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摘 要 随着数据观测、采集手段的发展,科学大数据正快速增长,并推动着科研范式变革。然而,科学数据分散

在互联网中各类数据仓储与个人数据库中形成了“数据孤岛”,难以有效整合与关联科学数据。为此,本文提出了

一种面向开放互联网的科学数据挖掘与理解方法,通过机器阅读各类互联网数据资源,自动识别科学数据并结构

化抽取关键字段,实现对科学数据的高效发现与管理。具体来说,本文融合网页多视角信息设计了网页筛选器

WebFilter,
 

通过融合网页DOM树的结构共现与语义相关实现对网页级特征理解与分类;此外,本文设计了基于节

点异构关联的网页阅读器 WebReader,通过异构图网络的消息传递对网页关键信息进行结构化抽取,形成科学数

据画像。本文采用了多个公开数据集进行实验性能评估:在网页分类方面,本文提出的 WebFilter相较于基线模型

准确率提升了1.39%到3.71%、F1分数提升了1.42%到4.10%;在网页信息抽取方面,本文提出的 WebReader
平均提升1.40%,在少训练样本情况下性能提升显著。更进一步,基于本文技术研究成果研制了面向地球科学领

域的开放科学数据系统DataExpo,汇聚百万科学数据并提供了数据多维查询、地图查询等数据服务,已应用于“深
时数字地球”国际大科学计划,推动了地球科学领域数据驱动范式研究。
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Abstract 
 

With
 

the
 

development
 

of
 

data
 

observation
 

and
 

collection
 

methods,
 

scientific
 

big
 

data
 

is
 

growing
 

rapidly
 

and
 

driving
 

paradigm
 

shifts
 

in
 

research.
 

However,
 

scientific
 

data,
 

scattered
 

across
 

various
 

data
 

warehouses
 

and
 

personal
 

databases
 

on
 

the
 

internet,
 

forms
 

“data
 

silos”,
 

mak-
ing

 

it
 

difficult
 

to
 

effectively
 

integrate
 

and
 

correlate
 

scientific
 

data.
 

To
 

address
 

this
 

problem,
 

this
 



paper
 

proposes
 

a
 

scientific
 

data
 

mining
 

and
 

understanding
 

method
 

on
 

the
 

open
 

internet,
 

which
 

au-
tomatically

 

identifies
 

scientific
 

data
 

and
 

extracts
 

key
 

fields
 

in
 

a
 

structured
 

manner,
 

enabling
 

effi-
cient

 

discovery
 

and
 

management
 

of
 

scientific
 

data
 

through
 

machine
 

reading
 

techniques.
 

Specifical-
ly,

 

this
 

paper
 

integrates
 

multi-view
 

web
 

information
 

to
 

design
 

the
 

WebFilter,
 

which
 

understands
 

and
 

classifies
 

webpage-level
 

features
 

by
 

combining
 

the
 

structural
 

co-occurrence
 

and
 

semantic
 

rele-
vance

 

of
 

the
 

webpage’s
 

DOM
 

tree.
 

Additionally,
 

this
 

paper
 

designs
 

the
 

WebReader
 

based
 

on
 

DOM
 

node
 

heterogeneous
 

associations,
 

which
 

performs
 

structured
 

extraction
 

of
 

key
 

webpage
 

in-
formation

 

through
 

message
 

passing
 

in
 

a
 

heterogeneous
 

graph
 

network,
 

forming
 

a
 

scientific
 

data
 

profile.
 

Several
 

publicly
 

available
 

datasets
 

were
 

used
 

for
 

experimental
 

performance
 

evaluation:
 

in
 

the
 

case
 

of
 

webpage
 

classification,
 

the
 

proposed
 

WebFilter
 

improved
 

accuracy
 

by
 

1.39%
 

to
 

3.71%
 

and
 

the
 

F1
 

score
 

by
 

1.42%
 

to
 

4.10%
 

compared
 

to
 

the
 

baseline
 

model;
 

in
 

the
 

case
 

of
 

web-
page

 

information
 

extraction,
 

the
 

proposed
 

WebReader
 

improved
 

performance
 

by
 

an
 

average
 

of
 

1.40%,
 

with
 

significant
 

improvement
 

under
 

scenarios
 

with
 

few
 

training
 

samples.
 

Furthermore,
 

based
 

on
 

the
 

technological
 

research
 

achievements
 

of
 

this
 

paper,
 

an
 

open
 

scientific
 

data
 

system,
 

DataExpo,
 

was
 

developed
 

for
 

the
 

field
 

of
 

Earth
 

sciences.
 

It
 

aggregates
 

millions
 

of
 

scientific
 

data
 

and
 

provides
 

data
 

services
 

such
 

as
 

multi-dimensional
 

queries
 

and
 

map
 

queries.
 

DataExpo
 

has
 

been
 

applied
 

in
 

the
 

“Deep-Time
 

Digital
 

Earth”
 

international
 

big
 

science
 

program,
 

advancing
 

research
 

in
 

data-driven
 

paradigms
 

in
 

the
 

field
 

of
 

Earth
 

sciences.
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1 引 言

人工智能技术的快速发展在基础科学研究领域

正掀起变革性影响[1-2],AI
 

for
 

Science正逐渐推动

形成科学发现的“第五范式”[3]。科学数据作为人工

智能的核心要素,是推动科学研究的基石。特别是

开放科学(Open
 

Science)倡议下,快速增长的科学

数据共享[4]有助于更广泛的数据融合、更公开的数

据校验、更全面的学术传播。近年来,我国《科学数

据管理办法》出台也确立了“开放为常态、不开放为

例外”的原则,鼓励科学数据开放共享。然而,目前

开放科学数据分散在互联网上多源异构的不同数据

仓储及大量科学家个人构建的数据库中,形成了“数
据孤岛”。如何进行统一化的数据发现与管理,并提

供高效的开放科学数据服务是促进下一代科学数据

基础设施的重要问题。
科学数据发现与管理是一个学科交叉问题,受

到了包括计算机科学、情报学、信息管理与信息系统

等多学科领域的关注。(1)科学数据发现:互联网上

的各类数字资源数量庞大,科学数据资源的占比极

小,科学数据发现旨在基于特定主题(关键词)对互

联网上相关科学数据资源进行查询与汇聚。受限于

数字资源的复杂性,早期成果主要通过API接口集

成对少量的垂直特定领域数据资源进行汇聚,形成

了如DataCite[5]、DataONE[6]、DataMed[7]等集成数

据检索平台。然而,更多长尾科学数据缺乏API进

行直接工具化集成,使得科学数据库的规模受限。
因此,一 项 代 表 性 研 究 成 果 是 Google

 

Dataset
 

Search[8-9],其基于谷歌大规模网页数据资源,根据

部分网页开发时编写的Schema
 

@type
 [10]标准字段

对网页进行识别,筛选出数据集页面进行汇聚。基

于互联网的开放资源,显著扩大了数据发现的范围。
然而,统计结果发现大约70%的网 站 并 不 提 供

Schema,甚至有研究表明61%包含Schema.org/

Dataset的 网 站 并 非 数 据 网 站[11],这 使 得 基 于

Schema标准的数据发现方法并不可靠。(2)科学数

据管理:2016年 Wilkinson[12]等人首次提出了开放

科学数据的FAIR原则,即Findable(可发现)、Ac-
cessible(可访问)、Interoperable(可互操作)、Reus-
able(可重用),旨在建立可供人类和机器共同读取

和使用的元数据标准,对科学数据进行规范化管理。
为了响应FAIR原则倡议,Dryad[13]、PANGAEA[14]、

Zenodo[15]等数据平台联合学术期刊共同推动开放
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科学数据共享,并设计了规范的元数据字段信息要

