
第49卷 第1期

2026年1月

计  算  机  学  报

CHINESE
 

JOURNAL
 

OF
 

COMPUTERS
Vol.

 

49 No.
 

1
Jan.

 

2026
 

收稿日期:2025-02-01;在线发布日期:2025-07-29。本课题得到国家自然科学基金(61772196)、湖南省自然科学基金(2020JJ4249)、湖南

省教育厅科学研究重点项目(24A0446;24A0753)、长沙市社科联哲学社会科学规划课题(2024CSSKKT31)资助。蒋伟进,博士,教授,博
士生导师,中国计算机学会(CCF)高级会员,主要研究领域为边缘计算、联邦学习、网络空间安全。E-mail:jwjnudt@163.com。崔新雨(通
信作者),硕士研究生,中国计算机学会(CCF)学生会员,主要研究领域为联邦学习、隐私保护。E-mail:2822867259@qq.com。刘志华,硕士

研究生,中国计算机学会(CCF)学生会员,主要研究领域为联邦学习、隐私保护。陈伸有,硕士研究生,中国计算机学会(CCF)学生会员,主
要研究领域为联邦学习、隐私保护。胡佳龙,硕士研究生,中国计算机学会(CCF)学生会员,主要研究领域为数据动态定价、联邦学习。

基于可学习聚合权重的解析性联邦学习方法
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摘 要 联邦学习通过在客户端与参数服务器之间交换模型参数而非原始数据,有效保护了数据隐私安全。然

而,随着客户端数量和数据规模的增加,联邦学习仍面临通信开销增加和任务复杂性提升的问题。现有方法通常

采用基于客户端本地数据量的权重归一化策略进行模型聚合,在一定程度上降低通信开销,但未充分考虑数据异

质性,这可能导致模型过拟合、收敛速度减缓,并加重通信负担。因此,本文提出了一种具有可学习聚合权重的解

析性联邦学习算法(Learnable
 

Aggregation
 

Weights
 

and
 

Analytic
 

Federated
 

Learning,LAW-AFL),该算法首先通过

引入可学习的收缩因子和相对权重,改进了聚合过程中的权重计算方式,并引入闭式训练范式指导神经网络训练,
增强模型在异质性数据下的稳定性和泛化能力;其次通过推导绝对聚合规则,进一步提升了聚合过程的效率和准

确性,实现了单周期本地训练,简化了训练流程,同时该算法利用闭式解进行高效聚合,简化了训练流程。实验结

果表明,所提出的算法在多个数据集和模型上都显著提高了全局模型的精度和泛化能力,相比较于基线方法,在处

理大规模客户端和非独立同分布(Non
 

Independent
 

and
 

Identically
 

Distributed,Non-IID)数据时准确率提高了

10%,并在特定实验设置下将全局模型的准确率提升至90%以上,单论训练时间相较于FedAVG缩短了69.82秒/
轮。这证明了LAW-AFL在准确性和鲁棒性方面具有一定的优势,并且大幅度降低了通信成本。
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Abstract 
 

Federated
 

learning
 

protects
 

data
 

privacy
 

by
 

exchanging
 

model
 

parameters
 

rather
 

than
 

raw
 

data
 

between
 

clients
 

and
 

a
 

central
 

server.
 

However,
 

as
 

the
 

number
 

of
 

clients
 

and
 

the
 

volume
 

of
 

data
 

grow,
 

it
 

still
 

faces
 

increasing
 

communication
 

overhead
 

and
 

task
 

complexity.
 

Existing
 

methods
 

typically
 

normalize
 

aggregation
 

weights
 

based
 

on
 

each
 

client’s
 

local
 

data
 

size
 

to
 

reduce
 

communication
 

cost,
 

but
 

they
 

often
 

overlook
 

data
 

heterogeneity,
 

which
 

can
 

lead
 

to
 

overfitting,
 

slower
 

convergence,
 

and
 

greater
 

overall
 

communication
 

burden.To
 

address
 

these
 

issues,
 

we
 

pro-
pose

 

Learnable
 

Aggregation
 

Weights
 

and
 

Analytic
 

Federated
 

Learning
 

(LAW-AFL).
 

First,
 

LAW-AFL
 

introduces
 

a
 

learnable
 

shrinkage
 

factor
 

and
 

relative
 

weights
 

to
 

refine
 

the
 

aggregation
 

process,
 

and
 

employs
 

a
 

closed-form
 

training
 

paradigm
 

to
 

guide
 

neural
 

network
 

optimization,
 



thereby
 

enhancing
 

model
 

stability
 

and
 

generalization
 

under
 

heterogeneous
 

data.
 

Second,
 

by
 

deri-
ving

 

an
 

absolute
 

aggregation
 

rule,
 

it
 

further
 

improves
 

aggregation
 

efficiency
 

and
 

accuracy,
 

ena-
bles

 

single-pass
 

local
 

training,
 

and
 

simplifies
 

the
 

overall
 

training
 

pipeline
 

through
 

closed-form
 

up-
dates.Extensive

 

experiments
 

on
 

multiple
 

datasets
 

and
 

model
 

architectures
 

show
 

that
 

LAW-AFL
 

significantly
 

improves
 

global
 

model
 

accuracy
 

and
 

generalization.
 

On
 

large-scale,
 

non-IID
 

data,
 

it
 

achieves
 

a
 

10%
 

increase
 

in
 

accuracy
 

compared
 

to
 

existing
 

methods
 

and
 

exceeds
 

90%
 

accuracy
 

un-
der

 

specific
 

experimental
 

settings,
 

while
 

reducing
 

per-round
 

training
 

time
 

by
 

69.82
 

seconds
 

rela-
tive

 

to
 

FedAVG.
 

These
 

results
 

demonstrate
 

that
 

LAW-AFL
 

offers
 

clear
 

advantages
 

in
 

accuracy,
 

robustness,
 

and
 

communication
 

efficiency.
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1 引 言

联邦学习(Federated
 

Learning,FL)[1-2]作为一

种去中心化的机器学习框架,因其优越的数据隐私

保护特性而广泛应用。相较于传统的集中式训练,
联邦学习将模型的训练过程分布在多个设备上。各

客户端利用本地数据进行模型训练,仅将模型更新

上传至服务器进行聚合以更新全局模型。这种分布

式设计在一定程度上避免了传统集中式学习框架下

可能出现的数据泄露风险。联邦学习的引入有效解

决了数据隐私保护和数据中心化的问题,同时能够

利用多方数据,提高了模型的泛化性和准确率[3]。
联邦学习通过融合本地计算与模型传输的理念,规
避了传统中心化机器学习框架下潜在的隐私信息泄

露风险[4]。
然而,联邦学习在实际应用中仍面临诸多挑战,

尤其是在数据呈现非独立同分布(Non
 

Independent
 

and
 

Identically
 

Distributed,Non-IID)和大规模客户

端参与的场景下,其性能和通信效率往往受到很大

影响。现有方法大多基于固定的模型聚合策略,Fe-
dAVG[2]作为FL中最经典的聚合算法之一,采用基

于客户端本地数据样本数量的加权平均策略:服务

端先把统一模型架构发给各客户端,客户端利用本

地数据训练并上传更新,服务端按各客户端数据样

本数量加权平均这些参数生成全局共享模型[5]。上

述算法假设客户端的数据质量和分布均等,但在实

际场景中可能存在数据分布不均或质量差异等异质

性问题,因此这种固定聚合策略未能充分考虑到不

同本地模型因数据分布不均而带来的贡献度差异,
导致全局模型的泛化能力下降。

为应对数据异质性问题,Kong等人[6]提出一

种基于知识蒸馏的联邦学习框架,该框架的服务器

端通过全局蒸馏整合客户端的预测分布,有效缓解

了Non-IID数据对模型性能的影响,但其对公共数

据集的依赖以及蒸馏训练也增加了额外通信开销。
为了降低通信成本,Lin等人[7]通过将边缘计算和

联邦学习的结合,降低能耗并减少通信延迟,但其方

法未深入解决模型更新本身可能存在的隐私泄露风

险,导致攻击者可以通过分析上传的本地模型推断

出参与者的训练数据[8],而聚合服务器也能够从聚

合后的全局模型中提取参与者上传数据的统计特

征[9],导致数据隐私泄露的风险。因此,为确保数据

隐私安全,必须采取有效的隐私保护技术对模型参

数进行加密和保护。
现有若干关于隐私保护的联邦学习方案[10-12]在

保护隐私方面取得了一定成效,但往往难以同时适

应异构数据环境并在模型性能、计算开销与通信成

本之间达到良好平衡。例如:为了节省资源,聚合服

务器可能只对部分梯度进行聚合[13],这将导致模型

性能下降或训练无法收敛。
基于对联邦学习系统的研究分析,本文得出以

下两点发现:
(1)固定的聚合策略无法充分反映客户端的实

际贡献,而通过引入可学习的聚合权重,可以动态调

整每个客户端的权重,提升全局模型的泛化能力和

稳定性,从而更好地应对数据异质性和大规模客户

端的挑战。
(2)现有方法在应对模型异构性和数据异质性

时,面临着模型精度下降的严峻挑战,需要进一步的

优化和改进以提升模型精度和鲁棒性。
基于上述发现,本文提出了具有可学习聚合权重
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的解 析 性 联 邦 学 习 算 法(Learnable
 

Aggregation
 

Weights
 

and
 

Analytic
 

Federated
 

Learning,LAW-AFL),
将自动加权聚合与解析性训练有机结合,有效解决

模型因数据分布差异带来的高通信成本的挑战;简
化了训练过程,缩短了训练时间,提高了模型的鲁棒

性和准确度。在多种数据集和模型架构的对比中,

LAW-AFL通过学习最优聚合权重增强了全局模型

在异质数据下的泛化性能;解析性单轮聚合进一步

压缩了训练时间并提高了计算效率。面对数据分布

差异加剧和客户端规模扩大,LAW-AFL在准确率

和波动控制方面均优于各基线方法。此外,LAW-
AFL在极端Non-IID数据分布和大量客户端的情况

下表现稳定,展示了其在复杂数据环境下的鲁棒性以

及在通信效率、模型性能和隐私保护方面的优势。
本文的主要贡献如下:
(1)提出了一种具有可学习聚合权重的解析性

联邦学习算法,该算法将自动加权聚合与解析性训

练有机结合,使其能够在单轮聚合中实现全局模型

更新。这种结合不仅提高了模型的鲁棒性和准确

度,还降低了通信成本。
(2)通过学习最优聚合权重优化全局模型泛化

性能,并利用解析性训练缩短训练时间;在极端

Non-IID数据分布及大量客户端场景下依旧保持稳

定表现。
(3)引入差异化的噪声添加策略与差分隐私保

护方法,在不牺牲模型性能的前提下,提供了更好的

隐私保障;这一策略有效地隐藏了客户端的梯度信

息,防范潜在的数据泄露。

2 相关工作

2.1 联邦学习

  联邦学习是一种允许模型分散在许多移动设备

上进行训练的分布式优化范例,通过聚合单个训练

权重来集体训练数据孤岛上的机器学习模型,同时

还保留源数据的隐私性。在联邦学习中,每个客户

端可以在本地保存其数据集,仅定期共享其本地训

练的模型更新,中央服务器聚合客户端的局部梯度

进行协同训练,然后对局部模型进行加权聚合生成

全局模型。在FedAVG提出之后,为解决联邦学习

中因Non-IID数据导致的性能下降问题,各种改进

方法相继被提出。例如:FedPROX[14]通过引入正

则化项限制本地更新的幅度,以减少本地数据偏差

对全局模型的影响;而FedDYN[15]通过动态正则化

调节Non-IID数据对模型优化的影响,不同于Fed-
PROX的静态正则化或FedDF的固定蒸馏权重,现
有隐私保护方法(如:DP-FedAVG[12])采用均匀噪

