作为开创性的 C 程序生成

器，通过设计C语言规约子集随机生成测试程序，发

现了大量C编译器错误。YARPGen［4-5］进一步引入

标量优化和循环优化组件，提高了针对性测试能力，
弥补了Csmith的部分不足。然而，基于语法规约的

方法生成程序的多样性和复杂度受限，难以覆盖编

译器的深层特性［30］。为了克服以上局限，基于深度

学习的方法如 DeepFuzz［20］利用编译器测试套件训

练模型生成程序，但生成程序的语法正确率较低，且

仅能检测到编译器崩溃错误，而无法有效检测到航

空发动机编译器中危害最大的静默误编译错误。
相比传统方法，本文提出的 LLMCfuzz 利用大

语言模型生成测试程序，突破了手工规则的限制。
基于精心设计的提示指令，LLMCfuzz 生成数据流

与控制流更复杂的测试程序，同时通过变量追踪机

制来检测静默误编译错误。
基于变异的模糊测试方法通过修改现有程序生

成测试程序，主要分为语义保留变异［22-24］和非语义

保留变异［17，25-26］。语义保留变异方法如Orion［22］通过

随机删除非执行部分代码生成测试。Athena［23］和

Hermes［24］进一步拓展了变异操作的范围。然而，这

类方法生成的程序语义一致性虽有保障，但测试程

序多样性有限，难以触发深层次编译器缺陷。非语

义保留变异如GrayC［17］，基于抽象语法树，使用语义

感知的变异算子，但仍然需要对程序积累大量变异

才有可能触发缺陷。此外，非语义保留变异中有一

些研究关注优化交互问题，并设计了针对优化阶段

的模糊测试方法。MopFuzzer［31］提出了一种最大化

优化交互的测试方法，通过调整编译器的优化顺序

来触发潜在错误，并结合差分测试进行验证 。
MopFuzzer 的方法在 JVM 编译器上取得了成功。
然而，其方法主要适用于动态优化（如 JIT编译），而

在静态C语言编译器，特别是嵌入式编译器上，其适

用性仍有待探索。
LLMCfuzz 结合语义保留和非语义保留变异，

设计了多样性引导的变异策略来选择变异算子，并

通过增强程序数据流和控制流复杂度的提示指令来

进行更为激进的变异，生成对编译器优化缺陷敏感

的测试程序。
近年来，随着自然语言技术的发展，大语言模型

涌现并开始应用于自然语言和代码任务［32］中。最

先进的大语言模型基于 Transformer［33］的解码器模

型。基于指令的大语言模型能够理解人类提供的复

杂指令并给出回答。大语言模型近年来在软件测试

中逐渐展现优势。TitanFuzz［27］利用 Codex 生成种

子程序并执行基于模板的变异，用于深度学习库测

试。CodaMosa［28］为了突破传统搜索测试覆盖率瓶

颈问题，利用Codex生成新的单元测试。
针对编程语言编译器，Fuzz4All［14］结合生成和

变异策略，利用大语言模型提取特性文档生成测试

提示［34］，在 C++、Go 等编译器中发现了缺陷。然

而，Fuzz4All未能在以稳定性和安全性为主的 C 语

言编译器中发现错误。并且，Fuzz4All缺少对测试

程序中变量的数值监控，这导致该方法难以发现静

默误编译错误。
综上所述，当前编译器模糊测试技术仍存在以

下几个关键技术难题：（1）现有基于生成的方法生成

的测试程序多样性不足，难以有效触发编译器的深

层次优化缺陷；（2）已有变异方法大多需要积累大

量微小变异或难以兼顾语义有效性与测试程序多样

性，测试效率较低；（3）目前的基于大语言模型的方

法尚未有效解决静默误编译错误检测问题，特别是

缺乏针对航空发动机嵌入式系统等特定领域的适配

机制。
本文的LLMCfuzz专为航空发动机嵌入式C编

译器设计，通过变量追踪机制有效检测静默误编译

错误，成功在一种航空发动机嵌入式 C编译器中发

现了 5 种误编译错误，其中包括 3 种静默误编译

错误。
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3 方 法

为了实现航空发动机嵌入式系统 C 编译器中

后端错误检测，本文提出一种基于大语言模型的

C 编译器模糊测试方法 LLMCfuzz，其结构如图 1
所示。 LLMCfuzz 的框架包括变异提示生成，测

试、生成和差分测试三部分。在变异提示生成阶

段，变异调度器会基于多样性引导策略，为种子

程序选择一个变异算子；然后将变异算子的相关

任务、指令和种子程序填入变异提示模板，生成

变异提示。在测试生成阶段，将变异提示输入代

码生成大模型（即 DeepSeek-Coder［ 35 ］）中，由大模

型生成变体程序，其中无效的变体程序及其前端

错误信息将作为示例，加入当前的变异提示模

板 ；然 后，基 于 本 文 提 出 的 变 量 追 踪 机 制，
LLMCfuzz 使用大模型为变体程序插入多个输出

语句来监测全局与局部变量，从而得到测试程

序。最后，测试程序将用于编译器差分测试，从

而检测编译器错误。
选择 DeepSeek-Coder 作为代码生成大模型的

依据是，DeepSeek-Coder 是一种开源的大语言模

型，该模型经过专门的代码数据预训练，能够深刻

理解程序语义与结构，具备强大的代码生成能力，
擅长生成复杂结构、精确数据流和控制流的程序

变体。在多个代码生成任务基准上，DeepSeek［34］

系列模型均表现出明显的性能优势，已被广泛验

证具备领先的代码智能能力。

3. 1　变异提示生成

进行程序变异的目标是生成能够触发航空发动

机编译器中后端错误的测试程序。已有研究表明，
大多数编译器中后端错误属于优化错误［36］，而编译

器的优化组件一般依赖于程序的不同结构和数据流

而发挥作用［37］，航空发动机编译器同样具有该特点，
需要兼具复杂控制流、数据流并且合规的测试程序

来对其进行测试。而基于变异的方法GrayC设计的

变异算子几乎都是对程序结构影响较小的微小变

异，如改变数据类型、替换运算符等，这导致 GrayC
需要对种子程序积累一定量的变异才能改变程序的

结构。因此，LLMCfuzz 结合了结构化变异（插入）
和微小变异（替换和删除），设计了如表 1 所示的

13种变异算子。并且，为了累积多个变异算子的效

果，对于每一个种子程序，LLMCfuzz对其进行迭代

变异，在迭代变异结束前，每一个变体程序都将作为

新的种子程序再次进行变异。
本方法对删除变异算子的设计基于以下原则：

首先是前端正确性。删除变异算子被严格限定为微

小变异，仅采用移除限定符、修饰符或一元运算符这

三种算子，是为了让变体程序能够通过编译器前端

的语法检查，这样变体程序才能到达编译器中后端，
从而触发中后端错误。如果删除变异算子采用删除

部分程序语句（如删除 if分支语句或者某行代码），
可能破坏控制流或导致变量缺少定义，使得测试程

序无法通过编译器前端。其次考虑变体程序触发编

译器中后端错误的潜力。移除限定符（如 volatile）
可能会改变变量的内存访问语义，影响编译器的优

化逻辑；移除修饰符（如 const）可能导致未定义行

为，而该类错误仅在中后端优化时暴露；移除一元运

算符可能改变表达式语义，有助于检测编译器对表

达式计算的中后端错误。

图1　LLMCfuzz框架示意
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LLMCfuzz利用代码生成大模型对种子程序进

行变异。将变异提示输入大模型中，大模型会根据

提示要求输出变体程序。为了能够根据不同的变异