求作者上传数据时手动填写。汇聚多源互联网数据

资源的Google
 

Dataset
 

Search则是基于Schema标

准的多个字段自动化提取文件格式、下载地址、DOI
标识符、发布日期等并进行规范化。然而,由于不同

数据网页开发与维护情况不同,不同科学数据的元

数据存在着字段缺失、质量参差不齐、格式不统一的

问题[16]。基于上述分析发现,由于互联网上的资源

规模庞大、信息组织异构,现有研究依旧面临着科学

数据资源发现不够全、科学数据管理不够自动化的

难题。
为此,本文提出了面向互联网的开放科学数据

挖掘与理解方法。如图1所示,针对搜索引擎获取

的大量网页资源,本文通过设计深度学习模型自动

筛选得到科学数据页面,并进行网页理解得到标准

化、丰富的元数据信息用于刻画科学数据,支撑灵活

多样的检索与查询。具体来说,首先本文提出了融

合网页多视图信息的网页表征模型 WebFilter对互

联网上的各类资源进行分类,通过挖掘利用网页的

文本信息、HTML结构及网页的渲染信息进行网页

级表征,从纷繁复杂的网页中筛选出科学数据网页;
其 次,提 出 了 网 页 结 构 感 知 的 网 页 理 解 算 法

WebReader,进一步通过机器阅读对网页中的元素

进行向量化表示,实现数据网站中的核心元数据字

段进行通用化提取,形成科学数据画像;最后,在公

开数据集上对于算法进行性能验证,同时以地球科

学领域为例,将所提方法进行了实际落地应用,开发

了数 据 巡 航 系 统 DataExpo(https://dataexpo.
deep-time.org),发现并汇聚了超过百万地球科学

元数据,涵盖近3万个机构,数据源IP覆盖120余

个国家和地区,支持对数据网页超过10个多模态字

段对信息抽取,形成元数据画像。

图1 面向开放互联网的科学数据挖掘与理解整体流程图

  本项研究工作支撑了以数据共享和知识发现为

目标 的 深 时 数 字 地 球(Deep-time
 

Digital
 

Earth,

DDE)国际大科学计划[17],预期通过数据和知识驱

动推动地球科学研究范式的变革。
具体而言,本文的主要贡献如下:
(1)针对开放互联网上科学数据资源分散混杂

的问题,提出了科学数据挖掘与理解方法,突破传统

API集成与Schema规则理解范式,通过机器自动

阅读互联网资源,自动识别科学数据并结构化抽取

关键字段,实现对科学数据的高效发现与管理。
(2)本文提出的网页筛选器 WebFilter与网页

阅读器 WebReader通过融合网页的DOM 树结构

信息与节点多视图特征语义,实现了网页级与节点

级的向量化表征与分类,在 WebKB等三个公开数

据集网页分类相较于最优基线算法F1分数提升

1.42%到4.10%,网页信息抽取在少样本标注需求

下性能提升1.92%到2.33%。
(3)构建了面向地球科学领域的开放科学数据

系统DataExpo,面向地层学、沉积学、古地理等18
个地学学科方向发现超百万科学数据,实现了面向

异质网页数据的标题、摘要、发布时间、地点、机构等

字段的统一结构化理解,并提供数据多维查询、数据

地图查询等在线服务。
本文共分为6节,各节的组织结构如下:第1节

为引言,对本文研究背景与意义进行概述性介绍;第
2节为相关工作,详细阐述了与本文研究有关的国

内外研究进展;第3节介绍本文提出的技术方法,并
在第4节使用多个公开数据集进行实验验证;第5
节介绍基于本研究的技术成果,在地球科学领域的

应用与DataExpo系统研制情况;第6节为本文的

总结与展望。

2 相关工作

在本节中,对本文涉及的相关代表性工作进行

概述,分析现有研究脉络及面临的技术挑战。

2.1 开放科学数据发现与管理

  开放科学环境下,科学数据的开放共享有助于

促进全球科学的共同发展。现有开放科学数据平台

建设的一条技术路线便是利用不同数据平台的API
集成,来关联不同数据仓储的数据。例如,Open

 

Data
 

Portal
 

Watch
 [18]聚焦政府数据汇聚了超过

711
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260个数据仓储的元数据,DataMed
 [7]则是聚焦生

命科学领域,汇聚了约75个数据仓储的元数据,

Socrata
 [19]聚焦城市数据,汇聚了超过200个数据

仓储。这一方法的局限性便是极依赖知识先验与科

学家经验,集成搜索的范围是有限的,难以拓宽科学

研究更广的数据查询范围。为了解决这一问题,谷
歌公司开发了 Google

 

Dataset
 

Search(GDS)[8-9]对
互联网上的各类数据资源进行索引。然而,GDS仅

支持包含Schema标准的网站,但对于更多广泛的

科研实验室、小型科研项目、个人维护的科学数据网

站等长尾数据均会出现大量的遗漏。为此,DS-
DD[20]提出了采用网络爬虫与网页数据分析的方法

对一个特定领域的数据进行自动化发现,DSDD通

过一批用户给定的种子网站,通过获取其前向与反

向链接来进行持续探索,并结合词频-逆向文件频

率TF-IDF
 [21]对网页文本进行编码及使用支持向

量机(SVM)进行分类。然而,DSDD采用的文本分

类模型性能是不足的,引入了大量的误判与遗漏,同
时如何对数据进行高效的管理是其缺乏研究的

内容。

2.2 网页数据表示学习

  早期对于网页数据表示学习聚焦文本表征,即
通过网页解析获取网页的文本信息,后采用面向自

然语言的统计机器学习(如词袋模型、词频-逆向文

件频率 TF-IDF[21]、词向量化模型 Word2Vec[22])、
卷积神经网络模型(如文本卷积神经网络 TextC-
NN[23]、DCNN[24]等)、基于 Transformer的语言模

型(BERT[25]、RoBERTa[26]、XLNet[27],T5[28])等进

行理解。
然而,网页除了文本信息还有丰富的多视图信

息,包括超链接 URL、HTML的DOM(Documen-t
 

Object
 

Model)树结构等。超链接URL的文本信息

虽短,却关联了共享域名信息的多个网页。如图2
所示是HTML的DOM树结构,它进一步给文本信

息赋予段落结构,模型可以识别出标题、数据集摘要

等重要的文本信息来对网页进行表示,主动忽略如

广告、外链、推广等无关噪音信息。为了对上述多视

图信息 进 行 刻 画,RiSER[29]通 过 词 向 量 嵌 入 和

XPath嵌入分别得到文本内容与 HTML结构的表

征,利用两层LSTM实现文本与结构联合编码实现

融合表示。DOM-LM[30]将DOM 树分割成多个子

树,每个子树保留重要的上下文信息,通过在词向量

的基础上增加网页 HTML节点的属性与位置结构

信息,扩展了BERT等语言模型的能力,使其能够

图2 网页的DOM树结构示例

处理HTML文档的结构化特性。WebFormer[31]优
化HTML标签的向量表征,为每个DOM节点引入

HTML标记,这些标记不仅包含文本内容,还包含

了节点的结构信息,如父节点、子节点和兄弟节点的

关系等,并设计了多个注意力模式,包括 HTML标

记之间的注意力、HTML标记与文本标记之间的注

意力等,以此帮助模型更好地理解网页的布局结构。

2.3 网页信息结构化抽取

  网页的 HTML结构可以通过层次关系转换得

到DOM树结构,基于树上的搜索可以定位不同的

网页标签与文本信息。同时,网页信息结构化抽取

问题被转换为DOM 树上的节点分类问题,即网页

的元数据信息对应于 DOM 树上的某个节点。为

此,FreeDOM
 [32]率先通过建模DOM 树的结构关

联并融合节点文本特征,实现对网页信息的抽取。

SimpDOM
 [33]则进一步给出了“伙伴节点”、“朋友

节点”的概念,对节点本身信息与局部邻接节点的信

息进行联合表征提升表达能力。随着以 Trans-
former结 构 为 主 体 的 大 语 言 模 型 技 术 的 发 展,

MarkupLM
 [34]将网页DOM 树结构信息也转换为

词元,随着文本词元一同送入Transformer模型中,
实现 统 一 的 结 构 与 文 本 信 息 理 解。进 一 步,

WIERT[35]考虑网页的视觉信息,将网页渲染信息

的CSS树与DOM树进行融合,提升模型对于字体

大小、颜色等的考虑。Xu等人[36]提出将网页截图

作为视觉信息加入网页表征,并通过多项预训练任

务进行模态对齐,但网页截图数据获取难度大,标注

成本高,使得场景泛化能力受限。综上所述,现有的

网页信息结构化抽取研究通过增加不同模态信息来
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增强节点表达,但大都将网页视为多段长文本序列

或独立节点进行处理,缺乏对于网页 HTML天然

的树状结构信息及样式相似性特点的建模,全局信

息理解能力弱。

3 科学数据机器挖掘与理解方法

在本节中,针对现有相关工作的分析,本文提出

了面向开放互联网的科学数据机器挖掘与理解方

法,整体技术路线如图3所示。系统的输入是学科

专家给定的关键词,利用搜索引擎以“学科关键词+

dataset/data/数据库”作为输入进行查询,通过网络

爬虫的方式得到一批候选网页。由于互联网上的数

据资源较为复杂,既包括了科学数据网站,也包括了

大量无关网页信息,例如科技新闻报道、机构介绍、
学者主页等。因此,本文提出了融合网页多视图信

息的网页筛选器 WebFilter,通过融合网页的DOM
树结构与特征属性关联,实现对网页级表征与分类。
进一步,针对筛选得到的数据网页,提出了网页结构

感知的网页阅读器 WebReader,通过获得网页节点

级表征对不同元数据字段进行提取,实现对科学数

据的结构化理解。

图3 面向开放互联网的科学数据挖掘与理解技术路线图

3.1 任务与符号定义

  网页筛选器 WebFilter的输入是一批爬虫获取

的网页集合W={w1,w2,…,wN},其中wi 代表了

每个网页样本,N 代表了网页样本的总数。给定网

页分类类别 W ={CW
1,…,CW

KW
},WebFilter模型

(·)的目标是判别网页样本的类别归属。
对于每个网页wi 根据其DOM 树结构可以转

换为一张如图2的结构图 s
i =(Vi,Es

i),节点集合

Vi={vi
1,vi

2,…,vi
mi
}代表了DOM树的节点,节点

总数为mi 。边集合Es
i 代表了网页DOM树的结构

组织关系。网页阅读器 WebReader模型 (·)的

目标是根据核心元数据字段类别 V ={CV
1,…,

CV
KV
},如标题、作者、摘要、机构、缩略图等,对节点

类别进行分类。

3.2 网页筛选器 WebFilter
3.2.1 基于多视图信息的网页节点表征

网页wi 的 HTML信息经过转换得到一张结

构图后,图中的任意节点vi
j 蕴含了如表1所示的多

个特征,这些特征蕴含了节点的文本语义以及在结

构中的样式信息,均对于判断网页内容类型具有重

要作用。进一步,根据其文本类型或枚举类型,分别

采用预训练BERT语言模型进行文本向量编码或

one-hot编码,然后进行特征拼接得到节点的初始特

征Xi
j ∈RRd ,其中d是特征拼接后的特征长度。网

页wi 所有节点的特征组成了Xi ∈RR
mi×d 。

3.2.2 网页级多视图信息融合表征

为了得到网页级的特征表示,进一步根据节点

的DOM树结构与文本语义相关性进行图节点特征

的消息传递,从而得到网页级表征。
首先考虑网页DOM 树的结构邻近特性,通过

在结构图 s
i 上进行长度为Krw 步随机游走,得到一

组元路径,通过点互信息算法(Pointwise
 

Mutual
 

Information,PMI)得到元路径上两两节点的关系。
以节点vi

p 和vi
q 为例,两节点的共现相关性为

PMI(vi
p,vi

q)=log
p(vi

p,vi
q)