声。然而这些研究在数据异质性和系统异构性还存

在一定的局限。另一类方法则侧重于设计自适应聚

合权重,以优化从多个客户端获取的模型融合效果。
文献[16]提出的重新审视使用神经网络进行联

邦学习中的加权聚合(Revisiting
 

Weighted
 

Aggre-
gation

 

in
 

Federated
 

Learning
 

with
 

Neural
 

Net-
works,FedLAW)是一种针对Non-IID数据的动态

加权聚合算法。其核心思想是通过客户端本地模型

的性能表现动态调整聚合权重,从而优化全局模型

的泛化能力。在数据异质性情况下,优化聚合权重。
提高模型泛化能力。然而FedLAW 依赖静态收缩

因子和梯度优化权重,导致计算效率低下且缺乏隐

私保护,并且客户端的数据分布与全局数据分布不

一致,使得客户端模型在全局测试集上的表现不如

本地数据的表现。随着数据量的增大,模型训练时

间和计算成本显著增加。

2.2 分析学习

  分析学习(Analytic
 

Learning,AL)作为基于梯

度更新相关问题的策略,常用于解决传统梯度下降

训练过程中的迭代收敛和训练时间问题。分析学习

通过矩阵伪逆(pseudoinverse)直接求解全局模型参

数,它也被称为伪逆学习[17]。分析学习的起点是浅

层学习,径向基网络(Radial
 

Basis
 

Network,RBFN)
在第一层执行核变换后,使用正交最小二乘[18]估计

(Least
 

Squares,LS)来训练参数。在深度网络中,
多层分析学习[19-20]引入单周期训练方式,利用最小

二乘技术逐层训练堆叠的自编码器,如密集伪逆自

编码器(Dense
 

Pseudoinverse
 

Autoencoder,DPA)[21],
它使用最小二乘解来结合浅层和深层特征,以逐层

训练堆叠的自编码器。
然而,早期的分析学习技术在训练权重时需要同

时处理整个数据集,因此面临内存挑战。这种内存问

题通过分块递归的 Moore-Penrose逆[22](Block-wise
 

Recursive
 

Moore-Penrose
 

Inverse,MP)得到缓解,这种

递归等效特性与持续学习需求相呼应,分析学习还被

应用于持续学习,利用其等效特性处理序列数据分割

和灾难性遗忘问题。本文借鉴这些适应性特性,尝试

将类似的解析性策略引入联邦学习,以提高不同客户

端数据分布下的模型性能一致性。

2.3 解析性联邦学习

  文献[23]提出了可解析性联邦学习(Analytic
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Federated
 

Learning,AFL),AFL是一种基于闭式

解(closed-form
 

solution)的联邦学习范式,其核心

思想是通过闭式解直接求解全局模型参数,避免传

统梯度下降的迭代过程。与传统联邦学习方法(如

FedAVG)相比,AFL具有单周期训练、无超参数、
理论收敛保证的优势;AFL也是一种无需梯度的

FL框架,具有分析解决方案,减少通信成本和训练

次数。然而 AFL的闭式聚合策略难以适应 Non-
IID数据分布,并未阻止模型的过拟合现象,无法根

据客户端动态贡献调整聚合权重,限制了模型优化

的灵活性。为此,本文提出可学习聚合权重机制嵌

入AFL框架通过动态调整客户端权重来缓解数据

异质性影响,能够根据客户端数据分布差异自动分

配权重,通过权重收缩因子γ控制模型复杂度,缓解

过拟合。并且差异化噪声策略与动态权重协同,在
不增加通信开销的前提下提升隐私保护。

当前,大部分研究聚焦于将聚合权重归一化,并
与局部数据大小成比例,然而由于非凸性[24],过度

参数化[25]以及深度神经网络(Deep
 

Neural
 

Net-
works,DNN)的独特性质,全局权重收缩在每轮的

学习中设置一个动态收缩因子γ来收缩全局模型的

参数。文献
 

[26]基于DNN的输入尺度不变性验证

了该方法在理想条件下的有效性。但受限于复杂数

据分布和有限样本,本文提出了针对DNN训练过

程的改进策略,旨在提升模型在多种任务和数据集

上的泛化能力。调整聚合权重γ 的值,在正则化和

优化之间找到平衡,从而保持模型性能的同时提高

隐私保护。
关于联邦学习的模型聚合方面。文献[27]提出

了AUTO-FedAVG通过学习不同的机构医疗数据

的聚合权重来实现个性化医疗,文献[28]通过学习

局部数据集的聚合权重来匹配分散FL中的相似对

等体。现有研究工作普遍设定γ=1实现归一化聚

合,而本文通过引入自适应γ,提升模型在异质数

据条件下的整体泛化表现。除此之外,FL假设在每

个客户端中存在多个本地训练周期,并且客户端通

常具有异构数据,在这种情况下,客户端的局部梯度

在Non-IID数据下呈现低相干性[29],他们无法从学

习权重中理解FL的动态,为进一步研究联邦学习

动态提供方向。因此本研究采用客户端数据局部处

理机制,保证数据在客户端进行更多的处理和分析,
动态地调整隐私保护策略,在数据分布不均匀的情

况下增加噪声水平,保护数据的隐私安全。
本文中采用DNN等神经网络作为模型架构,

在探讨FL框架下的神经网络训练动态时,全局权

重缩减策略与客户端模型一致性机制,其作用机制

与集中式学习中的权重衰减和梯度同步策略具有相

似性。权重衰减是一种正则化技术,有助于防止模

型在训练数据上过拟合,进而提升模型在新数据上

的泛化 能 力。实 验 结 果 表 明,融 合 FedLAW 与

AFL框架,最优权重缩减因子与训练周期数量近似

成反比。这意味着,当训练过程跨越更多的周期时,
实施权重缩减的必要性会有所减弱。通过将权重缩

减与FL的聚合机制相结合,不仅能够控制全局模

型的复杂度,还能在一定程度上促进不同客户端模

型之间的参数一致性。

3 可学习聚合权重的自适应解析性联

邦学习

3.1 自适应全局收缩与训练动态

3.1.1 定 义

在FL中,客户集合用S 表示,客户i的局部数

据集用Di={(xj,yj)}
Ni
j=1表示,其中Ni 为客户端i

的数据样本数量。整个系统的数据集D 为所有客

户端数据的并集:D=∪i∈SDi。θ为聚合权重。
本文使用的主要符号说明如表1所示。

表1 主要符号说明

符号 释义

wt
g 第t轮通信后的全局模型参数

ηg 全局学习率

ηl 局部学习率

γ 收缩因子

S 参与训练的客户端集合

λi 第i个客户端的相对权重

wt
i 客户端i在第t轮的本地模型参数

wagg,k 累积聚合到第i个客户端的中间权重矩阵

nk 第i个客户端的数据量

V 参与聚合的客户端集合

n 所有客户端数据总量

P 每个客户端的类别分布

α Dirichlet分布的参数

X† 矩阵X 的伪逆矩阵

X 分块矩阵

Xu,Xν 矩阵X 的上下块部分

Wu,Wv 权重分量,由Xu 和Xν 计算得到

􀮈Wu,􀮈Wv

聚合时的加权系数,决定Wu 和Wv 对整体W
的贡献

Lproxy({λ,γ}) 客户端模型加权后的预测误差

(1)全局模型聚合规则:设客户端集合S 的本

地模型参数为 {wt
i},收缩因子γ >0,且权重向量

λ 满足λi ≥0和 λ 1=1,则全局模型更新为
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wt
g=γ∑

m

i=1
λiwt

i (1)

  在每一轮中,客户的局部模型都被初始化为wt
i

←wt
g 的全局模型,客户并行进行局部训练。在每

个局部训练时期,客户端以局部学习率ηl 进行随机

梯度下降(Stochastic
 

Gradient
 

Descent,SGD)更新,
每次SGD迭代显示为

wt
i ←wt

i -ηl

Δ

l(Bk,wt
i),

fork=1,2,…,K (2)
其中,ℓ是损失函数,Bk 是第i次迭代时从Di 采样

的小批量。客户端本地更新后,服务器对m 个客户

端进行采样聚合,客户端i的本地更新伪梯度表示

为 t
i=wt

g-wt
i。然后服务器进行加权聚合,将局部

模型合并更新为新的全局模型如公式(3)。

wt+1
g =∑

m

i=1
μiwt

i = μ 1wt
g -ηg∑

m

i=1
μigt

i

s.t. μi ≥0 (3)
其中,μ=[μ1,μ2,…,μm]是权重向量,μ1是L1范

数;即各元素绝对值之和,用于约束聚合权重归一

化,确保全局模型更新的稳定性,ηg=1是全局学习

率。对于基本的FedAVG,它采用与数据规模成比

例的归一化权重,即μi=
|Di|
|D|

,D=∪i∈SDi ,在本

文中,假设权重向量未进行归一化(μ 1 ≠1),这
意味着l1范数不一定等于1。通过将μ 分解为{γ,

λ}来独立研究l1 范数和相对权重的影响。
因此,公式(3)重新表述为

wt+1
g =γ∑

m

i=1
λiwt

i

s.t. γ>0,λi ≥0 (4)

  当γ<1时,这将导致全局模型的权重收缩,因
此在这种情况下,称γ 为收缩因子。

(2)收缩因子γ 的自适应规则:设客户端梯度

为gi =

Δ

Li(wg),并定义其平方范数的期望为

E[‖gi‖2],收缩因子的定义为

γ= ηg

E[‖gi‖2]+
(5)