算子和种子程序生成需要的变异提示，我们设计了

一种变异提示模板，初始的模板包含三部分 ：
［Task］， ［Instructions］，［Code］。［Task］是变异的任

务描述，［Instructions］包含变异操作的多个具体指

令，［Code］是即将进行变异的种子程序。
图 2 以插入分支结构变异为例，展示了模板三

个部分的具体内容：［Task］部分表明了插入分支结

构变异的总体需求。［Instructions］描述了 4 项具体

指令，即重用程序中已有的变量或表达式；在复杂的

控制流处进行插入；如果有必要可以声明并初始化

新的变量；大模型的回答中应仅包含变体程序。
［Code］部分用于填入种子程序，该程序来自 GCC
编译器的测试套件。表 1中展示了每个变异算子对

应的变异提示模板中［Task］的具体设置。
除了插入控制语句的提示模板的［Instructions］

中仅包含指令［2］和指令［4］以外，每一种插入变异

的提示模板中，［Instructions］的内容都是相同的，而

在替换变异算子和删除变异算子中，考虑到替换与

删除操作在当前种子程序上可能不具备执行条件，
因此在替换变异的提示模板中，［Instructions］被
设置为如下 2条指令：［1］ If there are no<被替换内

容>to replace，respond me with the original code I 

provided. ［2］ The response should contain only 
code. 而在删除变异的变异提示中，［Instructions］被
设 置 为 ：［1］ If there are no< 被 删 除 内 容 >to 
remove，respond me with the original code I provided.

表 1　LLMCfuzz 的变异算子

序号

1

2

3

4
5
6
7
8
9

10

11
12
13

类型

插入

变异

算子

替换

变异

算子

删除

变异

算子

名称

插入分支结构

插入循环结构

插入控制语句

插入结构体

插入表达式

插入死代码

替换某些常量

替换某些变量

替换某些运算符

替换某些赋值语句的右值

移除某些限定符

移除某些修饰符

移除某些一元运算符

[Task]
Insert one branching statement such as ‘if’, ‘if-else’, ‘switch’, or other conditional constructs 
into the provided C code.
Insert one loop statement such as ‘for’, ‘while’, ‘do-while’, or other loop constructs into 
the provided C code.
Insert one control statement such as ‘return’, ‘break’and ‘continue’ if there are loop state⁃
ments, or other control statements into the provided C code.
Insert one structure definition and usage into the provided C code.
Insert one complex arithmetic, logical, bitwise, or ternary expression into the provided C code.
Insert one piece of dead code into the provided C code.
Replace some constants with another in the provided C code.
Replace the type of some variable with another in the provided C code.
Replace some operator with another in the provided C code.
Replace some right-hand value of an assignment statement with another variable or expression 
in the provided C code.
Remove some qualifier (i. e. , volatile, const, and restrict) in the provided C code.
Remove some modifier (i. e. , long, short, signed, and unsigned) in the provided C code.
Remove some unary operator in the provided C code.

图2　插入分支结构的变异提示示例
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［2］ The response should contain only code.
值得注意的是，［Instructions］中的前三项指令

中，指令［1］要求构建分支语句时，在分支条件和代

码块中重用程序中已有的变量或表达式，这会将原

程序中的数据流链接到分支语句中，从而达到数据

流增强的效果。指令［2］要求在控制流复杂度高的

位置执行插入，同样能增强数据流，并且当插入具有

新的控制流的结构（如循环语句和分支语句）时，程

序的控制流复杂度也将得到增强。指令［3］保证了

在种子程序中已有变量不足时能够定义新的变量用

于分支语句代码块中。
本文第 4 节中的实验表明，使用［Instructions］

的前三项指令来提示大模型生成变体程序，可以提

高编译器测试的覆盖率。
3. 2　测试生成

3. 2. 1　前端错误反馈

尽管当前流行的代码生成大模型经过了大量语

法正确的程序数据集的训练，但仍然有可能生成语

法错误的程序。语法错误的程序在编译器前端的词

法、语法分析等阶段将直接被丢弃，无法进入编译器

中后端，因此它们无法检测编译器中后端缺陷。受

到当前大语言模型提示工程中的少样本提示技术［38］

（Few-shot Learning）启发，LLMCfuzz 将具有语法

错误的变体程序及其前端错误信息作为反馈，从而

提高大语言模型生成有效程序的能力。
LLMCfuzz 通过更新变异算子的提示模板来

实现前端错误反馈机制。当使用某种变异算子产生

了具有语法错误的变体程序，LLMCfuzz 将为该变

异算子的提示模板添加［Example to avoid syntax 
error］部分，并将该变体程序与编译时产生的前

端错误信息填入该部分。更新后的变异提示模板

将包含四部分：［Task］，［Instructions］，［Example to 
avoid syntax error］和［Code］. 当存在多个具有语法

错误的变体程序时，可以添加多个样本，格式为

［Example 1 to avoid syntax error］，［Example 2 to 
avoid syntax error］，…，［Example N to avoid syntax 
error］。其中N是最大样本数，若具有语法错误的变

