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Abstract  Speech Translation (ST), as a key technology for promoting global information ex-
change and eliminating language barriers, sees increasingly widespread application in diverse sce-
narios such as international conferences and online education. Its utility is further amplified in
real-time communication platforms, cross-cultural healthcare delivery, and global business nego-
tiations, where accurate and swift translation of spoken content is crucial. Large LLanguage Mod-
els (LLMs), with their powerful text understanding and generation capabilities, have created
new opportunities for breakthroughs in the ST field. These models, trained on vast and diverse
textual corpora, exhibit emergent abilities like contextual reasoning, which are highly beneficial
for complex language tasks. Within this context, Chain-of-Thought (CoT) techniques, by guid-

ing LLMs to first generate source language transcriptions before translation, have improved per-
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formance but also tend to cause models to over-rely on intermediate text and neglect original
speech input. This reliance creates a f{ragile pipeline where the model’ s performance becomes
heavily dependent on the quality of the initial transcription step. This can amplify transcription
defects and consequently affect the accuracy and robustness of the final translation. Errors such
as homophone confusion, out-of-vocabulary words, or speaker accent variations in the transcrip-
tion phase are often directly propagated to the translation output, leading to undesirable results.
To address this challenge, this paper proposes a Robust Chain-of-Thought (Robust CoT) method
for speech translation. The core philosophy of this method is to train the model to treat the CoT
as a helpful but fallible reasoning aid rather than an absolute ground truth. During the training
phase, this method, on one hand, randomly masks parts of the tokens in the CoT sequence with
a predefined probability, compelling the model to reduce its absolute dependence on transcribed
text and learn to infer more from the original speech signal and incomplete textual cues, thereby
enhancing its adaptability and error-correction capabilities for imperfect CoTs. This masking
strategy effectively simulates various transcription error scenarios during training, fostering a
more robust model. On the other hand, it introduces a regularization mechanism designed to con-
strain the model’s predictive distributions for target translations to be consistent under conditions
of both complete and incomplete CoTs. This aims to alleviate the over-reliance issue that can oc-
cur even when a complete CoT is available, thus comprehensively enhancing translation accuracy
and robustness. The joint effect of these two components ensures that the model leverages the
CoT when it is accurate but can seamlessly fall back to the acoustic signal when the CoT is unreli-
able. Systematic experimental evaluations on six major translation directions of the CoVoST 2
dataset show that the proposed method achieves a significant average BLEU score improvement of
up to 2. 78 points compared to a baseline system without CoT, and also yields a performance gain
of 0.92 BLEU points over the standard CoT approach. Furthermore, validation results on
Qwen?2. 5 series models of varying parameter scales fully demonstrate the effectiveness, generality, and
strong scalability potential of this method. Additional analyses reveal that the model exhibits a
marked improvement in handling utterances with high word error rates in the intermediate tran-
scription.
Keywords large language models; speech translation; machine translation; chain of thoughts; ro-
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per™™ \Wav2Vec 2. 0°* 455k A 75 24 B R ) 35 BT
FREAE L SR I 38 03 e 2 B Q-Former™ % 45 14
Ol i & R S ) = R AL B g A S ) IR S
I KIE S AR DL A Bl (Autoregressive) 1 J5 2U A
B E AR 5 SCA A S Ty R A B 0 v U R
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Thoughts) Ik . %75 ¥k 7041 F) H 4 4% BT 7 >k 19
o i T 1) [ 6 25 ) % i A A v ) RO
SCAS Y e B2 AR S, I S 3 1 o A R A TR X AN 5 26 B
AN E R YRR B e . BRI S RN B B,
A ST — A ) S 4E B b 1y 3K 43 1) 9T (token) i
A7 B AL A, SRR AU 7R 3 4 R 4E 4 (E S Bk
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v “It's anew plan.”

v

<src> It’s a new plane <tgt> 1% & — AN €L ®

(a) H T AL Gt JU AL B 1O 5
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v “It’s anew plan.”

v

<src> It’s a new plane <tgt> iX j&t A itk @
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Please translate the English
speech into chinese text.