其中,ηg 是全局学习率, >0是用于平滑的常数,
保证分母不为零。

由公式(5)可知,γ 与E[‖gi‖2]成反比,当

E[‖gi‖2]较大时,即梯度幅度大,表示在优化曲

线上局部斜率较陡,分母增大,使得γ 较小,这意味

着在陡峭区域采用较小步长,避免因更新步长过大

而导致发散。反之当E[‖gi‖2]较小时,梯度幅

度小,接近局部最优或者平坦区域,使得γ 较大,有
利于加速收敛。

在实际的FL场景中,客户端之间的数据分布

通常为Non-IID,即每个客户端的数据分布存在差

异。客户端间的数据往往呈现出 Non-IID 的特

性[30]。数据的Non-IID特性对FL的收敛速度构成

了严峻挑战。
定义1(Dirichlet分布与客户端异质性).本文

采用Dirichlet抽样[31]来模拟客户异质性。Dirichlet
抽样被广泛用于模拟客户端之间的数据异质性。这

种抽样方法通过调整Dirichlet参数α 来控制数据分

布的异质性程度。其概率密度函数为

p p;α  =
1

B(α)􀰒
K

k=1
pk

αk-1 (6)

(3)加权聚合更新推导:
将全局模型的更新归纳为两部分:一是“伪梯

度”收 缩 项 (1-γ)wt
g ,二 是 加 权 平 均 梯 度 项

γ∑
m

i=1λiwt
i 。

wt+1
g =γ∑

m

i=1
λiwt

i (7)

其中,λi=
|Di|
|D|

,∑
m

i=1λi=1表示第i各客户端的

相对数据量占比。
最佳收缩因子:
在服务器端利用代理数据集P 构造目标损失

proxy γ∑
m

i=1
λiwt

i  (8)

  并通过

γ* =argmin
γ>0

proxy γ·∑
m

i=1
λiwt

i  (9)

  求得最优γ* ,该值平衡了“全局梯度优化”与
“模型权重正则化”两者作用。

推导与参数说明

(1)传统全局更新到收缩:

wt+1
g =wt

g -ηggt
g (10)

  令γ 对更新整体收缩,可写为

   wt+1
g =γ(wt

g -ηggt
g)

=wt
g -γηggt

g -(1-γ)wt
g (11)

  将 (1-γ)wt
g 称为全局权重收缩的伪梯度部

分,γηggt
g 则为全局平均梯度。

(2)相对权重λi

采用加权平均代替梯度gt
g :

wt
g -ηggt

g →∑
m

i=1
λiwt

i,λi=
|Di|
|D|

(12)
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(3)收缩因子优化

理论上可用梯度下降法在代理数据集上求解公

式(9),实际中因P 规模受限,改用启发式预实验确

定经验最优γ,既保证计算效率,也兼顾性能。

3.1.2 算法设计与实现

本文从自动加权聚合的角度来研究对FL训练

的影响,旨在优化聚合过程中的权重分配。自动加

权聚合算法的核心在于为每个客户端的模型分配一

个动态的权重,这个权重是基于该客户端的数据质

量、模型性能以及其他相关因素来确定的。通过数

据驱动的方式动态调整权重,可以实现更高效的模

型聚合,从而提高全局模型的性能。引入相对权重

来调整每个客户端的贡献。混合更新策略是指对于

被选中的客户端,使用它们更新后的模型参数来更

新全局模型;对于未被选中的客户端,则保持它们上

一轮的模型参数不变,并按其数据量比例贡献到全

局模型中。公式如下:

wt+1
g = ∑

k∉V

nk

nwt
g  + ∑k∉Vnk

nwt+1
g  

(k=1,2,…,m) (13)

  不同于传统的联邦平均算法采用固定且归一化

的权重,本文采用的聚合权重μ 自适应地调整,用
以精确反映各客户端数据的质量和对全局模型的贡

献度。为了区分解耦权重的总体大小(即l1 范数)
和相对权重(即各权重在总权重中的比例),本文采

用一种分解策略,将μ 分解为两个组成部分:γ 和

λ。其中,γ=μ 表示收缩因子,而λ=[λ1,λ2,…,

λm]满足λi=μi

γ
,表示各客户端的相对权重。通过

这样的分解,可以独立地研究收缩因子γ和相对权重

向量λ对全局模型训练过程的影响。在加权聚合策

略的框架下,全局模型的更新可以表示为以下公式:

wt
g =wt-1

g +ηg·γ·∑
i∈S

λi·wt
i (14)

  在自动加权聚合策略中,本文引入了一个额外

的参数γ(收缩因子),用于动态地调整全局模型的

更新幅度。参数γ的取值范围限定在(0,1]区间内,
确保了模型更新的适度性,避免了过大或过小的更

新步长对模型稳定性和收敛性的影响。最优的收缩

因子γ和相对权重λ通过梯度下降法在代理数据集

上进行学习。通过调整γ,本文可以在正则化和优

化之间找到一个平衡,从而改善全局模型的性能。

3.1.3 实现步骤

自动加权聚合算法的具体实现步骤包括初始

化,权重调整,模型更新等环节。下面将会详细地解

释和说明:
首先定义全局模型参数为wt

g ,设第i个客户

端的本地模型参数为wt
i 。其次进行定义第i个客

户端的初始权重为λ1i ,为每个客户端的模型分配一

个动态的权重,这个权重是基于该客户端模型在全

局目标一致的代理数据集上的表现来确定的,在传

统的自动加权聚合算法中,是利用梯度下降方法在

代理数据集上学习这些权重,使得它们能够反映客

户端模型对全局目标的贡献。本文通过闭式解替代

梯度优化,降低了权重聚合的计算复杂度。最后采

用加权平均的聚合规则,即

wt
g =∑

N

i-1λiwt
i (15)

  在本文中客户端的初始权重,根据客户端的数

量、数据质量以及模型性能等因素来进行初始化,其
公式如下:

λ't=
qiai

∑
N

j=1qjaj +
(i=1,2,…,N) (16)

  本文使用客户端数量 N,客户端的数据质量为

qi ,模型性能评估可以从两方面评估每个客户端的

模型性能,一个是准确率ai 和损失值li 。然后可以

根据上述的因素计算每个客户端的权重。公式(15)
是考虑了客户端数量N、数据质量qi 以及准确率ai

三个因素来调整权重,可以加入损失值进一步考虑

权重的调整,其公式如下:

λi=
qiaiN·

1
1+li

∑
N

j=1qiaiN·
1

1+li  
(17)

  每个客户端使用其本地数据训练模型,得到更

新后的本地模型参数wt
i ,然后使用加权平均规则

聚合更新后的本地模型参数,得到全局模型参数

wt
g ,接着利用公式(6)规则进行聚合更新,其公式

如下:

wt
g =∑

N

i=1w
t
i (18)

  再将更新后的全局模型参数wt
g 分发回给每个

客户端,使他们可以在下一次迭代中使用。在训练

结束之后,输出最终的全局模型参数,作为训练的结

果,然后在不同数据集上和不同神经网络模型架构

上实验,得出最终结果。
算法1根据收缩因子γ 计算自适应聚合权重

μi ,避免单个客户端对全局模型的过度影响。使用

自适应聚合权重μi 对客户端的局部模型参数wt
i 进

行加权平均,更新全局模型参数w􀮨t
g ,在加权聚合过
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程中,本文使用解析解进行聚合,避免了多次迭代,
从而提高了聚合过程的效率和准确性。

自动加权聚合算法见算法1。

算法1.自动加权聚合

输入:wt
g,wt

i,γ

输出:更新后的全局模型参数w􀮨t
g

1.初始化全局模型参数wt
g ,初始聚合权重μi 对所有i设置

相同的默认值

2.FOR
 

每个客户端iDO

3.客户端i基于数据质量qi 和模型性能ai 计算相对权重λ'i

λ'i =
qi·ai

∑
m

j=1qj·ai +

4.λi 反映了客户端i的数据质量、数据量等因素

5.服务器对接收的权重进行标准化,确保∑
N

i=1λi =1:

λi =
λ'iN

1
1+li

∑
N

j=1λ'iN
1

1+li

6.根据收缩因子γ计算自适应聚合权重μi

7.μi =γ·λi

8.使用自适应权重μi 进行全局模型参数wt
g 的加权聚合:

9.w􀮨t
g ←γ*·∑

N

i=1w
t
iμi

10.END
 

FOR

3.2 解析性联邦学习

  解析性联邦学习(Analytic
 

Federated
 

Learn-
ing,

 

AFL)是一种全新的联邦学习训练范式,它融

合了解析性学习的优势,为联邦学习领域带来了闭

式(或称解析)解决方案。解析性联邦学习旨在通过

聚合多个数据孤岛上的个体训练权重来共同训练一

个机器学习模型,同时保护源数据的隐私。这一范

式适用于对数据隐私保护要求极高的敏感领域,与
传统联邦学习相比,解析性联邦学习的核心在于其

引入了闭式解决方案进行网络训练,无需依赖梯度

下降等迭代方法。AFL的算法框架主要包括局部

训练阶段和集中聚合阶段两个部分。接下来,将详

细描述这两个阶段的算法过程。在局部训练阶段,

wi 预训练主干作为特征提取器,促进人工智能网络

学习,使训练在一个Epoch内完成。

3.2.1 局部训练阶段

局部训练阶段与传统联邦学习相似,在局部训

练阶段,每个客户端首先在公开数据集上训练特征

提取器,确保其具备通用特征表示能力;接着本文采

用ResNet-50作为骨干网络,通过监督学习完成预

训练,使用SGD优化器,设置初始学习率为0.1,余

弦衰减调度,训练100个周期。在联邦学习过程中,

特征提取器的参数w􀮨i 保持固定,仅对顶层Li 进行

微调,以减少本地计算开销并避免过拟合。
在局部训练阶段采用预训练的骨干网络作为特

征提取器,并通过微调优化,以加速训练过程。每个

客户端初始化一个本地模型,该模型包括一个预训

练的骨干网络和一个可训练的分类头。本文所有模

型均采用相同的预训练模型作为特征提取器。固定

预训练骨干网络的参数,仅对分类头(全连接层)进
行训练,确保所有方法在相同的初始化条件下优化。
在局部训练阶段引入动态特征提取器微调策略,

AFL使用数据集预训练骨干网络作为特征提取器。
预训练的网络具备较强的特征提取能力,使用预训

练的骨干网络对本地数据进行特征提取,这可以减

少训练时间并提高模型性能。算法2描述解析性联

邦学习局部训练的过程,将所有客户端局部模型

wi(0)和特征提取器w􀮨i(0)设置为相同的初始值,
每个客户端在本地数据集Di 上独立训练模型。由

于使用了预训练的特征提取器w􀮨i ,AFL只需对局

部模型的上层参数wi 进行更新。其公式如下:

wi
t=wi

t-1-η
Δ

wi
tLi wi

t,w􀮨i
t  (19)

  AFL的局部训练算法见算法2。

算法2.AFL的局部训练

输入:τ,T
输出:全局模型参数wt

g

1.
 

初始化wt
g ,并将wi(0)和 w~i(0)设为相同的初始值

2.
 