体程序数量大于 N，LLMCfuzz 将从中随机选择 N
个程序作为 few-shot样本。
3. 2. 2　变量追踪机制

LLMCfuzz使用大语言模型生成的变体程序可

以直接用于编译器测试，但是和大多数现有的模糊

测试方法相同，变体程序仅能检测编译器崩溃错误

和显式误编译错误（例如，段错误）。然而，发生崩溃

错误时，编译器会显式地产生错误编译信息，并且不

会生成有效的可执行文件；而显式误编译错误发生

时，程序会出现提示错误执行信息并终止，因此该类

错误容易被及时修复。因此，以上两种编译器错误

的危害性相对较小。而静默误编译错误会导致编译

器编译产生错误的可执行文件，而且在编译和执行

时均不会出现显式错误信息。该类错误可能导致软

件系统出现难以调试重大故障，严重威胁航空发动

机运行时安全。
Csmith 是少数能够检测编译器静默误编译错

误的模糊测试工具之一。Csmith 生成的测试程序

在运行时会输出程序中所有全局变量哈希处理后的

结果，在进行编译器差分测试时，如果程序在不同编

译环境下的输出结果不同，并且没有显式错误信息

出现，则说明触发了静默误编译错误。
LLMCfuzz设计了一种变量追踪机制来实现类

似的功能。LLMCfuzz不会将变体程序直接用于编

译器测试，而是利用大语言模型为变体程序插入多

个输出语句。具体来说，LLMCfuzz 在变体程序所

有被调用函数和主函数的所有 return语句之前或者

程序执行的最后一行处插入 printf语句，输出所有全

局变量以及插入位置的作用域内可见的所有局部变

量。与Csmith的方法相比，变量追踪机制具有两个

优势：首先，除了全局变量，局部变量的值也被输出，
这样能更全面地监测程序中变量的值，符合航空发

动机程序对高可靠性的要求；其次，逐个输出变量的

值，而不是输出对变量哈希处理后的结果，这样能够

直接定位到出现错误的变量。
图 3 展示了在 Linux 编译并执行的测试环境

下，插入输出语句的提示模板。模板包含四部

分：［Task］部分是插入 printf 语句的总体需求 ；
［Instructions］部分是多个具体指令；［Example］作为

单样本提示，使用了一个示例来引导大语言模型进

行 printf语句的插入，该示例中共有 3个 printf语句，
并且在 printf 语句前添加了注释；［Code］是待填入

的变体程序。具有输出语句的变体程序即可作为测

试程序，测试程序编译运行后的输出结果将被收集

从而进行差分测试。
在差分测试阶段，测试程序需要经过交叉编译，

并在航空发动机嵌入式系统的开发板上进行验证。
然而，由于 Linux 环境下的测试程序无法直接在嵌

入式环境中运行，LLMCfuzz 对其进行了调整。具

体而言，LLMCfuzz 使用基于 UART 通信协议实现

的 Send（）函数替换测试程序中的所有 printf 语句，
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该函数具有与 printf（）相同的参数和输出格式。为

此，程序删除了<stdio. h>头文件，将其替换为

UART相关的头文件及其他运行时必要的头文件。
此外，为确保数据发送的稳定性，LLMCfuzz在main
函数结束前插入延时函数，以避免中断发送过程。
3. 3　多样性引导的变异算子选择策略

3. 3. 1　变异算子排序

程序变异操作会引发组合爆炸问题，这使得

LLMCfuzz事实上不可能为单个种子程序枚举并生

成其所有的潜在变体。换言之，多样化的测试程序

能够探索编译器中后端更大的空间，从而更有可能

发现编译器中后端缺陷。为此，一种核心策略在于，
确保每次生成的变体程序与当前作为变异基础的种

子程序（该种子程序可能源自前一轮迭代）具有显著

的差异性。在 LLMCfuzz 中，这种程序间的相异度

是通过计算其 Jaccard 距离来量化的。两个程序之

间的距离计算公式如下：

Dist ( P1，P2 )= 1 - StmtP1 ∩ StmtP2

StmtP1 ∪ StmtP2
（1）

其中，StmtP1 和StmtP2 分别表示程序P1和P2的行级

代码集合，即将程序按行分割后形成一个集合，集合

中的每一个元素都是一行代码。
针对当前种子程序，LLMCfuzz 选择一种变异

算子对其进行变异。鉴于并非所有变异算子在构建

“错误敏感结构”时都同等高效，一个动态的择优机

制显得至关重要。LLMCfuzz采用了一种基于排名

的选择策略来调度变异算子。该策略首先为每个算

子量化一个优先级得分；随后，所有算子依据此得分

进行降序排列，构成一个优先队列，LLMCfuzz将据

此队列进行选择。各变异算子的优先级得分由下式

给出：

Score ( Mut )= 1
n ∑

i = 1

n

Dist ( Pi，Pi - 1 )*Rate ( Mut )    ( 2 )

其中，Mut表示变异算子，n是由 Mut变异得到的程

序变体数量，Dist ( Pi，Pi - 1 )表示第 i 次变异产生的

程序间 Jaccard 距离。这里的 Pi - 1 可能是原始种子

程序，也可能是变体程序，这是因为LLMCfuzz对一

个种子程序迭代多次变异。Rate ( Mut )表示Mut变
异产生有效的变体程序的成功率，计算公式如下：

Rate ( Mut )= #FrontPassMut

#AllMut

（3）

其中，#FrontPassMut 表示大语言模型基于 Mut 生成

的能够通过编译器前端的变体程序数量，#AllMut 表

示基于Mut生成的变体程序总数。
3. 3. 2　变异算子选择

LLMCfuzz的变异算子选择机制旨在规避朴素

贪心策略的局限性。具体而言，尽管系统会在每次

变异后根据历史效果对所有算子进行优先级评分和

排序，但直接选择排名最高的算子并非最优解，因为

历史效果无法保证其在未来变异中的表现。为此，
我们构建了一个概率性的选择框架，其核心思想

是将算子选择问题转化为一个从特定概率分布中

进行抽样的过程。该框架确保了所有算子均有被

选中的机会，同时赋予高优先级算子更高的选择

概率。此选择过程具有马尔可夫性，即第 i 次选

择的变异算子 Mutb 仅与第 i - 1 次选择的变异算

子 Muta 有关。为了解决该抽样问题，LLMCfuzz 采
用了 Metropolis-Hastings （MH） 算法［39］，这是一种

常见的马尔可夫链蒙特卡罗方法。MH算法通过一

个提议分布（proposal distribution）从当前状态（当前

图3　插入输出语句的提示示例
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算子）生成一个候选状态（下一个算子），并依据一个