p(vi
p)p(vi

q)
。

其中,p(vi
p)与p(vi

q)分别表示节点vi
p 和vi

q 的元
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路径数量,p(vi
p,vi

q)表示两节点同时出现的元路

径数量。通过PMI可以有效平衡高频节点和低频

节点的贡献权重。在网页数据表征问题中,考虑到

网页
 

HTML
 

中/html、
 

/head、
 

/body
 

等模板式节

点出现频率极高但缺乏有效网页差异化特性,故采

用TF-IDF算法中的逆向文件频率IDF限制此类节

点的权重。从而得到PMI-IDF指数ρ,对于任意两

节点vi
p 和vi

q 计算为

ρ(vi
p,vi

q)=

PMI(vi
p,vi

q)*log
D

m:(vi
p,vi

q)∈dm +1
。

其中, D 是采样的元路径总数,m:(vi
p,vi

q)∈
dm 表示包含节点vi

p 和vi
q 的元路径。通过计算两两

节点的PMI-IDF指数可以良好地表示DOM 树中

具有特殊结构含义节点的结构共现特性,从而得到

节点的结构邻近性邻接矩阵As ∈RR
mi×mi ,对任意

节点vi
p 和vi

q 的PMI-IDF系数大于超参数阈值ξ,
两节点间存在一条边,否则不存在。考虑不同网页

的结构差异性,不同阈值设置结果具有差异性,在本

文 中 我 们 设 置ξ = 0,其 表 示 了 p(vi
p,vi

q)>
p(vi

p)p(vi
q)的通用条件。

其次考虑节点特征的语义相关性,针对节点的

多维特征采用自注意力机制对节点间的特征相关性

进行度量。对于输入的网页节点特征Xi 分别进行

线性变换得到查询变量Q =XiWQ 和键变量K =
XiWK ,随后对查询变量与键变量进行点积与缩放,
并应用softmax函数后得到注意力分数,从而得到

因子。进而加权得到网页多视图信息融合的邻接矩

阵A=λAs +(1-λ)Af ,其中λ 是比例调和因子,
用于平衡结构与语义对于消息传递的影响。

表1 DOM树中节点特征及编码方式

特征类型 编码方式

标签 节点 HTML的84类标签one-hot编码

属性类 节点属性类,文本向量模型编码

元素标识符 元素唯一标识符,文本向量模型编码

字体粗细 普通、加粗、变细三种类型one-hot编码

字体样式 普通、斜体、倾斜三类one-hot编码

字体大小 10种字体大小one-hot编码

文本 文本向量模型编码

最终,通过图卷积神经网络实现节点的消息传

递,本文采用两层图神经网络对图上信息进行聚合,
得到融合表征

Z=􀮃AReLU(􀭾AXW0)W1。

其中,􀭾A=D
-
1
2AD

-
1
2 为归一化后的邻接矩阵,D 为

度矩阵。为了得到网页级的表征,本文首先设计了

一个独立的[CLS]虚拟节点作为全图表征聚合节

点,图上的其他节点则按照广度优先搜索DOM 树

展开行程节点序列,进一步通过单层 Transformer
模型的自注意力机制来得到[CLS]节点的表征向

量,作为全图的表征向量。进一步,通过多层感知机

与Softmax非线性激活函数作为输出层进行分类。

3.2.3 网页筛选器 WebFilter训练过程

针对给定的网页分类类别 W ,每个训练样本

都有一个给定的标签(包含一类标签为其他,即不代

表任何数据网页的字段信息),并采用one-hot向量

进行表示,其中只有正确类别的位置为1,其余位置

为0。模型输出的是对于每个类别的预测概率,并
通过交叉熵损失进行训练。与此同时,为了保证语

义相似性邻居的稀疏性,通过L1范数对Af 进行约

束,从而得到 WebFilter的训练损失

=α c +(1-α)‖Af‖。
其中, c 为交叉熵损失,α 为调整因子。

3.3 网页阅读器 WebReader
3.3.1 网页内节点异构关联建模

网页信息的结构化抽取的本质是对网页DOM
树中的各类节点进行分类,即网页中的不同部分信

息归属于标题、摘要、作者、发布时间、空间描述等各

类数据字段。针对已经分类得到的数据网站,其网

页节点的初始表征通过3.2.1节中所提方法得到。
为了进一步刻画网页内节点的异构关联,我们

对3.2.2节的图建模方法进行了改进。相较于直接

通过随机游走得到的结构共现性,本文提出了网页

节点异构网络gi =(Vi,Ei),其中Vi 依旧表示了

网页wi 的DOM 树节点,Ei 则表示了异构连边。
具体本文定义了基于节点在 DOM 树中的连接关

系,定义了父子关系、兄弟关系、祖先关系,并从前端

渲染角度定义了垂直关系、水平关系、相同字体、相
同背景。特别说明,父子关系、兄弟关系是指网页渲

染前DOM树上节点间的结构关系,分别表示从属、
并列结构关系;垂直关系、水平关系是指网页渲染后

呈现的视觉排布效果,分别表示视觉上下、左右排列

关系。不同的异构关联通过one-hot编码得到了每

个边的属性εi ∈RR
|Ei|×dE 。

3.3.2 基于异构图关联的消息传递

针对网页节点异构网络 i 中的异构关联,无法

直接使用同质图神经网络对不同连边关系进行刻

画,需要将边属性进行协同考虑。同时,由于DOM
树的树状结构,网络的平均路径长度较大,需要更深
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的图神经网络进行消息传递,实现兼顾全局与局部

的信息共享。因此,我们首先定义了对网络中的任

意节点vp 的第l+1层图神经网络的表征的消息传

递机制满足:

xl+1
p =σ(∑

q∈N(p)
Agg(x0

p,xl-1
p ,xl

p,xl
q,el

pq))。

其中,σ(·)表示非线性激活函数,Agg是聚合函

数,Np 是节点vp 的邻居集合,节点vp 的特征为xl
p

∈RRd ,节点vp 与节点vq 的连边el
pq ∈RR

dE 。为了

避免由于图神经网络堆积带来的过平滑问题,采用

残差连接与密集连接的思想同时聚合初始层x0
p 与

上一层的节点特征xl-1
p 。本文采用了CEN-DGC-

NN模型[37]的聚合函数进行特征融合,该模型同时

对网络的节点特征、边特征进行更新,同时采用残差

和密集连接的思想来聚合初始层和上一层的特征,
通过跨层连接输出,有效缓解过度平滑并增加了网

络深度。对于每一层图神经网络,第l层图神经网

络的输出为

Xl =σ·

􀰒
P

p=1
Ml(αl

p(Xl-1,El-1
p )WlXl-1,WlXl-2,WlX0)  。

其中,Ml(X1,X2,X3)=ξX1+ηX2+θX3 表示聚

合残差及初值的聚合函数,第一项包括了对第l-1
层特征的变化,特别是系数αl

p(Xl-1,El-1
p )融合了

节点与异构连边的注意力特征,对于相连的节点i
与节点j其注意力权重的运算方式为

αl
ijp(Xl-1,El-1

ijp)=
expLeakyReLU WXl-1

i ‖WXl-1
j    

∑k∈Ni
expLeakyReLU WXl-1

i ‖WXl-1
k    

El-1
ijp。

其中,El-1
ijp 表示第l-1层节点vi 与节点vj 在特征

通道p 上的边特征。通过这一运算,实现了融合异

构图关联的消息传递。
最终通过多层感知机与Softmax非线性激活

函数作为输出层进行分类。

3.3.3 网页阅读器
 

WebReader
 

训练过程

由于网页节点标签的不平衡性,目标节点只占

网页 文 本 节 点 中 的 极 少 部 分,因 此 网 页 阅 读 器

WebReader选择Focal
 

Loss[38]作为网页节点分类

任务的损失函数,其通过调节不同类别的权重因子

让模型更关注难分类的样本,从而提升模型在样本

不平衡时带来的训练困难的问题。具体损失函数的

表达式为

=∑
KV

y=1
-wy(1-py)γlog(py)。

其中,py 表示模型对于种类y 的预测概率,wy 为

种类y 的类别权重,由样本在训练数据中的反比例

决定,使得模型将会更加关注这些少数类别的样本。

γ作为调节因子,用于让模型更关注难分类的样本,
从而进一步解决样本不平衡可能导致的训练问题。

在本章中,我们采用公开数据集对所提出的科

学数据机器挖掘与理解方法 WebFilter和 WebReader
进行性能验证。

4 实验结果与分析

4.1 数据集说明

  为了分别验证 WebFilter的网页分类能力,以
及 WebReader的网页信息提取能力,我们均采用了

广泛使用的公开数据集进行训练与测试。针对网页

分类任务,采用了 WebKB[39](四所高校计算机科学

系相关6类网页,约8000个网站)、SWDE[40]8个不

同领域的热门网站,总计80个网站和124291个网

页)和 WebCLS[41](Kaggle数据平台抓取的16个类

别的1408个网页记录)数据集进行实验。针对网页

信息提取任务,采用了SWDE[40]和 Klarna商品网

页数据集[42](来自8175个真实电子商务网站的

51701个手动标记的产品页面)进行验证。SWDE
网页在8种不同类型网页下设置了3-5个属性作

为结构化数据提取目标,而Klarna商品网页数据集

希望可以提取5个网页元素,包括两个动作元素(购
买按钮与购物车按钮)及3个信息元素(产品价格、
名称与图片)。

4.2 网页分类性能评价

  网页分类性能评价指标采用准确率(Acc.)和

F1分数来进行评估,其中F1分数是精确率和召回

率的调和平均数,以综合评估两者的性能。数据集

的训练、验证、测试集均按照6∶2∶2随机划分。
为了全面对比评估本文所提出的基于网页结构

和语义的多视角表征学习方法,采用了一系列基线

方法进行性能对比,包括仅利用文本属性的BiL-
STM[43]、TextCNN[23]、BERT[25]、RoBERTa[44],以
及融 合 网 页 多 视 角 特 征 的 RiSER[29]、DC-F[45],

SMGCN[46]、GROWN+UP[47]。对于所有数据集和

基线算法,本文使用了固定的
 

10
 

个随机种子,并取

每个评估指标的平均值与标准差作为最终结果。为

保证公平和一致性,所有算法都采用相同的数据集

分割和随机种子,参数配置也相同。
表2记录了网页分类任务在不同基线模型与本
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文所提的 WebFilter模型上的性能对比,并得到如

下结论:首先,本文提出的 WebFilter模型能够有效

提升在网页分类任务上的性能。相较于文本处理算

法和多视角网页处理算法,在准确率上提升1.39%
到3.71%,F1分数提升1.42%到4.10%。其次,

WebKB和SWDE数据集结构信息较为单一,网页

以文本作为主要是信息表达载体,仅依赖于纯文本

方法(如RoBERTa)已经可以取得较好的性能,多
视角方法在准确率和F1分数上提升幅度较小。对

于结构特征相对丰富的 WebCLS数据集,仅利用文

本单一视角的方法由于忽略了网页结构以及标签信

息,其表征能力有限,网页分类性能不如综合利用多

视角信息的GROWN+UP和
 

本文提出的 WebFil-
ter模型。

表2 网页分类任务在 WebKB,SWDE,WebCLS数据集上的性能评价 (%)

数据集 WebKB SWDE WebCLS
模型/性能指标 Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑
BiLSTM[43] 85.26±0.44 86.44±0.82 94.12±0.12 94.74±0.20 84.37±0.45 86.37±0.72
TextCNN[23] 85.52±0.64 87.17±1.25 93.21±0.24 93.57±0.30 84.29±0.59 86.68±1.01
BERT[25] 91.23±0.34 91.15±0.35 97.86±0.08 98.01±0.21 92.88±0.29 94.08±0.52
RoBERTa[44] 92.75±0.35 91.47±0.47 97.67±0.12 98.31±0.27 92.68±0.30 94.12±0.52
RiSER[29] 85.96±1.13 88.35±2.21 95.15±0.34 95.87±0.78 92.06±0.59 93.61±0.92
DC-F[45] 87.21±0.65 87.51±1.47 95.25±0.23 95.96±0.54 90.23±0.84 91.24±1.12
SMGCN[46] 89.67±0.79 92.32±0.34 96.24±0.74 97.01±0.58 90.02±0.34 91.61±1.56

GROWN+UP[47] 91.78±0.52 94.01±0.43 98.12±0.47 98.22±0.72 93.94±0.76 94.69±0.46
WebFilter 94.83±0.21 96.24±0.38 99.50±0.12 99.73±0.25 97.56±0.23 98.74±0.64

  为了进一步验证 WebFilter模型各个模块的有

效性,从节点特征、多视图信息融合(结构邻近性、语
义相关性)、网页级池化方法等设置了如图4所示的

消融实验进行验证,其中平均池化是指使用平均池

化代替本文提出的基于注意力的池化模块。实验结

果表明每个模块的设置对于模型的有效性具有明显

提升,特别是两类视图联合的信息融合才能充分表

达网页级的表征。具体来说,由于标签属性提供了

纯文本之外的其他信息,对整体实验结果有一定提

升。其次,结构图和语义图作为特征增强模块,从两

个视角构建
 

DOM
 

Graph节点间的信息传递,增强

模型的表征能力。进一步地,在 WebKB数据集上,
由于多数网页结构特征较为简单,语义图的作用相

较于结构图更显著。最后,特征融合模块默认为全

图平均值池化,本实验中将Transformer层作用于

特征融合,采用序列化方式融合多节点特征,更进一

步提升网页分类准确性。
最后,我们以 WebKB数据集为例进行参数敏

感性分析实验,包括结构图和语义图的权重系数λ、

  

图4 WebFilter在 WebKB数据集上的消融实验

分类损失和语义图稀疏性损失的权重系数α和结构

图随机游走路径长度Krw 三个超参数,如图5所示。
(1)结构图和语义图的权重系数:随着λ从0到1逐

渐变大,模型准确率和F1分数均为先升高后降低。
由此可见,结构图和语义图在失去任何一个时均会

降低模型性能,且 WebKB数据集上当λ=0.25时

效果最佳,即语义图起到主导作用。(2)分类损失

  

图5 WebFilter在 WebKB数据集上的超参数实验
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和语义图稀疏性损失的权重系数:当α较小时,模型

更关注语义图的学习,相反则模型分类损失占据主

导作用,综合来看α=0.8时性能最佳。(3)结构图

随机游走路径长度:当 Krw 比较小时,结构图只会

关注到很小的局部结构,反之则会由于视野变大引

入额外的噪声,在 WebKB数据集上设置为 Krw =
12时结果最佳。

4.3 网页信息结构化抽取性能评价

  针对网页信息抽取的指标采用了F1分数进行

评价。为全面评估所提算法的有效性,实验中选择

了倾斜堆叠模型SSM[48],离散特征的节点分类方法
 

FreeDOM[32]和
 

SimpDOM[33],基于
 

Transfor-mer
 

架构的
 

DOM-LM[30]、WebFormer[31]、Markup-LM[34]

和 WIERT[35]方法进行对比。
在网页级节点信息抽取任务中,数据集划分方

式与网页分类任务不同,由于目标为衡量算法在不

同结构网页间的准确性与泛化性能,从而可以减少

网页模版的标注数量。因此在数据集划分时选择不

同的网站种类作为训练/验证集、测试集,并选择不

同的比例进行多次实验从而验证模型在不同网页间

的泛化性能。例如,对于SWDE数据集中,选择k
个网站作为训练集/验证集、余下网站作为测试集,
其中训练集和测试集的比例为

 

8∶2。对于Klarna
商品网页数据集,由于其网站数目众多,因此通过比

例p 代替数量进行数据集划分。

表3展示了网页信息抽取的任务性能,并得出

如下结论:WebReader在两类数据集的所有设置中

均取得了最优效果,相较于次优模型性能平均提升

1.40%,展现了所提方法的有效性与跨网页的泛化

性能。通过对比可以发现,各类方法随着种子网站

数量的上升,性能表现均有所提升,这说明当模型在

更多网页模版中训练之后,在面对新网页时会显示

出更强的泛化性。在k=1与p=0.1的少标注样本

设置下,WebReader在SWDE和 Klarna数据集上

的性能提升分别为1.92%、2.33%,优势明显。由

于Klarna商品网页数据集的网站个数更多,这一趋

势也更为显著。对比基于离散节点分类的方式

FreeDOM、SimpDOM 与基于预训练方 法 DOM-
LM、MarkupLM 和 WIERT

 