FOR
 

t=1,2,…,TDO
3. FOR每个客户端iinparallelDO

4.
 

使用预训练的特征提取器 w~i 作为特征提取模块

5.
 

根据客户端i的本地数据分布差异计算微调层数Li(公式18)

6. 
 

END
 

FOR
7.

 

在本地训练时,仅对顶层Li 层进行微调

8.
 

在局部数据集Di 上进行局部训练,更新局部模型参数wi
t :

9.
 

wi
t =wi

t-1-η

Δ

wi
tLi wi

t,􀮃wi
t  

10.
 

END
 

FOR

  如算法2所示,其中Li 是在客户端i上的损失

函数,η是学习率。通过只微调最后几层的参数,

AFL减少了训练时间和计算资源消耗。

3.2.2 集中聚合阶段

集中聚合阶段是AFL的核心之一。传统的联

邦学习通常使用加权平均(如FedAVG)来聚合客

户端模型更新。传统AFL采用文献[23]的加权平
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均聚合规则(公式19),其权重固定为客户端数据量

比例。本文提出可学习聚合机制:通过在服务器端

引入代理数据集P,优化聚合权重λi 和收缩因子γ
(公式11)。通过梯度下降法联合优化 {λ,γ},使聚

合后的全局模型在P上最小化预测误差。相较于

文献[16]的静态权重分配和文献[23]的数据量加

权,在Non-IID场景下模型准确率有所提高。
在集中聚合阶段,所有客户端的模型参数被发

送到中央服务器进行聚合,生成一个全局模型。假

设第i个客户端的模型参数为wt
i ,并且客户端i上

的数据量为ni ,全局模型更新的解析解的公式定义

如下:

wt+1
g =∑

N

i=1niwt
i

∑
N

i=1ni

(20)

  这种加权平均方式保证了全局模型能够根据各

个客户端的数据量来调整更新权重,从而更精确地

反映全局数据分布。然后是关于全局损失函数的定

义,其公式如下:

F(w)=∑
N

i=1

|Di|
|D|

Li(w) (21)

  根据公式(21)的定义,|Di|
|D|

是基于客户端数

据量的加权系数,使得数据量大的客户端对全局模

型的影响更大,这种策略能够提高模型对数据分布

不均匀情况的适应性,全局损失函数为所有客户端

的数据分布和数据量进行了加权,确保模型对数据

量较大的客户端更具适应性。
在AFL中,服务器通过解析解的方式进行聚

合,以快速且准确地获得更新后的全局模型。服务

器在本地执行加权平均来聚合客户端局部模型参

数,公式如下:

wt
g =argminF(w)≈∑

N

i=1

|Di|
|D|

wt
i (22)

  公式(22)确保聚合过程能够反映不同客户端的

贡献。避免了迭代求解的过程,能够在单步中完成

全局模型的更新,从而大幅提升了聚合效率。
服务器使用加权聚合的结果作为新的全局模型

参数wf(t)进行更新全局模型,公式如下:

wt
g =∑

N

i=1

|Di|
|D|

wt
i (23)

  通过(23)服务器能获得基于各客户端局部训练

结果的全局模型更新,更新后的全局模型wf(t)将

作为下一轮客户端训练的初始化参数分发至各客户

端。并且避免了迭代优化的过程,实现快速聚合。

尽管AFL相比于传统的联邦学习在效率和准

确性上有显著提升,但在实际应用中,仍然面临一些

关键技术挑战。AFL同样面临客户端分布不均带

来的挑战,数据的异质性可能会导致全局模型聚合

困难、模型收敛不稳定。为了解决此问题,本文引入

自适应加权聚合,在解析性聚合过程中,根据客户端

的模型更新质量或数据分布的差异,自适应调整客

户端权重,以减少数据异质性对全局模型更新的影

响。因此,本文提出的结合可学习聚合权重和解析

训练的LAW-AFL框架,旨在提高模型更新对噪声

和数据异质性的鲁棒性。

3.2.3 差异化噪声添加策略

为应对联邦学习中潜在的隐私泄露风险(如通

过模型参数反推原始数据),本文引入差异化的噪声

添加策略。该策略的核心在于根据客户端数据分布

的异质性动态调整噪声强度,从而在保护隐私的同

时最小化对模型性能的影响。
定义2(差异化噪声添加与差分隐私保护策

略).设客户端i的本地模型更新为Δwt
i ,其数据分

布的异质性由Dirichlet参数α表示。噪声强度σ定

义为:

σ=σbase·
σref

α+
(24)

其中,σbase 为基础噪声强度,σref 为参考异质性阈

值, 为平滑因子。数据分布越不均匀,即α 越小,
噪声强度σ越大,反之则减少噪声添加量。

如果出现攻击者伪造指标,就可能操纵权重,从
而影响全局模型。例如:恶意客户端可能提交虚假

的高质量数据评估结果,或者生成看似高性能的模

型参数,从而在聚合过程中获得更高的权重,进而污

染全局模型。
因此,提升LAW-AFL的安全性以确保数据安

全至关重要。在添加噪声的同时引用差分隐私保护

策略。改进的噪声添加机制:

Δwt
i =wt

i +N(0,σ2I) (25)
其中,噪声强度σ定义为

σ=σbase·
σref

α+
·Δ (26)

  通过Dirichlet参数α 来衡量数据标签分布的

不均衡性。根据公式(25)计算出客户端对应的噪声

强度σi ,利用该噪声强度,生成服从高斯分布N(0,

σ2)的噪声 i 。客户端在完成本地模型训练后,获
得模型更新量Δwt

i ,将生成的噪声 i 与模型更新叠

加,得到噪声扰动后的更新:Δwt
i + i 。这一操作
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确保上传到服务器的更新中不仅包含有效的梯度信

息,同时掩盖了原始数据中可能泄露的隐私信息。
在数据分布不均匀时,增加噪声以提高隐私保

护;在异质性较低时减少噪声,能够在一定程度上保

持模型性能,同时兼顾差分隐私保护。

3.3 绝对聚合规则

  在聚合阶段,本文引入绝对聚合定律(Absolute
 

Aggregation
 

Law,AA),用于优化大规模客户端场

景中的模型参数聚合。该方法基于矩阵伪逆分块法

则,通过在全局优化框架下推导出单次聚合策略,从
而有效缓解传统方法在异质性数据分布下的性能瓶

颈。本文的推导受到了 MP[32]的启发。
定义3.假设矩阵X 和Y按行分块为上下两部分:

X=
Xu

Xν

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,Y=

Yu

Yν

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 (27)

其中,Xu 和Xν 均为具有满列秩的子矩阵。根据伪

逆分区定理,矩阵X+ 的伪逆可以表示为:

X†= U􀮨V􀮨  (28)

  分块伪逆计算:

U􀮨=X†
u -RuCv(Cu +Cv)-1CvX†

u,

V􀮨=X†
v -RvCu(Cu +Cv)-1CuX†

v (29)

  并且

Cu =XT
uXu,Cv =XT

vXv,

Ru =C-1
u ,Rv =C-1

v (30)

  全局权重聚合规则:设矩阵X 和Y 按行分块为

上下两部分:X=
Xu

Xν

􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,Y=

Yu

Yν
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

其中,Xu 和Xν 具有完整的列等级。定义分块伪

逆:

Ŵu =X†
uYu,̂Wv =X†

vYv

  则联合伪逆 Ŵ =X†Y 可表示为

W =W􀮨uWu +W􀮨vWv (31)

其中,̂Wu 和 Ŵv 由分块矩阵的协方差矩阵Cu =
XT

uXu 和Cv =XT
vXv 计算得到。

  由于

Au =I-RuCv -RuCv(Cu +Cv)-1Cv

Av =I-RvCu -RvCu(Cu +Cv)-1Cu (32)

  因此

Cu =XT
uXu

Cv =XT
vXv Ru =C-1

u

Rv =C-1
v (33)

  全局权重聚合规则揭示了联邦学习中多客户端

模型参数聚合的本质:全局模型的权重矩阵W 可以

通过分块伪逆运算,将各客户端本地训练的权重分

量(Wu,Wv )按贡献系数(W􀮨u,W􀮨v )线性组合而成。
直接通过矩阵运算实现全局模型更新,避免传统方

法的多轮迭代,减少通信开销;贡献系数W􀮨u,W􀮨v 动

态反映客户端数据分布差异,抑制低质量更新的负

面影响。
尽管AA规则承认两个客户端之间的绝对聚合

(即 Ŵu 和Ŵv ),但这种模式可以轻松地广播到多

客户端场景。为了详细说明,将 Ŵagg,k-1 表示为聚

合了k-1个客户端的累积聚合(Accumulated
 

Ag-
gregation,AcAg)全 局 权 重 矩 阵。通 过 重 写 公 式

(19)(20),下一个带有 Ŵk(i=1,2,…,K)的聚

合读取为

Ŵagg,k =AagĝWagg,k-1+Ak̂Wk (34)

  令 Cu → Cagg,k-1,Cv → Ck 。则 有 Cagg,k =
Cagg,k-1+Ck ,其中Cagg,k-1,Ck 是累积协方差矩阵,

因此

Aagg =I-C-1
agg,k-1Ck(Cagg,k-1+Ck)-1

                        

Ak =I-C-1
kCagg,k-1(Cagg,k-1+Ck)-1 (35)

         

Cagg,k =Cagg,k-1+Ck =∑
k

i=1Ci

Ci=XT
iXi (36)

  联合训练的权重 Ŵ =̂Wagg,k 是以成对的方式聚

合各个客户端而产生的。有趣的是,最佳聚合实际

上是分别由 Wagg 和 Wk 加 权 的 两 个 矩 阵(例 如

Ŵagg,k-1 和 Ŵk )之间的线性组合。聚合不一定遵循

从1到k的顺序索引。可以随机采样可用客户端以

与AcAg 权重进行聚合。权重矩阵中的元素在某种

程度上是可以互换的。

3.4 自动加权聚合的解析性联邦学习

  在标准AFL的全局聚合步骤中,本文采用了加

权平均的方式聚合各个客户端的模型参数。然而,
在实际应用中,客户端的数据量和数据质量可能会

有所不同,自动加权聚合算法通过自适应调整聚合

权重μi ,可以更加灵活地处理客户端差异,提高聚

合的鲁棒性。在本文提出的LAW-AFL算法中,聚
合权重μi 被分解为收缩因子γ,和相对权重λi ,从
而实现更加细致的权重控制。正如算法3所描述

的,在指定通信间隔τ时,客户端将局部更新的模型

参数wt
i 和权重μi 发送到服务器。服务器使用μi

进行加权平均聚合,以解析解的方式更新全局模型

wt
g ,避免多次迭代,提高聚合效率。

自动加权聚合的解析性联邦学习算法见算法3。
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算法3.自动加权聚合的解析性联邦学习

输入:客户端集合N,通信轮次T,客户端本地训练周期E,
服务器端权重学习周期Es ,初始全局模型w1

g ;每个客户端

的数据集Dk ;聚合权重参数γ
输出:最终全局模型wt

g

1.
 