接受概率 p来决定是否采纳该候选状态作为下一个

转移目标。与已有工作类似［40］，LLMCfuzz 使用几

何分布来建模伯努利试验的成功次数。一个对称的

几何分布被用于定义从当前变异算子转移至候选变

异算子的接受概率，具体如下：
Pr ( X = k )=(1 - p )k - 1 p （4）

在每次变异时，随机选择变异算子并判断是否使用

该变异算子，因此LLMCfuzz采用对称的几何分布。
给定上一次使用的变异算子Muta，当前随机选择的

变异算子Mutb被接受的概率为：

Pb ( Mutb | Muta )= min ( )1，Pr ( Mutb )
Pr ( Muta )

=

                               min (1，(1 - p )ka - kb ) （5）
其中，ka 和 kb 分别是变异算子 Muta 和 Mutb 的排名，
若 kb < ka，则Mutb 一定被接受；否则，Mutb 将以概率

(1 - p )ka - kb 被接受。
为了定义单次伯努利试验的成功概率 p，

LLMCfuzz施加了如下三项约束条件：
0.95 ≤∑k = 1

13 Pr ( X = k )≤ 1 （6）

p > 1
13 （7）

0.001 <(1 - p )13 - 1 p （8）
公式（6）旨在确保整体概率分布的归一性，使其累积

和趋近于 1，公式（7）为排序最高的算子设定了一个

不低于 0. 08的选择概率下限，以强化对优质变异算

子的利用，公式（8）保证优先级排序最低的变异算子

被选中的概率不为 0，所以 p 的取值范围是 0. 22 <
p ≤ 0. 39。LLMCfuzz设置 p的值为0. 3。

算法 1描述了在基于多样性引导的变异算子选

择策略下，进行测试生成的流程。第 1 行随机选择

一个变异算子Muta，第2行初始化测试程序集合P 为
空；第 3到第 28行循环进行测试生成。其中，第 4行

随机选择一个种子程序，第 5 行初始化变异算子排

序，第6行初始化变异迭代次数为0；第7到第27行针

对当前种子程序执行迭代变异，其中第 8到第 14行

进行本节所述的基于马尔可夫链蒙特卡洛算法的变

异算子采样方法来选择变异算子 Mutb；第 15、16 行

生成变体提示并利用代码生成大模型生成变体程序

VP；17到 22行判断变体程序 VP无语法错误时，生

成插入输出语句的提示并利用大语言模型生成测试

程序 TP，然后迭代当前种子程序为 VP，最后按照

3. 3. 1 节所述方法更新变异算子 Mutb 的优先级分

数；第 23到 25行判断当变体程序VP存在语法错误

时，更新变异算子 Mutb 的优先级分数，并且中断本

次迭代变异，从种子程序库中随机选择下一个种子

程序。
3. 4　差分测试

LLMCfuzz使用测试程序对编译器进行差分测

试，差分测试的主要思想是测试程序在不同配置下

进行编译运行，若编译或运行结果出现任何意外或

不一致的情况，则认为有编译器出现了错误，最后再

进行人工错误分析。差分测试包括随机差异测试和

不同优化级别下测试。一般地，随机差异测试进行

跨编译器版本的测试。
具体来说，将一个测试程序使用两个以上版本

的编译器分别进行编译运行，然后根据编译和运行

结果判断编译器是否出现错误；不同优化级别下测

试时进行跨优化级别的测试。具体来说，将一个测

试程序使用同一个编译器但在不同优化级别下编译

运行，然后根据编译和运行结果判断编译器是否出

现错误。
算法 1. 　基于多样性引导的变异算子选择策

略下的测试生成算法
输入：种子程序集合 S；最大迭代变异次数 MAX；变异

算子列表 M；储存每个变异算子生成的无效变体程序

及其错误信息的字典D
输出：测试程序集合P
BEGIN
1.      Muta ← Mi ← random(1，…，13 )

2.      P ← ｛｝
3.      WHILE 未达到最大测试程序数 DO
4.      seed ← RanSel（S） //随机选择种子程序

5.      mutatorSort← Sort（M） //对变异算子列表排序

6.      i ← 0    //初始化迭代次数

7.          FOR i= 1 to MAX DO
8.      ka← Position（mutatorSort， ListMuta）
9.      Mutb ← None
10.            DO
11.    Mutb ← Mi ← random(1，…，13 )

12.    ka ← Position（mutatorSort， Muta）
13.    f ← random（） //f在区间［0， 1）随机取值

14.            WHILE f ≥ (1 - p )ka - kb

15.    mutPrompt=GenMutPrompt（Mutb，seed，D［Mutb］）
16.    VP ← LLM（mutPrompt ）   //生成变体程序

17.             IF VP无语法错误 THEN
18.    oraclePrompt ← GenOraclePrompt（UP）
19.    TP ← LLM（oraclePrompt）
20.    P ← P ∪ { TP }
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21.    seed ← VP //迭代种子程序为新的变体程序

22.    UpdateScore（Mutb）
23.             ELSE
24.    UpdateScore（M）
25.                 BREAK
26.             END IF
27.         END FOR
28.    END WHILE
29.    RETURN P
END
为了测试的全面性，LLMCfuzz 结合随机差异