1
[ EFEAAE ][<src> It's a new plan

fo o 0 ot i

“It's a new plan.”
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Ly,
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“It's a new plan.”
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FRIEFS R H = [hy s ohipn] AP EEA B A HE
fiE h; HY R A B4 1

b= [heio @b @ Dhp] .



48 L2 I S| N N 2026 4F
TEREE BC B B s A SCR P2 B 2 M 4% & E R SIS UK., 1E1% B 48k B T,

KT SRAE 5 YRR 2 75 W S 3 R0 5 A5 A 1 i A ik
AZS ] BRI
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AR Qwen2. 5 R K B AR R
T R AR U . Qwen2. 5 J& — Tl B T
b s ZEAE 0 F (8] A 3 5 B A, i ME S 1Y Transformer
fif bt s A i . HAZ O AR 4G R A 3 T L
(Causal Self-Attention) . {if 15 it 28 W 2% | Tié % 17 &
4515 (Rotary Positional Embedding, fij & RoPE) #
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AR AR DAL E EAUCE IR E &
HZ R token, NTTAF& H 0135 F B4 1 i .
Qwen2. 5 BRI RALFE 218 5 SO L FdkbfT T
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AE ) AR Al SCAR AL AR BPRAT 55 b R L 5+

H T ¥ Qwen2. 5 B T E BIRAE 5 A SCR
#R 91 (Prompt) P K #t A ( Embedding) £ /&
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BT LRk A SR 5 [ 175 75 U E token
AEMEMIET CARY =y sy, sy y) »HIZH
T oA die /AR BN BSR4 % iR B E T

L,=— ‘Z‘JlogP Gy, | Y. Z)

3.3 EBBYEEEE
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X B PR 5 SCA L e e AR o [
G55 SR 5 TR AR SR O R A A R S
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PR SCAIME BE . 55 )t W] B, 32 5 25473 Ok 455 i 3
Ui B I i B o 1 455 28 7 936 B B[] Bk ) T D 2

{src_lang} speech into {tgt _lang} text.",

A AL 7R 1] P AT i T E: P ="Please
first transcribe the {src _lang} speech into text,
and translate it into {tgt_lang}."
TEIZB BT, AR B b 7 8 R OR
HIE A

Y =srce>X <<tgt>Y,
Hop, <sre>M<<tgt> 733 B IRH XA X 5 H
PR s SCAR Y BYE IR AR AT LR HT A 1103 05
Y SR AR
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YCO“
Lo =— >, logP (y& | Y. Z)
i =1

S R A i Y A SO B A S 3 4 T R
b AE T TR A R R BT 2 R H B

F SCASI AL RE S T4 (] A B0 JRE 5 SCAS L ML
1M 20 T UG T R . 25 BB ) A IR SOA
ATREAT TR R DR X R 7 5 51 R LGB R 4
I A A I R B R TR R ) A S L
A BT ANHER ) H AR E B O e AR SCHRE
— Bl T R T L A A IR SR L S T R
AERUAE T F A7 7E 5 3 1) P (DR 38 5 SCAR I L 7 RE 2R
FR G F R i B

HARTTF AE N ZRBY Be A SCA— R B3 o X
SEAEGE RN Y SOR Y SEATRADLIE TS AR . %R A
B ERWT

Y= MY = [ e ]

Hr,

" 0, ifp<a

. v, otherwise
p NS A U, hRFEMREPL A &, B
Ab S T S s AR TR T AR S R T AR SR AR TR
HRAE S AT T RENLIERS . FLAR M, X R AR
N A ARG 2 .
S=M(S) .,

L AFRRN

Z = [Emb(P);S] .
I, AR TR R R TR AL J A R R R R B L
FEEL A B8 1) 7 KR AR VR IE T SCAR R HARTE & SC
AL YN HART

H T (1Y ¢

Jyeet|

Losers = — 2 logP (v [ Y, Z) .
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H TR R T i i B B A 8 SR 4R B AN B AT
PLIERS AL Loreor » BT BOUI 25 15 HE BE B BL
FEAE ST AT A — B 0] B, O 9% i 3% ) L, A SCAE D
ZBr BUK S Lowseor 5 Lo - BRI AESE RS
A58 B SR YR BE % A B8 AR LIE Bl 1 RS, [E] I,
FB; IEARERITE AL Lo I 3 BE AR ¢ e S8 4k 5, AR
X5l A KL ## (Kullback-Leibler Divergence) #
72950 A0 WD S5 15 B T30 20 A DR 45 — B0, A
LA=ETV)

Ly = —‘ZD‘KL(P 1Yz || Py \17\‘ 2)) .