初始化:全局模型 w1
g ;聚合统计量矩阵 Wagg,0 =0和

Cagg,0 =0
2.

 

设置聚合权重参数γ,设置学习率η
3.

 

FOR
 

t=1,...,T
 

DO
//客户端更新阶段

4.
 

分发全局模型:服务器将全局模型wt
g 广播到n个客户端.

5.
 

本地模型初始化:每个客户端i初始化本地模型;wt
i←wt

g

6.
 

本地训练:每个客户端使用本地数据Di ={Xi,Yi}和E
轮梯度下降更新本地模型;wt

i ←wt
i -η

Δ

Li(wt
i)

7.
 

其中,Li(wt
i)是客户端i的本地损失函数

//计算本地统计信息

8.
 

客户端基于其本地数据集计算以下矩阵:ŴT
k =XT

kYk,

CT
k =XT

kYk +γI
9.

 

在客户端上传参数前添加噪声:

σ=σbase·
σref

α+
·Δ

10.
 

上传到服务器:客户端将更新后的模型参数

wt
k ,统计矩阵ŴT

k 和CT
k 发送到服务器

//服务器更新阶段

11.
 

接收客户端数据:服务器从m 个选定的客户端

接收本地模型 {wt
i}mi=1 和统计信息 {ŴT

k,wt
k}mi=1.

12.
 

初始聚合权重λi 和收缩因子γ

λi=
|Di|
|P|

13.
 

优化聚合权重:在代理数据集P 上运行E 轮优

化,调整聚合权重

{λ,γ}← {λ,γ}-η

Δ

Lproxy({λ,γ})

14.
 

更新全局模型:使用优化后的权重λi ,将客户

端模型聚合为新的全局模型

wt+1
g =∑

m

i=1
λiwt

i

//更新全局统计信息

15.
 

累积客户端的统计信息:

Ŵagg,k =Ŵagg,k-1+ŴT
k

Cagg,k =Cagg,k-1+CT
k

16.
 

基于累积的统计信息恢复最终的全局模型权重

矩阵:

W=Ŵagg,k,C=Cagg,k

17.
 

更新全局模型:wt+1
g =WC-1

18.
 

当通信轮次T 完成时,服务器输出最终的全局

模型:wt
g

19.
 

END
 

FOR

  在客户端本地阶段,每个客户端除了进行传统

的本地模型更新外,还需额外计算统计信息(如权重

矩阵 Ŵk 和协方差矩阵Ck ),以捕捉本地数据的分

布特征,这些统计信息将用于增强全局模型的聚合

效果。在服务器端更新阶段,聚合模型的过程分为

两步:(1)基于公共数据集优化聚合权重,通过动态

调整权重使其适应客户端数据的异构性,提高聚合

模型的鲁棒性;(2)在客户端上传参数前添加噪声,
结合客户端上传的统计信息,通过矩阵计算方式进

一步增强全局模型对全局数据分布的建模能力。总

体而言,AFL提供的矩阵统计信息有助于建模全局

数据分布特征,而FedLAW 的动态聚合权重优化则

有效应对了客户端间数据分布的异质性问题,两者结

合能够显著提升联邦学习的性能与适应性。在客户

端训练阶段,各客户端可以使用DNN、ResNet或 MLP
等架构作为特征提取器。结合自动加权聚合策略,通
过收缩因子γ 和相对权重λ 的动态学习,实现动态调

整客户端的聚合贡献,使得AFL能够更好地适应数据

异质性,并在聚合时更精确地反映各客户端的贡献。
通过解析解的方式计算全局模型,避免了迭代优化过

程,大幅提升聚合阶段的计算效率。这些网络架构在

预训练后能够有效提取图像或复杂数据的高层次特

征,从而加速训练过程,并减轻客户端计算负担。

4 实 验

4.1 实验设置

  (1)数据集

为了评估LAW-AFL方法的有效性,本文通过

在四个不同的联邦基准数据集上进行了实验,即

MNIST、FashionMNIST、CIFAR-10和CIFAR-100
上评估了本文方法和基准方法,数据集的统计信

息如表2所示。数据集的训练数据按照一定策

略分配给每个客户端,每个客户端都有自己的训

练集。

表2 数据集统计信息

数据集 训练样本 测试样本 特征 类别

MNIST 60000 10000 28×28×1 10
Fashion-MNIST 60000 10000 28×28×1 10
CIFAR-10
CIFAR-100

50000
80000

10000
20000

32×32×3
32×32×3

10
100
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  数据划分按照文献[33]方法对pc ~Diri(α)进

行采样,并按照pc,i 的比例随机分配c类训练数据

给客户端i。Non-IID(α)用于表示这种模拟方法,
这里的α 与Dieichlet分布中的α 相同,它作为控制

参数,用于调整数据分布的不平衡程度。通过调整

Dieichlet参数α 来控制数据分布的异质性程度。α
值越小,表示客户端之间的数据分布差异越大,即

Non-IID程度越高,反之,α 值越大,表示数据分布

越接近,即IID程度越高。在本文中客户端数量为

100,每 轮 随 机 选 择 10 个 客 户 端 参 与 训 练。在

MNIST数据集下每个客户端300~700张图像,CI-
FAR-10客户端拥有400~800张数据集,CIFAR-
100数据集下客户端用于800~1200张图像。

本文采用训练迭代次数(Training
 

Iterations)
作为衡量指标,记录在单次全局通信轮次内,客户端

本地进行的多步训练迭代,以验证模型在单周期内

的收敛性。这种更为精细的单周期优化方法,有助

于进一步提升模型性能。
为了评估LAW-AFL性能的稳定性,在相同实验

条件下独立重复运行010次,记录通信轮次上的准确

率并计算标准差σ,阴影区域表示平均值±1σ,用于

直观反映模型性能在重复实验中的波动程度。
(2)实验评价指标以及基准设置

本文采用最常用的精确度评价指标:准确率

(accuracy,ACC)和Top1
 

Hessian特征值以及训练

时间(Training
 

Time,T)。准确率是衡量分类任务

中正确预测样本比例的关键指标,对比不同模型在

相同数据集上的准确率。更高的准确率通常表明模

型具有更好的性能。Top-1
 

Hessian特征值是衡量

模型优化稳定性的重要指标,反映模型优化曲面的

陡峭程度,值越大表明优化过程越不稳定。对于损

失函数Lproxy ,其Hessian矩阵计算为:

H =
ϑ2Lproxy

ϑθϑθT
(37)

  在全局模型wT
g 处采样小批量数据,然后利用

自动微分框架计算二阶导数;最后迭代求解 Hes-
sian矩阵得最大特征值。

较低的Top1
 

Hessian特征值通常表明模型优

化过程更平稳,梯度更新更稳定,从而有助于提高模

型的鲁棒性,其增长速度和最大值反映了模型优化

过程是否稳定,用以分析模型在训练过程中是否过

度拟合局部数据。此外,训练时间作为衡量算法效

率的重要指标,在联邦学习中,通信成本和训练效率

是重要的关注点。更短的训练时间表示模型具有更

高的计算效率和更低的通信开销,特别是在大规模

客户端环境中具有重要意义。
在基准设置方面,算法LAW-AFL的主干模型

源自FedLAW,这一选择基于其在联邦学习领域的

卓越表现。为了更全面地验证LAW-AFL的性能,
本文参考了文献[16]中的实验对比结果,该文献已

经对FedLAW与多种基准方法进行了详尽的对比,
包 括 FedDF[6]、FedAVG[2]、FedPROX[14]、Fed-
DYN[15]以及FedBE[34]等。这些基准方法各自具有

独特的特点和优势,为评估LAW-AFL提供了有力

的参照。
在此基础上,进一步设立了FedLAW 和 AFL

两个基线模型,以便与LAW-AFL进行更为深入的

对比。FedLAW作为主干模型,其性能表现将为本

文提供重要的参考基准。而AFL则是一种新兴的

联邦学习框架,通过引入自动学习的机制来提高模

型的性能。将这两个基线模型纳入对比范围,有助

于更全面地评估 LAW-AFL在结合 FedLAW 和

AFL优势方面的表现,以及其在处理联邦学习场景

中的复杂性和挑战时的能力。
(3)模型架构及设置

在深度学习领域,采用了六种具有代表性的模

型 架 构———CNN、DNN、ResNet20、ResNet50、

DenseNet121以及多层感知机(MLP),选择不同架

构的原因在于它们在结构设计、特征提取和学习能

力上存在显著差异,这有助于全面评估和验证所提

出方法的适用性与鲁棒性。在实验设置中,设计了

多种模型架构与参数设置。对于 MLP,输入为图像

展平后的向量(如 MNIST为784维),包含两个全

连接隐藏层,神经元数分别为512和256,采用Re-
LU激活函数,输出层为Softmax分类层。基础卷

积网络(CNN)的结构包括:第一卷积层使用32个

5×5卷积核;第二卷积层使用64个5×5卷积核;
随后是全连接层(1024神经元)和Softmax输出层。

ResNet架构中,ResNet-20由3个阶段组成,每个

阶段包含3个残差块(共20层),初始卷积层为3×
3卷积(64通道);ResNet-50采用Bottleneck残差

块构成4个阶段(共50层),初始卷积层为7×7卷

积(64通道),DenseNet-121由4个密集块组成,每
个过渡层包含卷积和池化操作。

在不同的模型架构下,分别进行了分析和对比

实验,通过对比不同模型在相同任务下的准确率、训
练时间等关键性能指标,可以直观地评估各模型的

性能优劣。
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4.2 实验结果

  为了验证LAW-AFL的性能,设计实验将其与

基线模型进行了对比。

4.2.1 不同γ 对模型性能影响

在数据集上,通过调整收缩因子γ 来最小化全

局模型的损失函数,因此在各模型上通过调整γ 观

察其准确率,找到最优的收缩因子γ。
在 MNIST和CIFAR-10两个不同数据集上,

不同的γ 值对模型的表现产生了不同的影响。通

过图1可知,γ 值较小(γ =0.95)时,模型泛化能

力显著提升,这一发现与以往的理论有所不同。在

γ=0.95时,模型的准确率达到了最佳水平。由此

可见,在给定的实验设置下,存在一个最优的γ 值,
它能够平衡正则化和优化的需求,偏离该值可能导

致性能下降。

为了进一步评估不同γ设置下对模型的影响,我
们采用四种不同结构的模型进行了对比实验。如表

3~表6所示,γ=0.95是在标准数据集和模型架构

下的经验最优值。Non-IID程度越高,需更小的γ 以

增强正则化,复杂的模型对γ 更敏感,需动态调整;分
类任务中γ通常稳定在0.93~0.97,此外基于梯度下

降优化方法其最优γ 区间分布在0.94~0.95之间。
在准确率损失不超过0.5%的条件下,手动调参可节

省22.4%的训练时间,更适合资源受限场景。因此,
后续对比实验均在这一最优设置下进行。为了验证

方法在资源受限环境下的可行性,本文在两种Non-
IID划分的客户端场景中,以相同的训练预算对各模

型性能进行了对比测试。这两种设置会对联邦学习

的模型训练过程产生不同的影响,在这种情况下,证
明模型处理客户端之间异质性的性能。

图1 不同γ 值下的模型架构准确率对比

表3 在 MNIST数据集下,不同γ 设置下对各模型效用性的影响

模型 γ=0.90 γ=0.93 γ=0.95 γ=0.97 γ=0.99 γ=1.00
CNN 92.34 93.87 94.95 92.12 89.54 88.94