测试和不同优化级别下测试。选择两种编译器进行

随机差异测试，即一种基于GCC的航空发动机嵌入

式系统交叉编译器和 Linux 系统下的 GCC-14. 1 编

译器；选择 5 种优化级别（即［-O0，-O1，-O2，-Os，
-O3］）进行不同优化级别下测试。

在编译器中后端错误中危害最大的错误是静

默误编译错误。图 4 展示了在嵌入式环境下，
LLMCfuzz 使用测试程序对航空发动机交叉编译

器进行差分测试并发现静默误编译错误的过程。
回顾 3. 3. 2 节，LLMCfuzz 为变体程序插入多个

printf（）语句从而得到测试程序，而这些测试程序

在 Linux 系统下的 GCC-14. 1 中能够顺利编译，并

在相同系统下执行。然而，它们经过交叉编译器

编译生成的可执行文件需要写入芯片后执行。因

此，我们将测试程序中的输出语句修改为串口输

出代码，当可执行文件在芯片中运行时，利用串口

输出将变量值传回主机。最后，对比在 Linux 系统

与芯片内测试程序的输出，若出现两种以上结果，
则说明其中有编译器出现了错误，此时可进行人

工分析具体情况。
算法 2 描述了 LLMCfuzz 的差分测试方法。

第 1~3行初始化优化级别列表、运行结果集合和两

种编译器。第 4~19行描述了测试流程。第 6、7行

判断若当前编译器为交叉编译器，则修改测试程序

tp使其适用于交叉编译环境。第 8~12行根据编译

时的信息判断测试程序是否具有语法错误或出现编

译器崩溃错误；第 14~16行根据程序运行时信息判

断是否出现显式误编译错误；第 17~19行收集程序

输出结果并判断，若程序出现两种以上结果，则判断

出现静默误编译错误。
算法 2.  差分测试算法
输 入 ：Linux 环 境 下 测 试 程 序 tp，交 叉 编 译 器

CrossCompiler，GCC-14. 1编译器GCC
输出：差分测试结果

BEGIN
1.      opts ← ［-O0，-O1，-O2，-Os，-O3］
2.      results ← ｛｝
3.      compilers ← ［CrossCompiler，GCC］
4.      FOR C in compilers DO
5.      FOR opt in opts DO
6.               IF C == CrossCompilerTHEN
7.      tp ← Modify（tp）
8.              END IF
9.      compileInfo，binary ← C. compile（tp， opt）
10.            IF compileInfo为程序前端错误THEN
11.                 RETURN FrontError（C， tp， opt）
12.            ELSE IF compileInfo 为 编 译 器 崩 溃 错 误

THEN
13.                 RETURN CrashBug（C， tp， opt）
14.            ELSE
15.    executeInfo，res ← binary. Execute（）
16.                 IF executeInfo为显式误编译错误 THEN
17.                      RETURN ExplicitMisBug（C， tp， opt）
18.                 END IF
19.    results ← results∪ ｛res｝
20.            END IF
21.      END FOR
22.    END FOR
23.    IF len（results） > 1 THEN //为静默误编译错误

24.    RETURN SilentMisBug（C， tp， opt）
25.         END IF
END

图4　静默误编译错误检测方法
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4 实验分析

4. 1　实验设置

（1）种子程序集。为了与其他方法公平比较，
并且获取具有发现编译器错误潜力的种子程序，我

们从 GCC 和 LLVM 编译器的测试套件中收集了

1000 个测试程序作为种子程序集的主要部分；此
外，为了使种子程序更有可能发现与航空发动机领

域相关度更高的编译器错误，从航空发动机嵌入式

系统源码中收集了 200个测试程序，总计 1200个种

子程序。这些种子程序都已被验证能够通过编译

器前端，并且不能触发航空发动机编译器的任何

错误。
为了确保种子集的全面性与多样性，我们对其

进行了静态分析。该种子集包含 1200个C程序，总

代码量约 16万行，程序规模从 20行到超 800行不等

（平均约 135行），平均圈复杂度约为 8. 2，体现了其

在规模与结构上的显著多样性。在语言特性上，种

子集广泛覆盖了指针运算、嵌套数据结构、位域、复
杂控制流（如 goto）及宏定义等已知容易引发编译

器错误的构造。特别地，来自航空发动机系统的

200 个种子程序还引入了 volatile 关键字、硬件位操

作等领域特有的编程范式，为测试编译器在真实、复
杂场景下的鲁棒性提供了坚实基础。

（2）测试环境与参数设置。实验选择一种航空发

动机嵌入式系统常用的基于GCC的交叉编译器作为

待测编译器，选择GCC-14. 1作为Linux环境下进行

差分测试的参照编译器。Linux环境为 32 GB内存，
Ubuntu-22. 04 操作系统。本文使用的大语言模型

为DeepSeek-Coder-V2. 5，该模型为开源的、具备代

码生成能力的大型语言模型，采用 Transformer 架
构，参数规模为 236B，支持多种编程语言理解与生

成任务。我们使用其官方提供的 API 接口，未进行

额外微调或训练，直接通过提示词驱动完成变异生

成任务。在实验中，模型的 temperature 参数设置为

默认值 1，以增加输出多样性。变异提示模板中的

前端错误反馈最大样本数设置为 3；最大迭代变异

次数设置为8；伯努利试验成功率设置为 0. 3。
（3）基线方法。在进行对比实验时，将LLMCfuzz

与四种现有的编译器模糊测试方法进行比较，分别

是Fuzz4All，GrayC，Clang-Fuzzer，universalmutator，以

及Csmith。Fuzz4All是一种通用的基于大语言模型

的编译器模糊测试方法，利用大语言模型提取编程

语言特性生成测试提示，再使用代码生成大模型根

据测试提示生成测试用例，为了实验公平性，我们将

Fuzz4All使用的代码生成大模型设置为 DeepSeek-
Coder-V2. 5。GrayC 是最新的基于变异的编译器

模糊测试方法，该方法设计多种语义感知的变异算

子对种子程序进行变异，生成无语法错误的测试程

序，这些测试程序通过编译器前端从而检测编译器

中后端错误。Clang-Fuzzer将种子程序视为自然语

言文本，对其进行字节级突变从而生成测试程序用

于编译器测试。universalmutator是一种通用的模糊

测试工具，设计了一系列适用于多种语言的通用变

异算子，因此适用于生成 C测试程序。对比实验选

择这些方法是因为它们都基于种子程序集，使用一

系列变异算子生成丰富的测试程序用于编译器测

试，这与 LLMCfuzz 生成测试程序的流程相同。
Csmith 是一种最广泛使用的基于语法规约的 C 程

序生成器，支持 C 语言的大多数功能，因此我们将

Csmith也作为基线方法的一种来进行对比实验。
（4）LLMCFuzz 变体。在消融研究中，我们评

估 LLMCfuzz 的多种变体。针对变异提示模板中

［Instructions］，设置变体LF-No-DFCF（LLMCfuzzwithout 
Data Flow and Control Flow Enhancement）。该变体

中去除了插入变异的提示模板中［Instructions］的
［1］、［2］和［3］，这三条指令旨在增强生成变体程序

的控制流和数据流。针对前端错误反馈，设置变体

LF-No-Feedback。在该变体中，仅使用最初始的变

体提示模板，即［Task］+［Instructions］+［Code］，
而不再为模板加入［Example to avoid syntax error］
部分。针对多样性引导的变异算子选择策略，设置