R BRI AL HAR IR

L = Lo T Linaskeor T Lir o

FRINTITE A 2 Fros .

3.4 ®EIS

AR SCRY RSN R R T BB B m . 7E I R 72
TR O A S B R 4G DLAR B Whisper
AU P 253578 BE 7 5 30 S 0 o A rh iz 1k RE
LK., IHEERARNETSHS 51%.

XF TR F AR ) Sy B A RO A
AR B FEN #2 8th 5] A LoRA (Low-Rank
Adaptation) BEAT = RUBE AL G0 . HLA T . LoRA
M AT FFN /Y gate_proj.up_proj 5 down_proj =
AL TZE b U R A A A B 48 A AR R 2 5 I
FrRHE SRR AR S Bk 4l T 1. 25 B AR 1T 25
.

4 X I
4.1 HIE&E

ARICRH CoVoST 2 #4475 % . Co-
VoST 2 J& — AN R HLBE 218 75 15 3 B8R &
T 21 FhE T B ENE DR IE R E 15 FiiE
TR, A Chen % AWV 19250 1% & A ik
BT B (Fr) B (De) JPEHE T i (Es) LB KA
(IO 30 (Zh) B H 3 (Ja) BPE 2 9005 1) S A i
M. 1R T XS m 7RI 2R 48 T & 45 F
WA EREUE G, 2RI 2R B B L AR SO X X AN 18
W BHE A IR T 5 — M 218 T BRI %, &,
BERIPEREAE IR 7S AN 1) 45 A i 4E b k17 3F
i, TEFTA S8 JRIE A ST M 48kHz FORFE

& 16kHz 1E A A,

£ 1 CoVoST 2 ANMERMEBESIT AN/
% 1] (X—>En) PIE =S TF R4 RS

B (Fr) 180 22 23

815 (De) 119 21 22
PGB8t i (Es) 97 22 23
BRAIE 0 28 14 15

3z 10 8 8

HifJa) 1 1 1

AN AR SCHE 7R 5 R T8 o B R o A AR
MuST-C'"" ) 95 1 5 #8315 (En—>De) J7 4] 347 T
IR, KL AT AE MuST-C En—>De 91
et F AT Sk HoAL S 24 408 /NI I B AN .
IF7E tst: COMMON 4L B FE 7174l
4.2 HEBERE

AR K Whisper-large-v3 B9 4 15 2845 018 &
AL AN G S IEECAR AT A =5 R RS
Zepl v () 4 BE S 2048 11 2 22 FEN $E4TRFAiE A8 4
TR EREBLER 4 A SCR ] Qwen2. 5 FR 51 B
YEN REF BLAL, 42 & Qwen2. 5-0. 5B/1. 5B/3B/
7B-Instruct PO~ R R ~F BB AY
4.3 EEIZ

TEVN R B 18 A% a5 10 S 808 7 DL gR4s . T
HE SR FEN S 800 #1701 2. X5 T Kk
TR AR SO AT FEN AL i = A2tk 2 0
LoRA Z4, H P LoRA HFk (rank) %y 512, %% )
AN F % 1024, dropout 1%k 0. 05, ik
2 AdamWH Y Hrp g, =0. 9,8, =0. 999, V%
AOEAL BRI/ (batch size) i 32, B HIZE CoVoST 2
AN A IR B EIZR 1 5K Cepoch)
5 2] AT 300 IR0 B AN 0 ZePE AR (warm-
up) & 107", Bl )5 R I 4 5% 3B Kk (cosine annealing)
FEMEHEAT D, XF T U b 5] A Y Bl AL A B A
HERSHE RN « =0. 2, KL HUE M E 2B R A=
1.0, FrA A3 il 2R 25 7E E £ 4 3k NVIDIA H800
GPU MR 55 % £ 5¢ i
4.4 RETfL