的表现,可以发现在

SWDE数据集上两类方法各有优劣,前者通过节点

的有效表征实现良好的分类性能,后者即使没有针

对节点级别的处理,但由于其预训练数据庞大,网络

结构丰富,在处理该问题时可以取得较好的效果。
在Klarna商品数据网页中,由于网页模版数量更

多,使得基于
 

Trans-former的方法展示出了更好的

鲁棒性。本文所提出的 WebReader算法结合了两

者之间的优势,在文本表征方面使用预训练
 

BERT
 

模型来保证向量表征能力以及不同网站文本之间的

泛化性,且节点表征与边表征中均加入了与节点相

关的离散信息,使得模型更好地理解网页结构。

表3 网页信息抽取任务在SWDE,Klarna商品网页数据集上的性能评价

数据集 SWDE Klarna商品网页数据集

模型/种子网站 k=1 k=2 k=3 k=4 k=5 p=0.1 p=0.2 p=0.3 p=0.4 p=0.5
SSM[48] 62.53 64.50 69.29 72.70 74.87 52.88 56.63 60.39 63.89 65.33

FreeDOM[32] 82.32 86.36 90.49 91.29 92.56 75.33 78.26 81.47 85.50 88.93
SimpDOM[33] 83.06 88.96 91.63 92.84 93.75 77.02 80.53 84.88 88.97 92.48
DOM-LM[30] 80.63 85.77 89.20 91.57 93.28 79.84 83.90 88.66 91.25 94.10
WebFormerl[31] 81.08 85.32 90.37 91.80 92.99 79.30 84.02 88.97 91.08 93.77
MarkupLM[34] 83.22 87.53 90.28 92.87 94.03 81.08 86.88 90.25 93.01 94.80
WIERTI[35] 83.66 87.91 91.54 93.02 94.14 80.23 85.80 89.54 92.77 94.53
WebReader 85.27 89.88 92.53 94.50 96.12 82.97 87.24 91.85 94.10 95.44

  在当今大语言模型逐渐普及,并在多类自然语

言处理及其他领域中取得最优表现的背景下,为验

证网页节点级信息抽取任务的研究价值以及本文所

提出方法的必要性,我们使用SWDE数据集在开

源/闭源大模型上进行测试验证其效果。由于大语

言模型输入文本长度的限制以及成本问题,因此首

先对网页 HTML文本进行处理,仅保留其文本节

点的Xpath信息和文本信息,形成一个由字典组成

的列表,字典的键为每个文本节点的Xpath,值为其

对应内容,并编写以下提示语用于大语言模型的

推理:

Prompt:
 

You’re
 

an
 

expert
 

at
 

web
 

data
 

mining
 

as
 

well
 

as
 

information
 

retrieval,
 

and
 

you
 

dabble
 

in
 

a
 

wide
 

range
 

of
 

information
 

in
 

any
 

field.
 

Here
 

is
 

all
 

the
 

text
 

from
 

a
 

web
 

page
 

that
 

I
 

provided
 

to
 

you,
 

a-
long

 

with
 

its
 

corresponding
 

Xpath
 

information:
 

'xpath1':'text1','xpath2':'text2',…
 

I
 

would
 

like
 

you
 

to
 

use
 

your
 

understanding
 

of
 

321
 

期 卢 彬等:面向开放互联网的科学数据挖掘与理解



web
 

pages
 

and
 

your
 

refactoring
 

skills
 

to
 

extract
 

the
 

<attribute>
 

that
 

corresponds
 

to
 

the
 

<vertical>
 

in
 

this
 

web
 

page.
 

Please
 

note
 

that
 

you
 

can
 

only
 

re-
turn

 

information
 

about
 

one
 

text
 

node
 

with
 

a
 

json
 

format
 

like
 

"<attribute>":"<your
 

answer>",
 

which
 

is
 

one
 

of
 

the
 

values
 

in
 

the
 

dictionary
 

above,
 

and
 

be
 

sure
 

not
 

to
 

return
 

too
 

much
 

information.
其中<vertical>表示所选网页的领域,例如

书籍,<attribute>表示提取目标,例如书籍的名

称或价格,实验使用闭源大语言模型GPT-4以及

开 源 模 型
 

Llama3-70B-Instruct与 我 们 提 出 的

WebReader
 

(k=3)进行对比,其在SWDE中各个

领域的F1分数如表4所示,其结果表明,即使是

目前较为优秀的大语言模型,在网页级节点信息

抽取任务上也很难达到令人满意的水平,本文对

其原因进行案例分析,发现大语言模型的回复中

经常加入总结类语言、与任务无关的解释,或产

生错误与幻觉。由此可见,即使在大语言模型时

代,针对网页级节点信息抽取的研究依然存在重

要价值。
表4 大语言模型在SWDE数据集上的信息抽取能力表现

模型 auto university camera movie job book restaurant nbaplayer 平均性能

Llama3-70B 45.22 42.97 52.03 56.77 51.20 38.47 47.29 35.81 46.23
GPT-4 42.01 48.77 55.64 52.30 60.77 37.61 49.84 34.87 47.73

WebReader(k=3) 90.83 93.70 95.01 95.55 94.35 89.37 91.79 89.65 92.53

  5 DataExpo系统及在地球科学领域
应用

  基于上述技术研究成果,本文提出的方法可以

有效地对网页数据进行分类,筛选出相关的科学数

据,并通过信息抽取对不同网站科学数据建立元数

据画像,实现统一的科学数据管理。
在“深时数字地球”国际大科学计划的号召下,

基于本文提出的技术研制了面向地球科学领域的学

术科学元数据库及相应的DataExpo系统(https://

dataexpo.deeptime.org/)。图6展示了系统的主要

界面包括主页、数据多维查询页、数据地图查询页。

根据地球科学学科专家提供的大规模地球科学

学科知识体系[49]作为系统的关键词输入,整个关键

词库涵盖了如地层学、沉积学、古地理、矿物学、地质

制图等18个学科方向,并进一步基于 WebFilter发

现了领域内超百万地球科学数据。以关键词“Geo-
chemistry(地球化学)”为例,表5是DataExpo系统

发现并返回的相关地球科学数据,其中既包括了一

些科学数据平台,还包括了一些政府组织构建的公

开数据库、科学文献关联的数据库等,数据库的空间

范围也包括了中国、美国、英国等,还有更多长尾的

网站也被搜寻发现并链接在DataExpo系统中,供
用户一站式检索。

图6 数据巡航DataExpo系统界面

表5 地球化学关键词下的高频数据网站域名

网站链接 数据平台

doi.pangaeade 地学数据共享发布平台PANGAEA
data.mendeley.com 开放数据存储库 Mendeley

 

Data
data.gov.au 澳大利亚政府开放数据门户

www.sciencebase.gov 美国地质调查局科学元数据存储库

www.gbif.org 全球生物多样性信息设施GBIF
frontiersin.figshare.com Frontiers期刊的开放数据共享平台

data.tpdc.ac.cn 国家青藏高原科学数据中心

figshare.com Figshare开放研究数据存储库

geolsoc.figshare.com 伦敦地质学会开放数据存储库

earthreforg 地球科学参考数据和模型门户网站

  进一步,表6对比了一些地球科学领域的热点

话题关键词在 Google
 

Dataset
 

Search
 

(GDS)与本

文研制的DataExpo系统的检索结果,可以对比发

现DataExpo技术在地球科学领域的检索结果更

多、更加专业,也在实际与地球科学家开展合作的过

程中获得了认可。以花岗岩为例,在GDS上一共检

索到181个数据库,而在DataExpo上可以检索到

2,383个数据库,这是由于大量花岗岩数据库由个

人科学家构建,缺少标准化Schema并未纳入GDS
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  表6 不同关键词 Google
 

GDS与 DataExpo检索结果

数量对比

关键词
Google

 

GDS
检索结果数量

DataExpo
系统检索结果数量

granite(花岗岩) 181 2,383
zircon(锆石) 163 3,871
wildfire(野火) 142 502
landslide(滑坡) 157 1,391
tsunami(海啸) 132 687
glacial

 

lake(冰川湖) 129 245
trace

 

fossils(遗迹化石) 122 1,192

系统中。我们提出的方法通过高效的机器阅读,实
现了更高的数据召回。

针对获取的地球科学数据,针对地学数据管理

的需要,我们采用网页解析与 WebReader技术对地

学数据网站构建元数据画像,对数据网站的标题、摘
要、关键词、缩略图、时间、地点、发布机构等各类重

要字段进行抽取。基于上述字段在数据多维查询

时,可以对检索结果进行约束和可视化分析(图6-
中)。同时,进一步通过时空解析将不同数据投影在

地图上便于地学科学家进行地图检索(图6-右),
图7展示了一个地图检索的元数据结果及其与原始

网页的对应关系。

图7 地学数据网页信息抽取案例

6 总结与展望

大数据与人工智能时代,科学数据的快速增长

正推动着科学研究范式的变革。尽管科学数据的数

量快速增长,但是科学家发现研究相关数据依旧面

临着数据分散、检索效率低的问题。本文从计算机

领域视角出发,提出了面向开放互联网的开放科学

数据挖掘与理解方法:设计了网页筛选器 WebFil-
ter对互联网上获取的各类信息进行分类,筛选得到

相关的科学数据资源;进一步设计了网页阅读器

WebReader对网页中的重要字段信息进行提取,实
现对科学数据资源的细粒度理解。公开数据集实验

表明我们所提方法均取得了最优性能表现,在网页

信息抽取方面优于 GPT-4等大模型提取效果。
同时,基于技术研究成果,面向地球科学领域研制了

DataExpo系统,汇聚全球超百万地学科学数据,并
支撑了数据检索查询等各类数据服务。

面向未来,随着大模型技术的普及与广泛应用,
如何利用大模型增强领域理解能力、消除幻觉,实现

对网页进行高效准确的理解,并进一步构建智能体

进行任务编排与调度是一个值得探索的方向。同

时,未来工作将聚焦面向科学数据的智能服务、多模

态科学数据融合开展研究,促进科学数据的综合应

用,推动以地球科学为代表的AI
 

for
 

Science领域取

得突破。

致 谢 感谢为本文稿件提供宝贵修改意见的审稿

人与编辑。感谢国家自然科学基金、国家资助博士

后研究人员计划对本文工作的资助。本论文是“深
时数字地球”(Deep-time

 

Digital
 

Earth,
 

DDE)国际

大科学计划的系列成果之一。

参 考 文 献

[1] Jumper
 

J,
 

Evans
 

R,
 

Pritzel
 

A,
 

et
 

al.
 