ResNet-20 91.72 92.67 93.76 91.64 91.36 89.86
DenseNet121 93.56 92.71 93.83 92.13 91.25 88.93
MLP 92.64 92.65 93.81 91.51 90.99 89.34

表4 在FashionMNIST数据集下,不同γ 设置下对各模型效用性的影响

模型 γ=0.90 γ=0.93 γ=0.95 γ=0.97 γ=0.99 γ=1.00
CNN 92.46 93.57 93.53 93.15 93.06 92.97

ResNet-20 91.57 92.19 92.39 92.46 92.16 92.04
DenseNet121 92.56 92.84 93.49 93.12 92.98 93.05
MLP 91.67 91.49 92.67 92.13 92.08 92.57

表5 在CIFAR-10数据集下,不同γ 设置下对各模型效用性的影响

模型 γ=0.90 γ=0.93 γ=0.95 γ=0.97 γ=0.99 γ=1.00
CNN 91.58 91.36 92.28 91.58 89.57 88.64

ResNet-20 90.69 91.04 92.14 90.67 89.94 88.76
DenseNet121 90.57 91.46 92.29 90.24 89.59 88.51
MLP 91.56 91.04 92.25 90.06 89.35 88.32
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表6 在CIFAR-100数据集下,不同γ 设置下对各模型效用性的影响

模型 γ=0.90 γ=0.93 γ=0.95 γ=0.97 γ=0.99 γ=1.00
CNN 93.16 92.43 93.58 93.12 89.54 89.46

ResNet-20 92.49 93.19 93.61 92.97 91.01 89.16
DenseNet121 92.87 93.49 93.21 93.04 90.76 90.27
MLP 92.19 88.57 92.69 93.24 91.57 90.34

4.2.2 可学习聚合权重的有效性分析

为了评估可学习聚合权重与固定权重对模型准

确率的影响,我们在数据集为CIFAR-10,模型架构

为ResNet-20,α=0.1的设置下将LAW-AFL与三

种模型进行了对比实验。实验结果如表7所示,

LAW-AFL(可 学 习 聚 合 权 重)的 准 确 率 达 到

87.4%,相比于固定权重LAW-AFL高9.1%,与其

他基线方法相比,LAW-AFL动态优化能更好适应

客户端数据分布的差异性。

表7 可学习权重与固定权重下模型准确率对比

方法
准确率
(%)

收敛轮次
客户端权重方差

(×10-2)

LAW-AFL
(可学习权重) 87.4 120 3.2

LAW-AFL
(固定权重)

78.3
(-9.1)

190 0.0

FedLAW
(静态优化权重)

82.1
(-5.3)

160 1.8

FedAVG 76.5 200 -
FedPROX 77.4 195 -

在全局通信轮次方面,LAW-AFL仅需120轮

便实现模型收敛,而LAW-AFL(固定权重)和Fed-
LAW静态优化权重分别需要190轮和160轮,其
他基线方法普遍需要超过165轮才能收敛。这表明

动态聚合权重能够有效减少低质量客户端的干扰,
加快整 体 收 敛 过 程。从 客 户 端 权 重 方 差 来 看,

LAW-AFL的方差为3.2,更高的方差表明LAW-
AFL对不同数据质量及模型性能作出差异化处理。

LAW-AFL通过动态学习聚合权重,有效压制

了恶意客户端的影响,实验结果如表8所示,LAW-
AFL(可学习权重)其平均权重仅为1.3,而固定权

重的LAW-AFL恶意客户端平均权重为4.3。Fed-
LAW 通过静态优化聚合权重,表现比固定权重下

的LAW-AFL好,其恶意客户端平均权重为2.6。
而FedAVG的固定权重策略下恶意客户端平均权

重高达8.6。FedPROX虽通过正则项部分抑制了

异常客户端,但其权重仍较高。LAW-AFL在Non-
IID环境下保持了90.1%的高准确率,通过动态优

化客户端权重,LAW-AFL不仅能够针对性地削弱

恶意客户端的影响,还能更好地适应客户端数据的

差异性。

表8 MNIST,α =0.1设置下权重有效性

方法
准确率
(%)

恶意客户端平均权重

(×10-2)

LAW-AFL(可学习权重) 90.1 1.3
LAW-AFL(固定权重) 84.6 4.3(-3.0)

FedLAW 86.7 2.6
FedAVG 72.5 8.6
FedPROX 78.4 5.2

在MNIST、α=0.1设置下,我们验证了可学习

聚合权重对Hessian特征值的影响。实验结果由表

9可知,LAW-AFL通过动态学习聚合权重,使模型

的Top-1
 

Hessian特征值显著降低至1.2,相比固定

权重策略和其他基线方法均有大幅改善。较低的

Hessian特征值表明模型收敛曲面更平缓,优化过

程更为稳定,有助于避免梯度震荡和局部发散。

LAW-AFL(可学习聚合权重)的值仅为0.8,相
较于LAW-AFL固定权重(2.5)和其他基线方法

(2.0~2.6)大幅降低。

表9 可学习聚合权重对Hessian特征值的影响

方法
Top-1

 

Hessian
特征值(×10-3)

梯度方差

(×10-3)

LAW-AFL(可学习权重) 1.2 0.8
LAW-AFL(固定权重) 3.7 2.5

FedLAW 2.1 1.4
FedAVG 3.8 2.6
FedPROX 3.6 2.4

因LAW-AFL及FedAVG 等方法采用固定权

重,导致Hessian特征值和梯度方差偏高,影响了模

型优化的平滑性和整体性能。FedLAW 虽然通过公

共数据集进行权重优化,但未引入自适应[35]调整机

制,其性能略低于LAW-AFL。这表明动态聚合权重

能够有效抑制不同客户端之间更新方向的冲突。

4.2.3 各模型在不同数据集和不同Dieichlet参数

α配置下的表现

在FL过程中,E 表示每个客户端在与服务器

通信前,在本地数据上训练的迭代次数,随后将模型

更新发送至服务器进行聚合,生成新的全局模型。
当E 较大时,客户端在本地训练轮次增加,可
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能加剧因数据差异带来的模型偏移。α 控制数据异

质性,E 影响训练深度与同步性,两者共同决定了联

邦学习的训练动态。
首先研究在Non-IID(α=0.1)数据分布下,不

同数据集在DNN模型架构上的学习曲线的表现,
由于Non-IID数据分布的挑战和客户端之间的数据

分布不均匀,从图2中可以看出,在 MNIST数据集

下,LAW-AFL模型在最终的准确率达到了90%左

右,FedLAW模型的准确率略高于其他基线模型,
准确率达到了86%左右,阴影区域的宽度反映了模

型在不同运行中的波动情况,LAW-AFL的误差带

较窄,多次实验结果波动较小。在Fashion-MNIST
数据集下,LAW-AFL呈缓慢且稳定的上升趋势,准
确率最后维持在90%左右,其次是FedLAW 模型

准确率在86%左右,其他基线模型的准确率集中分

布在83%左右。此外在较为复杂的CIFAR-10和

CIFAR-100数据集上,LAW-AFL保持较好的性

能,其准确率均保持在89%左右,与其他基线模型

相比,LAW-AFL通过动态调整聚合权重,有效缓解

了Non-IID环境下客户端数据分布不均的影响。

图2 在DNN,Non-IID(α=0.1)分布下的学习曲线

  在四个数据集上选取 DNN和 Non-IID(α=
0.05)作为评估指标,对各模型在不同异质性环境下

的适应能力进行分析与验证,实验结果如图3所示,
基线 模 型 在 数 据 集 上 的 结 果 略 弱 于 Non-IID
(α=0.1)上的结果,但阴影区域相比较图2更窄了,
模型在经历过多次实验后,表现更加稳定。图3设置

纵轴为准确率,横轴为客户端本地训练迭代次数(单
周期内)。在Non-IID(α=0.05)上的准确率变化很

小,并且LAW-AFL模型并未出现很大的波动。

LAW-AFL通过代理数据集驱动的权重分配,
在高异质性场景下抑制低质量客户端的负面影响。

即使在数据分布极度不均的情况下,模型仍展现出

稳定的性能和良好的鲁棒性。以FedDYN为例,在

CIFAR-10,Non-IID(α=0.1)下,其准确率在83%
左右,而在Non-IID(α=0.05)下,FedDYN的准确

率下降至81%左右,较小的α 值会导致现有的FL
对应方法的性能下降,而LAW-AFL则表现出了较

为稳定的性能。
在ResNet20结构和Non-IID(α=0.1)数据分

布条件下,我们对LAW-AFL等七种模型在四个不同

数据集上的分类性能进行了评估,分析了其随训练轮

次增加的准确率变化趋势,实验结果如图4所示。
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图3 在DNN,Non-IID(α=0.05)分布下的学习曲线