FEVEAL B B, BT R H SR 38 & (beam search) i
TTFRAS R 58 (beam size) BEE N 5. BHIRTEREAY £
FPEAL 38 F1 o BLEU (Bilingual Evaluation Under-
study)"™ . AR T LB B 5 AT
22 WIFEAE n-gram JZ [\ W HE & &, I 45 5 X i
KB R IRSTALE, R IF o B BT . H iR BLEU
SMBUH SacreBLEU T HAG ™ 31



50 it =2

Bl

i 2026 4F

2
&

4.5 BEZERE%

Shy 4 T VPAK A ST B AR AL B 1 B L AR Sk R
TIE S RO 2 A B AR E R BRI Sy e R
Bi, IXELRRNMEE TR R R RN R O 52 LA
BEALZUT .

(1) SpeechLLaMA"™"'; SpeechLLaMA # %% %
F—A~ 3T CTC WY He 45 B e X 75 2 R ik i A7 0 20
b B, B 8 I A A A 4R BOR 2 R T R AE ., 1
B RAE S SCARHEIR W A 1) P S AR F R
AL, T AR i H AR TR 5 SUA

(2) Whisper*" ; Whisper % 51| #% % & #f OpenAl
T g it ) i v 5 R0 5 WA AL, X R AR AE
&Y 68 T/NEHN 2B T 25 ik BUs 4R ik
PPN S T 08 5 05 U 5 B R e . AR SCaE
BT % & %)) i) Whisper-large-v2 1 Whisper-large-
v3 BERIME N HE L R 5,

(3) Qwen2-Audio™ : Qwen2-Audio & H Fif B
B4 E 3 ST ) AT A 7 — A 3 5 A A R
B, ZRRIE T Qwen-7B i 5 A BT R, e
P22 5 G 5 A IE AR I F8 A AT 0 A BT
B2 N SCAR

(4)SeamlessM4 T, SeamlessM4T J&H Meta
ATHEH I — D KR 218 F Z RS0 — 1L B
PEASEAY , IZAR A RE A I T B — B AR 58 A 4 1 B
T B B OUAR SO RS DA SCAR B SUARTE N
() 22 Fh B P 5 e ;AT 55, OF S HF IR A RS S R S A
S, ASCEBEATFAY SeamlessM4 T-large-v2
BERIE Ry B2 R 55

(5)SD-ST'™ ; SD-ST & — Fh 3 T iF X it i &
(T8 PR AR AR 2 A R 5 ok AR R U A B
T REAE DR T i ) 1) 18 5 B SCAR B . AR SRk
Bt SD-ST #1 SD-ST-Large B HIfE R I R 55,

(6)LLaST"" . LLaST J&—/™ 45 & iF ¥ i 5 %%
5 RIE F A T B 4, X R B R
P T OASR BESR IR, 205 F B B 5R DL W

LoRA Lt ms . i id X 26 ¥t . LLaST 7E CoV-
oST 2 KLUk b J 3 1 P08 i1 14 B AR STk B
LLaST-8B BRI N Sk R4

BT RO A WEL RGN, R TR UEA SO
$i 7 5 A R O R AT 38 43 B9 L S e B, AR S
I PPAL T LR =S AN R A AR 7

(1) Ours-ST: 33X & A% 3C T #2855 1Y 2 il i
A, AR ) R AT 55 9 AT v 3 v 1
Y5, BIERENT — WD R PR R

(2) Ours-CoT: #£ Ours-ST 45 ) JE iy |, A<
I T E R R AE S R N 250y 1k a5 ] S
RUE A RTE & SCAR R H Wi 5 U, BIER S
TR 1y B 5 A A

(3) Ours-RobustCoT : 24y #f — 2 $i& T 45 78 if %)
BRI TE R R BV BE JT . 7E Ours-CoT WY AEHl [,
A SCRRAT 0 R AR BE 1 2R I R SR mE (n 3.3 YT
) . A E I Yk G B I Bl AL AE B DL e ) A
TGO 43 A7 G50 0E W 29 5, 5 7R % il 455 1 3o A
JEL A 5 T B0 B 1% AL 7 IR) AL, DT A A5 B ) S8 1Y
PEGE IR . AR AR T A SR AR M e T & .