Highly
 

accurate
 

protein
 

structure
 

prediction
 

with
 

AlphaFold.
 

Nature,
 

2021,
 

596
(7873):

 

583-589
[2] Lam

 

R,
 

Sanchez-Gonzalez
 

A,
 

Willson
 

M,
 

et
 

al.
 

Learning
 

skillful
 

medium-range
 

globalweather
 

forecasting.
 

Science,
 

2023,
 

382(6677):
 

1416-1421
[3] Li

 

Guojie.
 

Intelligent
 

research
 

(AI4R):
 

The
 

fifth
 

research
 

paradigm.
 

Bulletin
 

of
 

the
 

Chinese
 

Academy
 

of
 

Sciences,
 

2024,
 

39(1):
 

1-9
 

(in
 

Chinese)

(李国杰.
 

智能化科研
 

(AI4R):
 

第五科研范式.
 

中国科学院院

刊,
 

2024,
 

39(1):
 

1-9)

[4] Wang
 

J
 

L,
 

Li
 

Y,
 

Wang
 

S
 

Q,
 

et
 

al.
 

Global
 

impact
 

analysis
 

of
 

FAIR
 

principles
 

and
 

suggestions
 

for
 

their
 

implementation
 

strategies.
 

Chinese
 

Science
 

Bulletin,
 

2024,
 

69(9):
 

1183-1191
 

(in
 

Chinese)

(王卷乐,李扬,王淑强,等.
 

FAIR
 

原则全球影响分析及其实施

策略建议。科学通报,2024,69(9):1183-1191)

[5] Brase
 

J.
 

Datacite-a
 

global
 

registration
 

agency
 

for
 

research
 

data//2009
 

Fourth
 

International
 

Conference
 

on
 

Cooperation
 

and
 

Promotion
 

of
 

Information
 

Resources
 

in
 

Science
 

and
 

Tech-

nology.
 

Beijing,China,2009:
 

257-261
[6] Michener

 

W,
 

Vieglais
 

D,
 

Vision
 

T,
 

et
 

al.Dataone:
 

Data
 

ob-

servation
 

network
 

for
 

earth—preserving
 

data
 

and
 

enabling
 

in-

novation
 

in
 

the
 

biological
 

and
 

environmental
 

sciences.
 

D-Lib
 

Magazine,
 

2011,
 

17(1/2):
 

12
[7] Chen

 

X,
 

Gururaj
 

A
 

E,
 

Ozyurt
 

B,
 

et
 

al.
 

Datamed—an
 

open
 

source
 

discovery
 

index
 

for
 

finding
 

biomedical
 

datasets.
 

Journal
 

521
 

期 卢 彬等:面向开放互联网的科学数据挖掘与理解



of
 

the
 

American
 

Medical
 

Informatics
 

Association,
 

2018,
 

25
(3):

 

300-308
[8] Brickley

 

D,
 

Burgess
 

M,
 

Noy
 

N.
 

Google
 

dataset
 

search:
 

Build-

ing
 

a
 

search
 

engine
 

for
 

datasets
 

in
 

an
 

open
 

web
 

ecosystem//

Proceedings
 

of
 

the
 

World
 

Wide
 

Web
 

Conference.
 

San
 

Francis-

co,
 

USA,
 

2019:
 

1365-1375
[9] Benjelloun

 

O,
 

Chen
 

S,
 

Noy
 

N.
 

Google
 

dataset
 

search
 

by
 

the
 

numbers//Proceedings
 

of
 

the
 

International
 

Semantic
 

Web
 

Con-

ference.
 

Cham,
 

Switzerland,
 

2020:
 

667-682
[10] Guha

 

R
 

V,
 

Brickley
 

D,
 

Macbeth
 

S.
 

Schema.org:
 

evolution
 

of
 

structured
 

data
 

on
 

the
 

web.
 

Communications
 

of
 

the
 

ACM,
 

2016,
 

59(2):
 

44-51
[11] KRUTIL

 

J,
 

KUDEˇLKA
 

M,
 

SNÁSˇEL
 

V.
 

Web
 

page
 

classifi-

cation
 

based
 

on
 

Schema.org
 

collection//2012
 

Fourth
 

Interna-

tional
 

Conference
 

on
 

Computational
 

Aspects
 

of
 

Social
 

Net-

works
 

(CASoN).
 

2012:
 

356-360
[12] Wilkinson

 

M
 

D,
 

Dumontier
 

M,
 

Aalbersberg
 

I
 

J,
 

et
 

al.
 

The
 

fair
 

guiding
 

principles
 

for
 

scientific
 

data
 

management
 

and
 

stewardship.
 

Scientific
 

Data,
 

2016,
 

3(1):
 

1-9
[13] Datadryad.

 

Dryad
 

digital
 

repository.
 

2024.
 

https://datadry-

ad.org/

[14] Pangaea.
 

Pangaea-data
 

publisher
 

for
 

earth
 

&
 

environmental
 

science.
 

2024.
 

https://www.pangaea.de/

[15] Zenodo.
 

Zenodo.
 

2024.
 

https://zenodo.org/

[16] Luo
 

P
 

C,
 

Wang
 

J
 

M,
 

Nie
 

L.
 

Research
 

progress
 

on
 

unified
 

discovery
 

platforms
 

for
 

open
 

scientific
 

datasets.
 

Journal
 

of
 

the
 

China
 

Society
 

for
 

Scientific
 

and
 

Technical
 

Information,
 

2022,
 

41
 

(6):
 

637-650
 

(in
 

Chinese)

(罗鹏程,王继民,聂磊。开放科学数据集的统一发现平台研

究进展。情报学报,2022,41(6):637-650)

[17] Wang
 

C,
 

Hazen
 

R
 

M,
 

Cheng
 

Q,
 

et
 

al.
 

Thedeep-time
 

digital
 

earth
 

program:
 

data-driven
 

discovery
 

in
 

geosciences.
 

Nation-

al
 

Science
 

Review,
 

2021,
 

8(9):
 

nwab027
[18] Neumaier

 

S,
 

Umbrich
 

J,
 

Polleres
 

A.
 

Lifting
 

data
 

portals
 

to
 

the
 

web
 

of
 

data//LDOW@WWW.
 

2017
[19] Socrata.

 

The
 

socrata
 

open
 

data
 

api.
 

2024.
 

https://dev.

socrata.com
[20] Zhang

 

H,
 

Santos
 

A,
 

Freire
 

J.
 

Dsdd:
 

Domain-specific
 

dataset
 

discovery
 

on
 

the
 

web//Proceedings
 

of
 

the30th
 

ACM
 

Interna-

tional
 

Conference
 

on
 

Information
 

&
 

Knowledge
 

Manage-

ment.Queensland,
 

Australia,
 

2021:
 

2527-2536
[21] Luhn

 

H
 

P.
 

The
 

automatic
 

creation
 

of
 

literature
 

abstracts.
 

IBM
 

Journal
 

of
 

Research
 

and
 

Development,
 

1958,
 

2(2):
 

159-

165
[22] Mikolov

 

T,
 

Chen
 

K,
 

Corrado
 

G,
 

et
 

al.
 

Efficient
 

estimation
 

of
 

word
 

representations
 

in
 

vector
 

space//Proceedings
 

of
 

the
 

1st
 

International
 

Conference
 

on
 

Learning
 

Representations,
 

ICLR
 

2013.
 

Scottsdale,
 

USA,2013
[23] Kim

 

Y.
 

Convolutional
 

neural
 

networks
 

for
 

sentence
 

classifi-

cation//Proceedings
 

of
 

the
 

2014
 

Conference
 

on
 

Empirical
 

Methods
 

in
 

Natural
 

Language
 

Processing,
 

EMNLP
 

2014.
 

Baltimore,
 

USA,
 

2014:
 

1746-1751
[24] Kalchbrenner

 

N,
 

Grefenstette
 

E,
 

Blunsom
 

P.
 

A
 

convolution-

al
 

neural
 

network
 

for
 

modelling
 

sentences//Proceedings
 

of
 

the
 

52nd
 

Annual
 

Meeting
 

of
 

the
 

Association
 

for
 

Computation-

al
 

Linguistics,
 

ACL
 

2014.
 