图4 在ResNet20,Non-IID(α=0.1)分布下的学习曲线

  在 MNIST数据集上,LAW-AFL的表现始终优

于其他模型,随着训练轮次从500增加到1000,模型

准确率稳步上升,最终超过95%。FedLAW 表现次

之,但略低于LAW-AFL,而其余模型的曲线较为接

近,准确率在80%到90%之间,波动较小。在较复杂

的FashionMNIST数据集上,LAW-AFL通过动态权

89 计  算  机  学  报 2026年



重优化和收缩因子的稳定性控制取得了较优的性能,
准确率最终接近95%。FedLAW 紧随其后,表现出

较高的稳定性,而其他模型的准确率差距较小。在

CIFAR-10数据集上,LAW-AFL的学习曲线仍然最

为陡峭,准确率在1000轮次时突破90%,显著高于其

他模型。FedLAW 的准确率接近87%,而其余模型

(如FedAVG、FedPROX等)的表现相对较差,准确率

在85%左右,波动幅度略有增加。
在CIFAR-100数据集上,LAW-AFL最终准确率

超过90%,表现出较强的泛化能力。其余模型的准确

率均低于90%,且在训练后期出现一定程度的波动。
在ResNet20架构和Dirichlet分布参数为 (α=

0.1)分布下,在α=0.1场景下,数据分布的异质性

相对较低,为验证模型训练的稳定性和收敛速度,我
们对各模型的表现进行了对比分析,实验结果如图

5所示,LAW-AFL的收敛速度和最终准确率略高

于α=0.05场景。在α=0.05高异质性分布下,尽
管数据分布差异显著,在迭代过程中出现一定的波

动,但由于LAW-AFL通过收缩因子γ 的自适应正

则化作用使得在极端 Non-IID下的LAW-AFL波

动范围相对比较平稳并且仍能快速收敛,在最终准

确率上保持领先。此外,与FedAVG和FedRPOX
其他模型相比,LAW-AFL的学习曲线在早期阶段

呈现更快的上升趋势,这表明LAW-AFL的自适应

聚合策略在异构数据环境中显著提升了全局模型的

训练效果,同时保持了模型性能的稳定性和泛化性。

图5 在ResNet20,Non-IID(α=0.05)分布下的学习曲线

  在DenseNet121模型和Non-IID(α=0.1)数

据分布下对多种模型进行了性能评估,实验结果如

图6所示,各模型在 MNIST数据集上准确率整体

较高,如 图6(a)各 方 法 均 能 达 到95%左 右,但

LAW-AFL相较其他方法在后期(900~1000次迭

代)仍 有 明 显 优 势。由 图 6(b)可 得 出,Fash-
ionMNIST数据集上的准确率显著低于 MNIST数

据集,方法间 差 异 更 加 显 著,LAW-AFL 和 Fed-
LAW 明显优于其他方法,表明在较复杂的视觉任

务上,先进方法对性能的提升更加重要。图6(c)曲
线起 点 较 低 大 约 在 65%,表 明 任 务 难 度 提 升。

LAW-AFL的准确率提升速度最快。图6(d)为任

务最具挑战性的CIFAR-100数据集,所有方法的初

始准确率较低大约在65%,但随着训练进行,LAW-
AFL的曲线更平滑。为了量化模型在相同设置下

的稳定性,在数据集上重复10次独立实验,在CI-
FAR-100上,阴影带整体比 MNIST更宽,面对更难

的任务时,模型会随之产生较大的波动。
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图6 在DenseNet121,Non-IID(α=0.1)分布下的学习曲线

  在采用DenseNet121架构并将Dirichlet分布

参数设置为0.05的条件下,我们在四个数据集上对

各模型的准确率进行了评估,实验结果如图7所示。

  

LAW-AFL在 MNIST,α=0.1的非独立同分布数

据上准确率达到92.75%,在FashionMNIST上准

确率达到了93.54%。

图7 在DenseNet121,Non-IID(α=0.05)分布下的学习曲线
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  在CIFAR-10与CIFAR-100数据集上也达到

了87%左右的准确率,对比α=0.1与α=0.05两组

实验,LAW-AFL模型最终准确率并未出现较大的

差异,LAW-AFL的闭式解聚合基于分块矩阵伪逆

在极端数据分布下仍能保持权重分配的数学最优

性,而传统迭代方法易受局部梯度噪声影响。因此

LAW-AFL在各数据集中的性能保持领先,表明使

用神经网络进行自动加权聚合的解析性联邦学习模

型效果更佳。
在Non-IID(α=0.1)数据分布下选取了 MLP

和ResNet50两种模型架构,以评估各联邦学习方

法在低异质性环境下的分类性能表现。实验结果如

图8所示,横轴为训练迭代次数,纵轴为模型的准确

率。图8(a)展示了多层感知机 MLP在 MNIST数

据集上的性能表现。α越小,客户端本地数据分布越

极端且高度一致,不同实验得到的本地分布结构差

异反而越小,阴影区域相较于α=0.1更窄,但准确

率降低。
在 MNIST数据集上,各模型准确率随训练迭

代次数的增加均表现出稳步提升。LAW-AFL显著

优于其他方法,准确率最终接近93%。FedLAW 紧

随其后,但略低于LAW-AFL,表明其自适应聚合策

略在数据分布异质性下仍有一定局限性。图8(b)
各模型的准确率提升速度较慢,LAW-AFL依然保

持最优性能,且随着迭代次数增加,准确率持续提

升。其他模型的表现相对接近,但与LAW-AFL之

间存在差距。说明LAW-AFL在更复杂的数据分

布下仍能适应异质性并提高全局模型的泛化性能。
在CIFAR-10数据集上,图8(c)可以看出各模型的

准确 率 提 升 更 加 平 缓,曲 线 表 现 出 一 定 波 动。

LAW-AFL显著优于其他方法,并在后期保持稳定

增长。FedLAW 和 其 他 方 法(如 FedPROX、Fe-
dAVG)的准确率较低,表明它们在具有更高维特征

的数据集(如CIFAR-10)上对异质性数据的适应能

力不足。图8(d)展示在CIFAR-10数据集上,各模

型的准确率提升更加平缓,曲线表现出一定波动。

LAW-AFL在性能上依然占据领先位置,并展现出

一定的稳定性。

图8 在Non-IID(α=0.1)分布下的学习曲线

  在Non-IID不同设置下,为了进一步验证LAW-
AFL在不同数据集和不同模型架构下的性能表现,
与FedDF、FedBE和FedAVG 等方法进行了对比实

验。实验结果如图9所示,LAW-AFL能更好地利用

自适应聚合策略,能够在异构数据环境中显著提升了

全局模型的训练效果。LAW-AFL模型性能超过了

基线模型。采用了不同的模型架构,在 MLP上训练

MNIST和FashionMNIST数据集,LAW-AFL模型的
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准确率达到91.77%左右,在ResNet50模型架构下测

试了LAW-AFL,从图中可以看出,模型仍然保持良

好的性能,准确率维持在85%-88%左右,相比较于

基线模型,在α=0.05环境下,准确率的波动并未很

明显,LAW-AFL的阴影带更窄,通过多次独立实验

仍然保持较稳定的性能。表10、表11为LAW-AFL
与其他六种方法在不同模型架构上α=0.1和α=
0.05时的准确率比较结果。

图9 在Non-IID(α=0.05)分布下的学习曲线

表10 α =0.1时具有不同模型架构的四个数据集上比较传统FL方法和LAW-AFL的TOP-1测试准确率

数据集 MNIST FashionMNIST CIFAR-10 CIFAR-100
模型 MLP LeNet MLP LeNet CNN ResNet CNN ResNet

FedLAW 88.61 88.26 89.29 88.08 80.17 89.46 80.74 88.49
FedAVG 88.11 88.08 87.68 88.61 70.59 88.57 79.52 86.16
FedPROX 89.33 87.01 88.64 87.68 67.66 87.51 78.49 85.34
FedDYN 89.24 89.68 88.47 72.45 66.1 86.65 77.68 85.29
FedBE 89.14 85.96 86.16 85.94 69.60 86.36 78.42 86.28
FedDF 89.09 85.90 86.22 85.10 69.88 86.94 77.73 85.30
LAW-AFL 90.66 90.51 90.65 88.86 82.46 90.27 82.83 89.61

表11 α =0.05时具有不同模型架构的四个数据集上比较传统FL方法和LAW-AFL的TOP-1测试准确率

数据集 MNIST FashionMNIST CIFAR-10 CIFAR-100
模型 MLP LeNet MLP LeNet CNN ResNet CNN ResNet

FedLAW 85.24 86.11 86.51 85.17 80.46 85.62 82.39 84.63
FedAVG 81.46 85.33 80.24 85.48 74.97 83.69 80.45 83.22
FedPROX 80.21 77.68 83.56 87.01 79.21 85.94 82.67 83.76
FedDYN 81.43 78.48 83.49 88.17 77.34 83.06 79.16 85.29
FedBE 79.64 79.12 79.27 77.25 77.61 84.96 80.43 83.47
FedDF 87.31 85.71 87.27 79.84 74.73 85.04 77.24 84.34
LAW-AFL 89.97 89.66 90.24 88.18 80.27 89.23 83.49 85.19

4.2.4 不同客户端参与下的各模型准确率

不同联邦学习模型(LAW-AFL、AFL和 Fe-
dAVG)在不同数据集、数据异质性α 和训练迭代次

数下的Top-1准确率表现。实验结果如图10所示,
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横轴表示训练迭代次数(100、500、1000),纵轴为

Top-1准确率(%)。由图10(a)可知,随着训练迭代

次数从100增加到1000,所有模型的Top-1准确率

均有所提升。LAW-AFL的准确率始终高于其他模

型,并在训练迭代次数为1000时达到接近90%,表
现出良好的全局优化能力。AFL的表现次之,但与

LAW-AFL的差距较明显。FedAVG的表现最差,
准确率徘徊在85%左右,表明其在低异质性 (α=
0.1)场景下仍然存在局限性。AFL相较于传统

FedAVG方法具有一定改进,但在处理异质数据的

鲁棒性上仍不及LAW-AFL。图10(b)在CIFAR-
100这一复杂数据集上,所有模型的Top-1准确率

整体表现较低,且差距较明显。LAW-AFL的表现

依然最优,随着训练迭代次数增加,准确率显著提

升,1000次迭代时准确率约86%。AFL的准确率

在100次迭代时略低于LAW-AFL,后续提升幅度

较小。
图10(c)展示了模型在α=0.05数据分布更加

异质化的情况下,LAW-AFL依然占据性能优势,准
确率从100次迭代的85%提升至1000次迭代的约

88%。AFL的表现次优,但与LAW-AFL的差距进

一步扩大。FedAVG 的准确率显著下降,尤其在

100次迭代时仅达到78%,难以应对高异质性数据

分布。
由图10(d)可知,LAW-AFL的表现依旧最优,

准确率从100次迭代的约78%提升至1000次迭代

的86%,增长趋势明显。AFL的表现与LAW-AFL
差距显著,最终准确率仅达到78%。

图10 在不同数量客户端下的准确性

4.2.5 不同受损客户端对各模型的影响

在不同破坏比例的客户端(分别为25%、50%、

75%)下,验证 MNIST和CIFAR-100数据集的性

能表现,实验结果如图11所示,横轴表示客户端破

坏的百分比,纵轴为Top-1准确率(%)。柱状图中

对比了多种联邦学习方法的表现,包括FedLAW、

FedDF、FedAVG等。从图中可以看出:LAW-AFL

在所有破坏比例下均保持了最高的Top-1准确率,
无论是 MNIST还是CIFAR-100数据集,均表现出

极强的鲁棒性。FedLAW 紧随其后,性能稳定,但
在高破坏比例下准确率有所下降。其他方法的表现

整体低于LAW-AFL和FedLAW,且随破坏比例增

加,性能下降更为明显。FedAVG的表现最弱,特
别是在高破坏比例下准确率显著降低。
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总体而言,图11反映了LAW-AFL在不可靠