XtF Ours-ST. Ours-CoT & Ours-RobustCoT
REAY A SCHE ] Qwen2. 5 R F S [R] 2 BB i A5 7Y
YRSy Bt o3 S vy e 7 AH R AR, AR S L AR S
H R 7B S BRI A G 4 44 8 Ours-
ST-7B.0urs-CoT-7B 5 Ours-RobustCoT-7B) 5 i
HIL RGBT HEREXT L. DLAh, 78 )5 S 1 2 A7 52
50 v, 3R X 3k R Y AE AN [) 2 B 4 Pk g
AT LR 5T

5 #£RE5a9Wm

5.1 EWHER

ARIAE CoVoST 2 754 #iETr 0 (X—~En) Fi#kfT
TSy BRSO S 2 B R G
TS BRI AR ML A i, LA R WE 2 iR,

F2 AEEBETLE CoVoST 2 AN EIFH [ (X—~En) A BLEU 43

BT Fr—En De—En Es—En Zh—>En Ja—En It—~En S {E
SpeechLLLaMA 25. 20 27.10 27.90 12. 30 19. 90 25.90 23.05
Whisper-large-v2 36. 40 36. 30 40. 10 18. 00 26.10 30. 90 31.30
Whisper-large-v3 35.53 34.18 39. 26 13.15 23.04 35.94 30. 18
SeamlessM4T-large-v2 42.10 39. 90 42.90 22.20 23. 80 40. 00 35.15
Qwen2-Audio 38. 50 35. 20 40. 00 24. 40 N/A 36. 30 N/A
LLLaST-8B 44,10 40. 80 45. 30 23.30 24. 40 42.10 36. 67
Ours-ST-7B 41.99 39. 65 44,07 21.99 23.52 41. 23 35.41
Ours-CoT-7B 42. 86 40. 33 44.43 27.36 26.94 41.70 37.27
Ours-RobustCoT-7B 44.21 41. 48 45. 46 27. 81 27. 11 43.08 38.19




1

G DRULAF - Bk T8 M S A B 1 QT 5 R AL 3 Bl T 1

AR SCHE Y Ours-RobustCoT BN AE 2 F N8 m)
PR T e e, KO ¥ BLEU 40408 38,19, 4
BT O A BE B P B LLaST-8B #1812 7} 17 1.52
BLEU % W12 UESE T AR SO 2 () 3 AR 34 1k

FLR O W AR SCHE HH AR 2R 81 . 1 0 L S AR A
Ours-ST-7BF E A REC BE 5 L R E W W
SeamlessM4 T-large-v2 £ BRI AR I 36, (H A5 F B WY
A& Ours-ST-7B AU B T 80E /NI 0 31 250 50 408 i 3k
BT IERCR XRBL T 3 T KB R R
BRGNS HHE. HIK A Ours-ST-7B 1y 5
it EElACHE B 4EsE I 45 7 )5, Ours-CoT-7B 1
Y BLEU 43 B4R T+ T 1,86 43, i WA J8 4 4% A X
R T R AT R A RSO TR I 2R B
AR [ = 1 093 7 1) () An b SC— 3 S, H i > 3
SO EERMAAIN RN, HiE—5  RAARSCR Y
‘R B Y5 ) 257 1, Ours-RobustCoT-7B 5 I /¢
Ours-CoT-7B fyFEfih i — 25528 T 0. 92 BLEU
YRR T A T U IR A Ours-ST-7B, Rif
$ETFEIL 2. 78 BLEU 43, XS5 Rl T4
SC T R R SR A B vk TR B T S B T
T 1) A

Rt — 20 B R AR B 1 A R AR SCHE MuST-C
PR EIERE S IR T T XS, anER 3 BT

#£3 MuST-C ZiE>-fEIEHFEH BLEU 5 #

B BLEU
SeamlessM4 T-large-v2 25.35
SD-ST 27.20
SD-ST-Large 27.90
Qwen2-Audio 30. 23
Ours-ST-7B 30.59
Ours-CoT-7B 31. 68
Ours-RobustCoT-7B 32.45