变体LF-Random。在该变体中，变异算子将被随机

选择用于当前的变异。值得注意的是，我们并没有

为变量追踪机制设计变体，这是因为变量追踪机制

是为了使测试程序能够发现编译器的静默误编译错

误，其效果将在实验部分的 4. 4节中体现。
（5）评估指标。为了能够更细粒度地评估测试

程序对编译器内部的探索程度，实验采用不同方法

对待测编译器的覆盖行数，覆盖提升率以及生成测

试程序的有效率作为评估指标。其中覆盖提升率的

计算公式如下：
覆盖提升率 =

LLMCfuzz覆盖行数 - 其他方法覆盖行数

其他方法覆盖行数
×

100% （9）
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4. 2　覆盖率对比实验

除了 Csmith 以外，每种方法使用 4. 1 节所述种

子程序集，分别生成10 000个测试程序，每种方法运

行 10次，取覆盖行数和有效程序数的平均值。与先

前的工作［17］类似，我们在编译时开启-O3 级别优化

（开启最多的优化组件），超时时间（编译超时则认为

程序无效）设置为 20秒，并利用Gcov工具来收集覆

盖行数结果。

表 2 展示了每种方法对编译器的覆盖行数，覆

盖提升率和测试程序的有效性。从表中数据可以看

出，LLMCfuzz 对编译器的覆盖率相比于其他方法

更高，相较于Fuzz4All和GrayC，在覆盖行数上分别

多出了 9475 行和 4483 行，覆盖提升率分别为

6. 06% 和 2. 78%。其中 Clang-Fuzzer 的覆盖行数

最少，这是因为 Clang-Fuzzer 生成的测试程序绝大

多数未能通过编译器前端，其有效率仅1. 48%。

与 GrayC、Universalmutator 和 Csmith 相 比，
LLMCfuzz 生成测试程序的有效性略低一些，这

不仅是因为大语言模型代码生成能力有限，还

受到以下因素的影响 ：首先，LLMCfuzz 在生成

变体程序时引入了更复杂的提示模板和变异

策略，这提高了程序的多样性，但也可能增加

生成无效程序的概率 ；其次，前端错误反馈机

制的样本容量有限，未能覆盖所有潜在错误

模式，导致部分问题未能及时修正。尽管如此，
LLMCfuzz 对编译器的测试覆盖率依然显著高于

其他方法。
4. 3　消融实验

本节将 LLMCfuzz 与 4. 1节所述的三种变体进

行了消融实验，与对比实验相同，LLMCfuzz 的各

变体分别运行 10 次，取覆盖行数和有效程序数的

平均值。表 3展示了消融实验的结果。

与 LF-No-DFCF 相比，LLMCfuzz 的覆盖率提

升最为显著，达到了 2. 16%（3509行）。这表明在变

异提示的［Instructions］部分中，添加用于增强数据

流和控制流的指令，有助于更深入地探索编译器的

内部路径。然而，LLMCfuzz 生成测试程序的有效

率略低于LF-No-DFCF。可能的原因在于，复杂的

提示指令增加了大语言模型生成测试程序时出错的

概率。
对于 LF-No-Feedback 变体，由于缺少前端错

误反馈机制，测试程序的有效率相较 LLMCfuzz 有
所下降（从 97. 73%下降到 96. 15%）。同时，该变体

的覆盖行数也略低于LLMCfuzz。这可能是因为有

效率的降低导致更多的测试程序在编译器前端被拒

绝，从而影响了覆盖行数。
在与 LF-Random 的比较中，LLMCfuzz 的覆

盖行数提高了 2283 行，提升了 1. 40%。这种提

升归因于LLMCfuzz采用了基于多样性引导的变异

算子选择策略，生成多样化的测试程序有助于更广

泛地探索编译器内部路径。值得注意的是，尽管

LLMCfuzz 在覆盖率上表现更优，但 LF-Random 的

有效率略高一些（97. 94% 对比 97. 73%）。这可能

是因为在计算变异算子优先级时，尽管考虑了生成

有效程序的成功率，但变体程序之间的多样性对优

先级的影响更大。LLMCfuzz优先选择能够生成多

表 2　每种方法的覆盖行数和测试程序有效率

方法

LLMCfuzz
Fuzz4All(2024)
GrayC(2023)
Clang-Fuzzer(2018)
Universalmutator(2018)
Csmith(2011)

覆盖行数

165 843
156 368
161 360
136 973
145 774
147 305

覆盖提升率

—

↑ 6. 06%
↑ 2. 78%
↑21. 08%
↑13. 77%
↑12. 58%

有效率

97. 73%
95. 27%
99. 65%
1. 48%

98. 54%
99. 65%

有效程序数/程序总数

9773. 3/10 000
9526. 8/10 000
9965. 4/10 000
148. 1/10 000

9853. 6/10 000
9965. 3/10 000

表 3　消融实验结果

方法

LLMCfuzz
LF-No-DFCF

LF-No-Feedback
LF-Random

覆盖行数

165 843
162 334
165 269
163 560

覆盖提升率

—

↑2. 16%
↑0. 35%
↑1. 40%

有效率

97. 73%
98. 24%
96. 15%
97. 94%

有效程序数/程序总数

9773. 3/10 000
9823. 9/10 000
9615. 4/10 000
9794. 1/10 000
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样化程序的变异算子，而不是一味追求程序有效性，
因此在生成有效程序时有效率略有下降。
4. 4　编译器错误发现与分析