Baltimore,
 

USA,2014,1:
 

655-665
[25] Devlin

 

J,
 

Chang
 

M,
 

Lee
 

K,
 

et
 

al.
 

BERT:
 

pre-training
 

of
 

deep
 

bidirectional
 

transformers
 

for
 

language
 

understanding//

Proceedings
 

of
 

the
 

2019
 

Conference
 

of
 

the
 

North
 

American
 

Chapter
 

of
 

the
 

Association
 

for
 

Computational
 

Linguistics:
 

Human
 

Language
 

Technologies,
 

NAACL-HLT
 

2019.
 

Min-

neapolis,
 

USA,2019,1:
 

4171-4186
[26] Liu

 

Z,
 

Lin
 

W,
 

Shi
 

Y,
 

et
 

al.
 

A
 

robustly
 

optimized
 

bert
 

pre-

training
 

approach
 

with
 

post-training//Proceedings
 

of
 

China
 

National
 

Conference
 

on
 

Chinese
 

Computational
 

Linguistics.
 

Huhhot,
 

China,
 

2021:
 

471-484
[27] Yang

 

Z,
 

Dai
 

Z,
 

Yang
 

Y,
 

et
 

al.
 

Xlnet:
 

Generalized
 

autore-

gressive
 

pretraining
 

for
 

language
 

understanding//Advances
 

in
 

Neural
 

Information
 

Processing
 

Systems
 

32:
 

Annual
 

Confer-

ence
 

on
 

Neural
 

Information
 

Processing
 

Systems
 

2019,
 

NeurIPS
 

2019.
 

Vancouver,
 

BC,
 

Canada.
 

2019:
 

5754-5764
[28] Raffel

 

C,
 

Shazeer
 

N,
 

Roberts
 

A,
 

et
 

al.
 

Exploring
 

the
 

limits
 

of
 

transfer
 

learning
 

with
 

a
 

unified
 

text-to-text
 

transformer.
 

Journal
 

of
 

Machine
 

Learning
 

Research,
 

2020,
 

21(140):
 

1-67
[29] Kocayusufoglu

 

F,
 

Sheng
 

Y,
 

Vo
 

N,
 

et
 

al.Riser:Learning
 

bet-

ter
 

representations
 

for
 

richly
 

structured
 

emails//Proceedings
 

of
 

the
 

World
 

Wide
 

Web
 

Conference.
 

San
 

Francisco,
 

USA,
 

2019:
 

886-895
[30] Deng

 

X,
 

Shiralkar
 

P,
 

Lockard
 

C,
 

et
 

al.
 

Dom-lm:
 

Learning
 

generalizable
 

representations
 

for
 

html
 

documents.arXiv
 

pre-

print
 

arXiv:2022
[31] Wang

 

Q,
 

Fang
 

Y,
 

Ravula
 

A,
 

et
 

al.
 

Webformer:
 

The
 

web-

page
 

transformer
 

for
 

structure
 

information
 

extraction//Pro-

ceedings
 

of
 

the
 

ACM
 

Web
 

Conference.
 

Lyon,
 

France,
 

2022:

3124-3133
[32] Lin

 

B
 

Y,
 

Sheng
 

Y,
 

Vo
 

N,
 

et
 

al.
 

Freedom:
 

A
 

transferable
 

neural
 

architecture
 

for
 

structured
 

information
 

extraction
 

on
 

web
 

documents//Proceedings
 

of
 

the
 

26th
 

ACM
 

SIGKDD
 

Conference
 

on
 

Knowledge
 

Discovery
 

and
 

Data
 

Mining.
 

Virtu-

al,
 

USA,
 

2020:
 

1092-1102
[33] Zhou

 

Y,
 

Sheng
 

Y,
 

Vo
 

N,
 

et
 

al.
 

Simplified
 

dom
 

trees
 

for
 

transferable
 

attribute
 

extraction
 

from
 

the
 

web.
 

arXiv
 

preprint
 

arXiv:2101.02415
 

(2021)

[34] Li
 

J,
 

Xu
 

Y,
 

Cui
 

L,
 

et
 

al.
 

Markuplm:
 

Pre-training
 

of
 

text
 

and
 

markup
 

language
 

for
 

visually
 

rich
 

document
 

understanding//

Proceedings
 

of
 

the
 

60th
 

Annual
 

Meeting
 

of
 

the
 

Association
 

for
 

Computational
 

Linguistics
 

(Volume
 

1:
 

Long
 

Papers),
 

ACL
 

2022.
 

Dublin,
 

Ireland,
 

2022:
 

6078-6087
[35] Li

 

Z,
 

Shao
 

B,
 

Shou
 

L,
 

et
 

al.
 

WIERT:
 

web
 

information
 

ex-

traction
 

via
 

render
 

tree//Thirty-Seventh
 

AAAI
 

Conference
 

62 计  算  机  学  报 2026年



on
 

Artificial
 

Intelligence,
 

AAAI
 

2023,
 

Thirty-Fifth
 

Confer-

ence
 

on
 

Innovative
 

Applications
 

of
 

Artificial
 

Intelligence,
 

IAAI
 

2023,
 

Thirteenth
 

Symposium
 

on
 

Educational
 

Advances
 

in
 

Artificial
 

Intelligence,
 

EAAI
 

2023.
 

Washington,
 

USA,
 

2023:
 

13166-13173
[36] Xu

 

H,
 

Chen
 

L,
 

Zhao
 

Z,
 

et
 

al.
 

Hierarchical
 

multimodal
 

pre-

training
 

for
 

visually
 

rich
 

webpage
 

understanding//Proceed-

ings
 

of
 

the
 

17th
 

ACM
 

International
 

Conference
 

on
 

Web
 

Search
 

and
 

Data
 

Mining,
 

WSDM
 

2024.
 

Merida,
 

Mexico,
 

2024:
 

864-872
[37] Zhou

 

Y,
 

Huo
 

H,
 

Hou
 

Z,
 

et
 

al.
 

Co-embedding
 

of
 

edges
 

and
 

nodes
 

with
 

deep
 

graph
 

convolutional
 

neural
 

networks.
 

Scien-

tific
 

Reports,
 

2023,
 

13(1):
 

16966
[38] Lin

 

T,
 

Goyal
 

P,
 

Girshick
 

R
 

B,
 

et
 

al.
 

Focal
 

loss
 

for
 

dense
 

ob-

ject
 

detection//Proceedings
 

of
 

the
 

IEEE
 

International
 

Confer-

ence
 

on
 

Computer
 

Vision,
 

ICCV
 

2017.
 

Venice,
 

Italy,
 

2017:
 

2999-3007
[39] Chen

 

X,
 

Chen
 

S,
 

Xue
 

H,
 

et
 

al.
 

A
 

unified
 

dimensionality
 

re-

duction
 

framework
 

for
 

semi-paired
 

and
 

semi-supervised
 

multi-

view
 

data.
 

Pattern
 

Recognit.,
 

2012,
 

45(5):
 

2005-2018
[40] Hao

 

Q,
 

Cai
 

R,
 

Pang
 

Y,
 

et
 

al.
 

From
 

one
 

tree
 

to
 

a
 

forest:
 

a
 

u-

nified
 

solution
 

for
 

structured
 

web
 

data
 

extraction//Proceeding
 

of
 

the
 

34th
 

International
 

ACM
 

SIGIR
 

Conference
 

on
 

Research
 

and
 

Development
 

in
 

Information
 

Retrieval,
 

SIGIR
 

2011.Bei-

jing,
 

China,
 

2011:
 

775-784
[41] Prettenhofer

 

P,
 

Stein
 

B.
 

Cross-Language
 

Text
 

Classification
 

using
 

Structural
 

Correspondence
 

Learning//
 

Proceedings
 

of
 

the
 

48th
 

Annual
 

Meeting
 

of
 

the
 

Association
 

of
 

Computational
 

Linguistics
 

(ACL
 

2010).
 

Uppsala,
 

Sweden,
 

2010:
 

1118-

1127
[42] Hotti

 

A,
 

Risuleo
 

R
 

S,
 

Magureanu
 

S,
 

et
 

al.
 

The
 

klarna
 

prod-

uct
 

page
 

dataset:
 

Web
 

element
 

nomination
 

with
 

graph
 

neural
 

networks
 

and
 

large
 

language
 

models.
 

Transactions
 

on
 

Ma-

chine
 

Learning
 

Research,
 

2024,2024:
 

1-17
[43] Schuster

 

M,
 

Paliwal
 

K
 

K.
 

Bidirectional
 

recurrent
 

neural
 

net-

works.
 

IEEE
 

Transactions
 

on
 

Signal
 

Processing,
 

1997,
 

45
(11):

 

2673-2681
[44] Liu

 

Y,
 

Ott
 

M,
 

Goyal
 

N,
 

et
 

al.
 

Roberta:
 

A
 

robustly
 

optimized
 

BERT
 

pretraining
 

approach.
 

CoRR,
 

2019,
 

abs/1907.11692
[45] Alrashed

 

T,
 

Paparas
 

D,
 

Benjelloun
 

O,
 

et
 

al.
 

Dataset
 

or
 

not?
 

