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Abstract  Federated learning protects data privacy by exchanging model parameters rather than
raw data between clients and a central server. However, as the number of clients and the volume
of data grow, it still faces increasing communication overhead and task complexity. Existing
methods typically normalize aggregation weights based on each client’s local data size to reduce
communication cost, but they often overlook data heterogeneity, which can lead to overfitting,
slower convergence, and greater overall communication burden. To address these issues, we pro-
pose Learnable Aggregation Weights and Analytic Federated Learning ( LAW-AFL). First,
LAW-AFL introduces a learnable shrinkage factor and relative weights to refine the aggregation

process, and employs a closed-form training paradigm to guide neural network optimization,
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thereby enhancing model stability and generalization under heterogeneous data. Second. by deri-

ving an absolute aggregation rule, it further improves aggregation efficiency and accuracy, ena-

bles single-pass local training, and simplifies the overall training pipeline through closed-form up-

dates. Extensive experiments on multiple datasets and model architectures show that LAW-AFL

significantly improves global model accuracy and generalization. On large-scale, non-1ID data, it

achieves a 10% increase in accuracy compared to existing methods and exceeds 90 % accuracy un-

der specific experimental settings, while reducing per-round training time by 69. 82 seconds rela-

tive to FedAVG. These results demonstrate that LAW-AFL offers clear advantages in accuracy,

robustness, and communication efficiency.
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FedBE 79. 64 79.12 79. 27 77.25 77.61 84. 96 80. 43 83. 47
FedDF 87.31 85.71 87. 27 79. 84 74.73 85. 04 77.24 84. 34
LAW-AFL 89.97 89. 66 90. 24 88. 18 80. 27 89.23 83.49 85.19
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Background

This study addresses challenges within federated learn-
ing (FL), particularly in scenarios involving non-independent
and identically distributed (Non-1ID) data and large-scale cli-
ent participation. FL performance and communication effi-
ciency often degrade significantly under these conditions.
Current FLL methods generally adopt fixed weight normaliza-
tion aggregation strategies, which fail to adequately account
for data heterogeneity among clients. This limitation leads to
a decline in the global model’ s generalization performance
and slower convergence, limiting FL’s applicability in com-
plex real-world scenarios.

As client participation and data volume grow, the com-
munication overhead in FL increases, exacerbating training
time and resource demands. Additionally, existing methods
rely heavily on extensive hyperparameter tuning, which is
time-consuming and requires significant manual intervention,
making practical deployment more difficult. Given the di-
verse nature of data and tasks, achieving efficient conver-
gence while improving global model performance remains an
urgent challenge. The typically Non-I1ID nature of client data
further complicates existing aggregation strategies, impairing
model generalization and stability.

To address these issues, this paper proposes an adaptive
federated learning method based on learnable aggregation
weights. By incorporating a learnable aggregation weight

strategy, the proposed method enhances the model’s adapta-
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bility to complex tasks while preserving data privacy, promo-
ting the integration of privacy-preserving techniques with da-
ta-driven technologies. The method’s improvement of aggre-
gation strategies and optimization of the training paradigm
offer a novel approach to tackling challenges related to data
heterogeneity and large-scale client participation. This ap-
proach significantly enhances the accuracy and robustness of
the global model.

By simplifying the hyperparameter tuning process and
reducing communication overhead, the method supports the
efficient deployment of FL and facilitates practical applica-
tions in fields like healthcare and finance.

The significance of this project lies in providing theoreti-
cal and technical support for FL”s application in privacy-sen-
sitive domains, such as healthcare and finance, while laying
the foundation for efficient distributed learning in large-scale
Non-1ID data scenarios. The research outcomes not only im-
prove FL algorithm performance but also reduce communica-
tion costs in real-world applications, offering solutions for
privacy-preserving computation and collaborative optimiza-
tion in an intelligent society.

The research group has previously made significant
strides in FL, including optimizing aggregation strategies,
designing personalized FL frameworks, and exploring multi-
model collaborative optimization, which provide a solid foun-

dation for this study.