LLMCfuzz的设计旨在发现航空发动机嵌入式

系统编译器内部的误编译错误，尤其是危害最大的

静默误编译错误。静默误编译错误由于其缺少错误

信息提示，直接生成错误的可执行文件，会对软件系

统留下巨大隐患，甚至导致灾难级事故。
为了检测 LLMCfuzz 的错误发现能力，与先前

的工作类似［17］，我们将 LLMCfuzz 与其他 5 种基线

方法均运行24小时。除了Csmith以外，每种方法使

用 4. 1 节所述种子程序集，将每种方法在该时段内

生成的所有测试程序用于交叉编译器的差分测试。
值得注意的是，其他基线方法生成的测试程序都将

采用 3. 4 节中的差分测试方法，对于生成的测试程

序具有输出语句的方法（GrayC，Csmith），其输出语

句将被替换为串口输出语句。表 4展示了所有方法

发现的编译器中的后端错误数量和类型。

从表 4 可以看出，LLMCfuzz 共发现了 5 种错

误，明显高于其他方法（0~1种）。特别是静默误编

译错误，仅有 LLMCfuzz 发现，这体现了 LLMCfuzz
在检测航空发动机交叉编译器中隐蔽且危害严重的

缺陷方面的独特优势。此外，universalmutator 是唯

一检测出编译器崩溃错误的方法，而 GrayC 检

测到的唯一显式误编译错误与 LLMCfuzz 中发

现的一种错误（表 5中序号 4）重合，通过调试优化选

项和汇编分析，发现 2 种错误均由-O3 优化级别下

的-funswitch-loops优化选项错误导致，该标志在对

多层循环语句进行拆分时导致公用循环变量越过循

环条件，从而引发了程序运行时的段错误。因此，仅

有 universalmutator发现了一种LLMCfuzz未能发现

的崩溃错误，并且仅有 LLMCfuzz 发现了危害最大

的静默误编译错误。
表5统计了5种错误的具体信息，优化级别由低

到高分别为-O0（无优化），-01，-02，-Os，-O3。其中

出错级别为-O0及以上的静默误编译错误（错误1和

错误2）危害程度最大，这是因为即使在不开启编译器

优化的保守编译下，仍可能触发该类错误。而在-O3
优化级别下触发的静默误编译错误（错误3），只需要

采取其他优化级别就能规避错误。而显式误编译错

误（错误 4和错误 5）的危害程度低于静默误编译错

误，这是由于程序运行时会提示 0错误信息并终止，
这有利于程序调试以及编译器错误发现。如表 5所

示，本文根据危害程度从高到低将5个编译器错误分

为 I类，II类和 III类。其中 I类错误为静默误编译错

误并且触发错误的优化级别为-O0，II类错误为静默

误编译错误且触发错误的优化级别为非-O0，III类错

误为非静默误编译错误。目前LLMCfuzz尚未发现

编译器崩溃错误，该类错误同样属于 III类。表5中给

出了 5种错误的各自成因，其中错误 1、2、5均是由于

航空发动机编译器的特殊设计导致的。
与其他大多数无法发现 I类错误的模糊测试方

法不同，LLMCfuzz 能够发现静默误编译错误得益

于变量追踪机制，并且在差分测试中结合了随机差

异测试和不同优化级别下测试两种方式。我们展示

了触发 5 种编译器错误的测试用例与差分测试结

果，并且分析了每种错误的具体原因。为了便于展

示，我们将测试用例进行了最小化［41］，并采用 Linux
环境下的用例格式。

图 5展示了错误 1的测试程序。经过随机差异

测试发现程序在GCC-14. 1与交叉编译器下编译后

运行结果不同，即变量 b 的值不同。该错误是由于

交叉编译器对混合类型（无符号和有符号）在条件运

算符中进行隐式转换时处理不一致导致的。本应将

有符号-10按 16位转换为 65 526，却错误地以 8位转

换为 246，导致结果偏离预期。这是交叉编译器针

对芯片环境适配设计时产生的缺陷，属于隐式类型

转换错误。
图 6展示了错误 2的测试程序。经过随机差异

测试发现程序在GCC-14. 1与交叉编译器下编译后

表 4　每种方法发现的错误数量与类型

方法

LLMCfuzz
Fuzz4All(2024)
GrayC(2023)
Clang-Fuzzer(2018)
Universalmutator(2018)
Csmith(2011)

静默误

编译错误

3
0
0
0
0
0

显式误

编译错误

2
0
1
0
0
0

崩溃

错误

0
0
0
0
1
0

总计

5
0
1
0
1
0

表 5　LLMCfuzz 发现错误统计

序号

1
2
3
4
5

错误类型

静默误编译

静默误编译

静默误编译

显式误编译

显式误编译

出错优

化级别

-O0
-O0
-O3
-O3
-Os

危害

程度

I类
I类
II类
III类
III类

出错原因

隐式类型转换错误

常量折叠错误

非法代码移动错误

循环语句拆分错误

只读内存被写入
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运行结果不同，即变量 c的值不同，在这个测试用例

中，交叉编译器在优化表达式-10 * （32 739>t+
4503599ULL？ 32 739：t+4503599ULL）时（这里简

化为 -10 * （condition ？ a：b）），将乘法外提为 
condition？-10 * a： -10 * b，并且在使用无符号条件

移动指令（cmovb）时忽略了符号扩展和乘法的有符

号语义，且采用移位加法替代乘法时未正确处理负

数的低位补全，最终导致计算结果发生偏差。该问

题实质上是常量传播与条件表达式优化中的符号处

理失误与算术变换副作用的耦合错误。

图 7展示了错误 3的测试程序。该程序通过不

同优化级别下测试发现了编译器错误，在交叉编译

器开启-O3 优化下的编译运行结果中，a［1］. y=9，
而其他编译环境下的运行结果中 a［1］. y=0。该问

题由编译器在 -O3 优化级别下启用 -fpredictive-
commoning 优化选项时候，对循环体进行展开与重

排所致。由于错误地判断 a［0］=d 与随后 d=a［0］
之间不存在存后读依赖，编译器将对 a［0］. y的读取

操作提前至写入前，从而读到了未更新的旧值（初始

化为 9），并错误赋值给 a［1］. y。该错误属于编译器

在别名分析与循环展开优化中破坏值依赖关系所

致，实质是非法代码移动问题。

图 8展示了错误 4的测试程序。该程序通过不

同优化级别下测试发现了编译器错误。程序中的内

外层循环共用了同一个循环变量 d，造成了逻辑冲

突。当-funswitch-loops优化被开启（-O3默认开启）
时，编译器会对循环内不变的条件（即 if（a<0））做

提前判断，并拆分重组循环结构。然而，这个提前的

结构拆分导致变量 d 的控制逻辑被打乱，出现循环

越界，使得数组 f被越界访问，从而产生了段错误。
图 9展示了错误 5的测试程序。该程序通过不

图5　错误1的测试程序

图6　错误2的测试程序

图7　错误3的测试程序
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同优化级别下测试发现了编译器错误。在这段程序