客户端环境中表现了出色的鲁棒性,证明其适用于

高噪声或数据破坏严重的场景。

图11 在不同比例的受损客户端下的性能表现

4.2.6 各模型在不同轮次下的Top-1
 

Hessian特

征值对比

在不同通信轮次下的Top-1
 

Hessian特征值的

变化趋势,分为 MNIST和CIFAR-100两个数据集

的实验结果,实验结果如图12所示,图中对比了七

种联邦学习方法,横轴表示通信轮次Communica-
tion

 

Rounds,范围为0到1000。纵轴表示 Hessian
矩阵的Top-1特征值,范围为0到400。蓝色曲线

为LAW-AFL保持最低且平稳,图12(a)中,LAW-
AFL的解析结构与自适应聚合策略有助于降低震

荡,使得特征值保持在100~200之间未产生剧烈波

动,而FedAVG、FedPROX等方法波动较大且上升

迅速,表明无法有效应对数据异质性带来的优化震

荡。图12(b)中,数据复杂性显著高于 MNIST,各
模型波动的幅度相较于图12(a)也更加剧烈,LAW-
AFL稳定控制特征值在150左右。图12(c)是在更

高的数据异质性,LAW-AFL相较其他算法仍保持

最低且平稳的曲线,说明算法在高异质性下具有稳

健性。图12(d)中LAW-AFL仍然保持较高的稳定

性在高异质性的环境下,相较于前三个实验结果,

LAW-AFL的特征值呈现上升趋势,但也稳定在

170左右,其他基线模型呈现明显震荡,最高接近

400。

Top-1
 

Hessian特征值增长幅度最小,且波动

极小。特征值增长缓慢表明LAW-AFL的优化过

程更加平滑,对模型参数的更新控制较好,避免了过

度震荡。
这种稳定性说明LAW-AFL更擅长在联邦学

习环境中保持模型收敛的稳健性,尤其在复杂的且

数据非独立性强的数据集上依然表现出色。
4.2.7 不同模型的时间复杂度与性能分析

在这组实验中,分别对比了LAW-AFL模型与

其他六种基线模型在 MNIST和CIFAR-100两种

数据集下以及不同数据分布参数下的训练时间和模

型准确率,结果如图13所示。在不同数据集下

LAW-AFL模型训练1000次所需的时间最短,且能

达到最高的准确率,因为LAW-AFL闭式训练范

式,客户端 仅 需 单 周 期 完 成 本 地 模 型 更 新。而

FedAVG等基线方法要求客户端执行多周期迭

代,其本地训练时间随 E 线性 增 长。这 证 明 了

LAW-AFL模型在通信效率和计算效率上有着显

著优势。
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图12 在不同通信轮次下的Top-1
 

Hessian特征值的变化趋势

图13 1000次训练迭代下各模型的准确率和时间的对比
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  FedLAW 模型训练时间仅次于LAW-AFL模

型,在数据分布参数更小的环境下,该模型受到的影

响较大,特别是FedDF模型随着Non-IID程度增加

而显著下降,这更加表明了LAW-AFL模型适合在

通信资源有限、数据分布高异质性的实际应用部署。

4.2.8 通信成本分析

在联邦学习中,通信成本是衡量系统效率的重

要指标。为了验证可学习聚合权重在降低通信负担

的同时提升模型性能的优势,LAW-AFL通过代理

数据集动态学习聚合权重,并结合自适应收缩因子

降低通信负担。设计了一系列通信成本对比实验。
实验以CIFAR-10数据集 (α=0.1)为基准,探讨各

方法在单轮通信量、全局通信轮次以及总体通信量

上的表现,如表12所示。

表12 CIFAR-10(α =0.1)设置下通信成本和准确率对比

方法
单轮通信量
(MB)

总通信
轮次

总通信量
(MB)

准确率
(%)

FedAVG 18.2 150 2730 78.3
FedPROX 17.8 160 2848 81.5
AFL 12.6 200 2520 76.2

FedLAW 13.5 160 2461 78.4
LAW-AFL 12.4 120 1488 85.7

LAW-AFL的单轮通信量为12.4MB,相较于

FedAVG的18.2MB减少了约31.9%。这一结果

表明,通过动态调整聚合权重,LAW-AFL在每次通

信时传输的数据量显著减少,有效降低了通信压力。

LAW-AFL仅需120轮全局通信,整体通信量仅为

2288MB,相比FedAVG的2730MB仅为其54.5%,节
省了约35.5%的通信开销。这意味着在实现更高

准确率的同时,LAW-AFL大幅降低了整个训练过

程中的通信资源消耗。通过动态学习和调整权重,

LAW-AFL不仅有效降低了每轮及总通信量,而且

显著提高了模型准确率,相较于传统的FedAVG、

FedPROX及其他基线方法,LAW-AFL在通信成

本和整体训练效率上均具有明显优势。

5 总 结

本文针对传统联邦学习框架中因权重归一化和

数据异质性导致的过拟合、模型收敛缓慢以及通信

成本高昂等挑战,提出了一种创新性算法—LAW-
AFL。该算法通过可学习的聚合权重机制和解析

性联邦学习范式,有效提升了全局模型的泛化能力,
同时优化了训练与通信效率。

LAW-AFL的核心创新包括以下两个方面:一
是基于可学习的聚合权重策略,利用客户端一致性

机制增强模型在非独立同分布数据环境下的适应

性;二是通过闭形式的单周期训练技术消除了超参

数调优的复杂性,从而简化了训练流程,显著提高了

训练效率和模型的鲁棒性。LAW-AFL不仅在理论

上提供了一种有效的联邦学习优化方案,在实践中

也展现了其在精确性、鲁棒性和效率方面的潜力,为
实际应用场景中的联邦学习任务提供了有力支持。

在未来的研究中,可进一步扩展LAW-AFL在

更多复杂数据场景和任务中的应用,以全面验证其

通用性和稳定性。
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Background
  This

 

study
 

addresses
 

challenges
 

within
 

federated
 

learn-
ing

 

(FL),
 

particularly
 

in
 

scenarios
 

involving
 

non-independent
 

and
 

identically
 

distributed
 

(Non-IID)
 

data
 

and
 

large-scale
 

cli-
ent

 

participation.
 

FL
 

performance
 

and
 

communication
 

effi-
ciency

 

often
 

degrade
 

significantly
 

under
 

these
 

conditions.
 

Current
 

FL
 

methods
 

generally
 

adopt
 

fixed
 

weight
 

normaliza-
tion

 

aggregation
 

strategies,
 

which
 

fail
 

to
 

adequately
 

account
 

for
 

data
 

heterogeneity
 

among
 

clients.
 

This
 

limitation
 

leads
 

to
 

a
 

decline
 

in
 

the
 

global
 

model’s
 

generalization
 

performance
 

and
 

slower
 

convergence,
 

limiting
 

FL’s
 

applicability
 

in
 

com-

plex
 

real-world
 

scenarios.
As

 

client
 

participation
 

and
 

data
 

volume
 

grow,
 

the
 

com-
munication

 

overhead
 

in
 

FL
 

increases,
 

exacerbating
 

training
 

time
 

and
 

resource
 

demands.
 

Additionally,
 

existing
 

methods
 

rely
 

heavily
 

on
 

extensive
 

hyperparameter
 

tuning,
 

which
 

is
 

time-consuming
 

and
 

requires
 

significant
 

manual
 

intervention,
 

making
 

practical
 

deployment
 

more
 

difficult.
 

Given
 

the
 

di-
verse

 

nature
 

of
 

data
 

and
 

tasks,
 

achieving
 

efficient
 

conver-

gence
 

while
 

improving
 

global
 

model
 

performance
 

remains
 

an
 

urgent
 

challenge.
 

The
 

typically
 

Non-IID
 

nature
 

of
 

client
 

data
 

further
 

complicates
 

existing
 

aggregation
 

strategies,
 

impairing
 

model
 

generalization
 

and
 

stability.
To

 

address
 

these
 

issues,
 

this
 

paper
 

proposes
 

an
 

adaptive
 

federated
 

learning
 

method
 

based
 

on
 

learnable
 

aggregation
 

weights.
 

By
 

incorporating
 

a
 

learnable
 

aggregation
 

weight
 

strategy,
 

the
 

proposed
 

method
 

enhances
 

the
 

model’s
 

adapta-

bility
 

to
 

complex
 

tasks
 

while
 

preserving
 

data
 

privacy,
 

promo-
ting

 

the
 

integration
 

of
 

privacy-preserving
 

techniques
 

with
 

da-
ta-driven

 

technologies.
 

The
 

method’s
 

improvement
 

of
 

aggre-

gation
 

strategies
 

and
 

optimization
 

of
 

the
 

training
 

paradigm
 

offer
 

a
 

novel
 

approach
 

to
 

tackling
 

challenges
 

related
 

to
 

data
 

heterogeneity
 

and
 

large-scale
 

client
 

participation.
 

This
 

ap-

proach
 

significantly
 

enhances
 

the
 

accuracy
 

and
 

robustness
 

of
 

the
 

global
 

model.
By

 

simplifying
 

the
 

hyperparameter
 

tuning
 

process
 

and
 

reducing
 

communication
 

overhead,
 

the
 

method
 

supports
 

the
 

efficient
 

deployment
 

of
 

FL
 

and
 

facilitates
 

practical
 

applica-
tions

 

in
 

fields
 

like
 

healthcare
 

and
 

finance.
The

 

significance
 

of
 

this
 

project
 

lies
 

in
 

providing
 

theoreti-
cal

 

and
 

technical
 

support
 

for
 

FL’s
 

application
 

in
 

privacy-sen-
sitive

 

domains,
 

such
 

as
 

healthcare
 

and
 

finance,
 

while
 

laying
 

the
 

foundation
 

for
 

efficient
 

distributed
 

learning
 

in
 

large-scale
 

Non-IID
 

data
 

scenarios.
 

The
 

research
 

outcomes
 

not
 

only
 

im-

prove
 

FL
 

algorithm
 

performance
 

but
 

also
 

reduce
 

communica-
tion

 

costs
 

in
 

real-world
 

applications,
 

offering
 

solutions
 

for
 

privacy-preserving
 

computation
 

and
 

collaborative
 

optimiza-
tion

 

in
 

an
 

intelligent
 

society.
The

 

research
 

group
 

has
 

previously
 

made
 

significant
 

strides
 

in
 

FL,
 

including
 

optimizing
 

aggregation
 

strategies,
 

designing
 

personalized
 

FL
 

frameworks,
 

and
 

exploring
 

multi-
model

 

collaborative
 

optimization,
 

which
 

provide
 

a
 

solid
 

foun-
dation

 

for
 

this
 

study.
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