A
 

study
 

on
 

the
 

veracity
 

of
 

semantic
 

markup
 

for
 

dataset
 

pa-

ges//Proceedings
 

of
 

the
 

20th
 

International
 

Semantic
 

Web
 

Conference
 

(ISWC
 

2021).
 

Virtual,
 

2021:
 

338-356
[46] Wu

 

F,
 

Jing
 

X,
 

Wei
 

P,
 

et
 

al.
 

Semi-supervised
 

multi-view
 

graph
 

convolutional
 

networks
 

with
 

application
 

to
 

webpage
 

classification.
 

Information
 

Sciences,
 

2022,
 

591:
 

142-154
[47] Yeoh

 

B,
 

Wang
 

H.
 

GROWN+UP:
 

A
 

"graph
 

representation
 

of
 

a
 

webpage"
 

network
 

utilizing
 

pre-training//Proceedings
 

of
 

the
 

31st
 

ACM
 

International
 

Conference
 

on
 

Information
 

&
 

Knowledge
 

Management.
 

Atlanta,
 

USA,
 

2022:
 

2372-2382
[48] Carlson

 

A,
 

Schafer
 

C.
 

Bootstrapping
 

information
 

extraction
 

from
 

semi-structured
 

web
 

pages//Lecture
 

Notes
 

in
 

Computer
 

Science:
 

Vol.
 

5211
 

Machine
 

Learning
 

and
 

Knowledge
 

Discov-

ery
 

in
 

Databases,
 

European
 

Conference,
 

ECML/PKDD
 

2008,
 

Antwerp,
 

Belgium,
 

2008:
 

195-210
[49] Shi

 

S
 

Z,
 

Lü
 

H
 

R,
 

Dong
 

S
 

C,
 

et
 

al.
 

Editing
 

platform
 

for
 

geo-

science
 

knowledge
 

system.
 

Geological
 

Journal
 

of
 

China
 

Uni-

versities,
 

2020,
 

26
 

(4):
 

384-394.DOI:10.16108/j.issn1006-

7493.2020019
 

(in
 

Chinese)

(石顺中,闾海荣,董少春,等。地球科学知识体系编辑平台.
 

高校 地 质 学 报,2020,26(4):384-394.
 

DOI:10.16108/j.

issn1006-7493.2020019)

LU
 

Bin,
 

Ph.D.,
 

postdoctoral
 

re-
searcher.

 

His
 

research
 

interests
 

include
 

graph
 

neural
 

network,
 

AI
 

for
 

Science.
GAN

 

Xiao-Ying,
 

professor,
 

Ph.D.
 

supervisor.
 

Her
 

research
 

interests
 

in-
clude

 

Internet
 

of
 

Things
 

data
 

mining,
 

spatio-temporal
 

computing.
GAN

 

Yu,
 

master
 

candidate.
 

His
 

research
 

interests
 

is
 

webpage
 

data
 

mining.
TANG

 

Gu,
 

Ph.D.
 

candidate.
 

His
 

research
 

interests
 

include
 

recommender
 

system,
 

text-attributed
 

graph
 

neural
 

network.
MA

 

Ting-Yan,
 

master
 

candidate.
 

Her
 

research
 

interests
 

include
 

scientific
 

data,
 

graph
 

neural
 

network.
WU

 

Lv-Wen,
 

Ph.D.
 

candidate.
 

Her
 

research
 

interests
 

include
 

recommender
 

system,
 

text-attributed
 

graph
 

neural
 

network.
ZHAO

 

Ze,
 

Ph.D.
 

candidate.
 

His
 

research
 

interests
 

in-
clude

 

knowledge
 

graph,
 

graph
 

neural
 

network.
FU

 

Luo-Yi,
 

Ph.D.,
 

associate
 

professor,
 

Ph.D.
 

super-
visor.

 

Her
 

research
 

interests
 

include
 

network
 

analysis,
 

net-
work

 

representation.
JIN

 

Meng,
 

Ph.D.,
 

associate
 

professor,
 

Ph.D.
 

supervi-
sor.

 

Her
 

research
 

interests
 

include
 

Internet
 

of
 

Things,
 

AI
 

for
 

Science.
WANG

 

Xin-Bing,
 

Ph.D.,
 

distinguished
 

professor,
 

Ph.
D.

 

supervisor.
 

His
 

research
 

interests
 

include
 

Internet
 

of
 

Things,
 

Big
 

Data,
 

AI
 

for
 

Science.
ZHOU

 

Cheng-Hu,
 

Ph.D.,
 

professor,
 

Ph.D.
 

supervi-
sor.

 

His
 

research
 

interests
 

include
 

geographic
 

information
 

system,
 

AI
 

for
 

geoscience.

721
 

期 卢 彬等:面向开放互联网的科学数据挖掘与理解



Background
  The

 

rapid
 

development
 

of
 

artificial
 

intelligence
 

technolo-

gy
 

is
 

bringing
 

transformative
 

impacts
 

to
 

the
 

field
 

of
 

basic
 

sci-
entific

 

research.
 

Scientific
 

data,
 

as
 

a
 

core
 

element
 

of
 

artificial
 

intelligence,
 

is
 

the
 

cornerstone
 

driving
 

scientific
 

research.
 

However,
 

currently,
 

open
 

scientific
 

data
 

is
 

scattered
 

across
 

multiple
 

data
 

repositories
 

on
 

the
 

internet
 

and
 

numerous
 

per-
sonal

 

databases
 

created
 

by
 

individual
 

scientists,
 

forming
 

"da-
ta

 

silos."
 

The
 

challenge
 

of
 

unified
 

data
 

discovery
 

and
 

man-
agement,

 

along
 

with
 

providing
 

efficient
 

open
 

science
 

data
 

services,
 

is
 

a
 

crucial
 

issue
 

for
 

advancing
 

the
 

next
 

generation
 

of
 

scientific
 

data
 

infrastructure.
Due

 

to
 

the
 

complexity
 

of
 

online
 

resources,
 

early
 

efforts
 

mainly
 

relied
 

on
 

API
 

integrations
 

to
 

aggregate
 

data
 

resources
 

from
 

a
 

few
 

vertical
 

and
 

specific
 

fields,
 

resulting
 

in
 

integrated
 

data
 

search
 

platforms
 

such
 

as
 

DataCite,
 

DataONE,
 

and
 

DataMed.
 

However,
 

many
 

long-tail
 

scientific
 

datasets
 

lack
 

APIs
 

for
 

direct
 

integration,
 

limiting
 

the
 

scale
 

of
 

scientific
 

da-
tabases.

 

Another
 

representative
 

effort
 

is
 

Google
 

Dataset
 

Search,
 

which
 

uses
 

Google’s
 

large-scale
 

web
 

data
 

resources
 

and
 

identifies
 

web
 

pages
 

based
 

on
 

Schema
 

@type
 

standard
 

fields
 

written
 

during
 

the
 

development
 

of
 

some
 

web
 

pages,
 

aggregating
 

dataset
 

pages.
 

However,
 

statistics
 

reveal
 

that
 

approximately
 

70%
 

of
 

websites
 

do
 

not
 

provide
 

Schema,
 

and
 

some
 

studies
 

have
 

shown
 

that
 

61%
 

of
 

websites
 

containing
 

Schema.org/Dataset
 

are
 

not
 

data
 

websites,
 

making
 

schema-
based

 

data
 

discovery
 

methods
 

unreliable.
This

 

paper
 

proposes
 

an
 

open
 

scientific
 

data
 

mining
 

and
 

un-
derstanding

 

method
 

for
 

the
 

internet.
 

For
 

the
 

large
 

number
 

of
 

web
 

resources
 

obtained
 

by
 

search
 

engines,
 

we
 

designed
 

a
 

deep
 

learning
 

model
 

to
 

automatically
 

select
 

scientific
 

data
 

pages,
 

con-
duct

 

web
 

page
 

understanding
 

to
 

extract
 

standardized,
 

enriched
 

metadata
 

to
 

characterize
 

scientific
 

data,
 

and
 

support
 

flexible
 

and
 

diverse
 

search
 

and
 

queries.
 

Using
 

the
 

Earth
 

sciences
 

as
 

an
 

exam-

ple,
 

we
 

applied
 

the
 

proposed
 

method
 

and
 

developed
 

the
 

DataEx-

po
 

system
 

(https://dataexpo.deep-time.org/),
 

which
 

discov-
ered

 

and
 

aggregated
 

over
 

one
 

million
 

Earth
 

science
 

metadata,
 

covering
 

nearly
 

30,000
 

institutions,
 

with
 

data
 

source
 

IPs
 

from
 

o-
ver

 

120
 

countries
 

and
 

regions.
 

It
 

supports
 

information
 

extraction
 

from
 

more
 

than
 

10
 

multimodal
 

fields
 

on
 

data
 

web
 

pages
 

and
 

forms
 

metadata
 

profiles.
This

 

research
 

supports
 

the
 

Deep-time
 

Digital
 

Earth
 

(DDE)
 

international
 

big
 

science
 

program,
 

which
 

aims
 

to
 

pro-
mote

 

the
 

transformation
 

of
 

Earth
 

science
 

research
 

paradigms
 

through
 

data
 

and
 

knowledge-driven
 

approaches.
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