中，虽然变量 a始终为 0，但循环内部对字符串字面

量的写操作属于未定义行为；在 -O2 下，编译器通

过死代码消除完全移除了这部分代码，而 -Os为了

减小代码体积未能删除，从而保留了写只读内存的

风险代码，最终导致段错误（SIGSEGV，返回值

139）。该错误是由于交叉编译器为嵌入式程序设定

的代码体积优化存在缺陷导致的。

LLMCfuzz发现的 5种交叉编译器错误中，其中

错误 1、2、3 为危害最大的静默误编译错误，该类错

误的发现得益于变量追踪机制和结合了随机差异测

试和不同优化级别下测试的差分测试方法。其中错

误 1、2、5均为交叉编译器针对航空发动机嵌入式系

统的特定优化导致的，这得益于 LLMCfuzz 采用航

空发动机嵌入式系统程序作为种子程序，并且通过

增强程序控制流和数据流复杂度的变异策略生成错

误敏感结构，生成触发航空发动机编译器错误能力

更强的测试程序。
4. 5　Few-shot 提示的上下文长度评估

为了验证在 3. 2. 1 节中设置的 N=3 的 few-
shot提示是否存在上下文长度超过限制的问题，我

们 执 行 LLMCfuzz，并 从 N=3 之 后 开 始 统 计

LLMCfuzz调用的 10 000次大模型API中上下文总

长度，以及当生成一个具有前端错误的测试程序之

后，编译器为该程序生成的前端错误信息长度。
根据表 6 的统计可以发现，LLMCfuzz 方法在

few-shot提示数量N=3时，提示上下文的平均总长

度约为 1235 个 token，远低于所采用的 DeepSeek-
Coder模型的上下文长度限制（128K tokens，大语言

模型中一般计为 128 000 tokens）。因此不存在上下

文超长问题。同时，前端错误信息长度较短，平均仅

28个 token，并不会显著增加上下文负担。

5 总 结

本文提出了一种基于大语言模型的航空发动机

编译器模糊测试方法LLMCfuzz。通过设计多样化

的变异提示模板和变量追踪机制，LLMCfuzz 能够

生成具有复杂数据流和控制流的测试程序，有效检

测编译器的静默误编译错误，从而将测试覆盖率较

其他方法提高了2. 78%至21. 08%。
实验结果表明，LLMCfuzz 在行覆盖率上较现

有方法提升了 2. 78% 至 21. 08%，并成功发现了

5种误编译错误，其中包括 3种静默误编译错误，这

验证了方法的有效性。此外，LLMCfuzz 在航空发

动机嵌入式系统中的编译器测试具有显著的优势，

表 6　上下文与前端错误长度（tokens）统计

统计项目

前端错误信息长度

上下文

总长度

最小长度

17

745

最大长度

74

1643

平均长度

28

1235

图8　错误4的测试程序

图9　错误5的测试程序
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尤其是其设计的变量追踪机制，为确保高安全需求

系统的稳定性提供了重要保障。
未来的研究可以进一步探索如何更有效地使

用大语言模型提升模糊测试的效率和准确性。
例如，可采用检索增强生成（Retrieval-Augmented 
Generation，RAG）技术来构建一个存储和检索编译

器前端错误信息的知识库，以动态地引导大语言模

型生成更精准、更有针对性的测试用例。此外，也可

以探讨将大模型与其他智能技术（如强化学习或主

动学习）相结合，建立一种自适应的测试框架，使测

试过程能够自动识别和集中关注编译器中容易出现

问题的部分，从而显著提高编译器测试的覆盖率和

缺陷检测能力。
尽管本文提出的LLMCfuzz方法专门针对航空

发动机嵌入式系统的特定需求设计，但其核心思路

和框架在其他领域的编译器测试中也具备潜在应用

价值。然而，不同领域的编译器存在差异明显的安

全规范、优化特性和运行环境，例如汽车电子、医疗

设备或航天器等嵌入式系统可能具有独特的编译约

束或硬件接口。因此，当 LLMCfuzz 迁移至其他领

域时，应根据目标领域的特定编译规则对变异算子、
提示模板及变量追踪机制进行适配调整，例如修改

或增加领域特定的变异策略、调整变量追踪的输出

机制，以确保生成的测试程序满足领域特定的编译

要求。这种策略上的调整将帮助LLMCfuzz更好地

融入新的应用场景，充分发挥方法的通用性与有

效性。
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Background
The research problem addressed in this paper lies at the 

intersection of software engineering, software security, and 
formal methods, specifically focusing on the domain of embedded 
systems in aerospace applications, particularly those related to 
aircraft engine compilers.  Compilers serve as a critical component 
of embedded systems, as their accuracy directly impacts the 
overall safety and reliability of these systems.  Errors in compilers 
can lead to catastrophic failures, making rigorous testing essential 
for high-reliability systems like aircraft engines.

Currently, fuzz testing is the predominant method employed 
for compiler verification and is recognized for its maturity and 
widespread application.  The essence of fuzz testing involves 
generating a large number of syntactically correct test programs 
and feeding them into compilers to uncover unexpected behaviors 
that could indicate errors.  Prominent methods such as Csmith and 
YARPGen have effectively identified hundreds of errors in C 
language compilers, showcasing the effectiveness of these fuzz 
testing techniques.  However, despite these advancements， the 
existing methods often struggle with generating diverse test 
cases, which limits their ability to trigger back-end compiler 
defects or detect the most harmful silent miscompilation errors.

The emergence of large language models （LLMs） has 
opened new avenues for software testing, as these models are 
capable of generating sophisticated test cases based on natural 
language prompts.  Recent studies have attempted to integrate 
LLMs into fuzz testing for compilers, yielding promising results 
across various programming languages and compiler systems.  
However, these approaches still face challenges.  Traditional fuzz 
testing techniques often lack the diversity needed to explore all 
facets of the compiler’s behavior effectively.  Additionally, most 

existing methods have difficulty detecting silent miscompilation 
errors, which pose significant risks but remain largely 
unaddressed.

This paper proposes a novel fuzz testing approach named 
LLMCfuzz （Large Language Model-Based C Compiler Fuzzer）, 
aimed at overcoming the limitations of current methods.  
LLMCfuzz employs a three-phase strategy encompassing 
mutation prompt generation, test case generation, and differential 
testing to enhance the testing process.  By leveraging a diverse 
seed program library and employing various mutation strategies, 
LLMCfuzz aims to produce a wider variety of test cases that 
feature complex data and control flows.  Moreover, a variable 
tracking mechanism is introduced to continuously monitor 
variables throughout the execution, thus facilitating the detection 
of the most critical silent miscompilation errors.

Through experimental validation, LLMCfuzz has 
demonstrated significant improvements, increasing line coverage 
by 2. 78% to 21. 08% over existing methods and successfully 
identifying five miscompilation errors in a specific aircraft engine 
cross-compiler, including three silent miscompilation errors.  This 
research contributes significantly to the field by offering a more 
effective testing framework that enhances compiler reliability, 
thereby contributing to the safety of embedded systems in 
aerospace applications.
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