TR AR SCHE Y Bk 2R B A Ours-ST-7B I3 T
BLEU %3 %, . T SeamlessM4T-large-v2.,SD-ST,
Qwen2-Audio FFZANFLMB AL, 7E5] AR5
Ours-CoT-7B BRI RESR T+ & 31. 68, #— 51 A
AR SCARE Y ) R JEL A 4 I 25 R S Ours-Robust-
CoT-7B BRI — 2 LA T 0. 77 BLEU 43 51 2
Tb o E— 25 B0 UE T A SCHIr $8 i 5 e S A B O VR 1Y
FERi
52 AEASHMEHBHER

hy it — 2L BRGSO AR ST B O M
BE SR, S SCHFE CoVoST 2 B 1S4 X—En
BV Jr 1M b, XS TR 2 8O B (0. 5B, 1. 5B, 3B [
7B) 1) Ours-ST. Ours-CoT LI & Ours-RobustCoT
BRIHEAT T — R AN L2 0 , TEANSC I 25 R an 3% 4
Ji7s

R4 TAEASHEAEBERAE CoVoST 2 AN HiFH [ (X—>En) £ BLEU 4%

ARy Fr—~En De—>En Es—En Zh—En Ja—>En It—En S 41 4E
Ours-ST-0. 5B 36.51 32.23 38.52 14. 24 19. 39 35. 20 29. 35
Ours-CoT-0. 5B 38.51 33.62 40. 18 18.61 16. 85 36. 11 30. 65
Ours-RobustCoT-0. 5B 39.17 34.84 40. 39 18. 62 18. 96 36. 90 31.48
Ours-ST-1. 5B 39.42 35.47 41. 54 16. 96 20. 44 38. 17 32.00
Ours-CoT-1. 5B 40. 94 37. 05 42.07 23.34 21. 05 39. 20 33. 94
Ours-RobustCoT-1. 5B 41. 95 38.33 43.18 22.59 22.74 40. 21 34.83
Ours-ST-3B 40. 61 37.96 43.19 19. 96 20.73 39. 83 33.71
Ours-CoT-3B 41. 83 38.95 43.62 25.17 22.69 41.12 35. 56
Ours-RobustCoT-3B 43.22 40. 16 44. 46 25.17 22.95 41. 84 36. 30
Ours-ST-7B 41.99 39. 65 44. 07 21.99 23.52 41.23 35.41
Ours-CoT-7B 42. 86 40. 33 44.43 27. 36 26. 94 41.70 37. 27
Ours-RobustCoT-7B 44. 21 41.48 45. 46 27. 81 27. 11 43. 08 38.19

BRI T S 56 245 T 7 BT b 3 B, o T AR S
By = Fh A8 0 A8 K (Ours-ST. Ours-CoT. Ours-Ro-
bustCoT) , HF-1) BLEU 43 %5 14 B 25 A6 8 2 55 A5
Rt KRB . DIA R AHE B H) Ours-Ro-
bustCoT A Ny 4], Fo-F- ¥ BLEU 4348 M 0. 5B =
B 31,48 P B AWK ZE 7B 2 50 A Y
38.19 43, UL HAASE TR 1) S BOR AT X B ¢ 1) 3B 5% IO
EEPE MR . AN FES DS EHE T 5] A
L AESE U 2519 Ours-CoT A6 8 1 — S T %
M Ours-ST FELLBIR . 7€ 0. 5B.1. 5B.3B Al 7B

FAL T, 2 B ok 7 1,30, 1.94, 1. 85 F1 1. 86
BLEU 43 B 42 F . XF T 1 3C— 9 SCH H 18— 9 305
] $2 T JE B B X UEBH T CoT 3R s 75 A [i] S 800
BN ¥ HA 58 i B T RO . S HE— 0 AR SO
16 B SR YR 4 Yk AE BT S BOR BT A LR
CoT ¥k T ik — 2 &7+, HAKIM 5 Ours-Ro-
bustCoT A% F Ours-CoT BHY, 7E 0. 5B.1. 5B.3B
7B BB 43 Bl A ok T 29 0.83.0.89,0.74
0.92 BLEU 43 (i & A0 V- 4 PR RE 1Y 25 . X LB 45 R 7
Gy LW AR SCHE B R ST A D R R AN TR KRR



52 it =2

Bl

e 1 2026 4

R 7B) b s, FLO B R AR R A 4R ) O AR R
TES BN B A T, B R0 — S My
JEME . TR, S50 45 Bt B UE T 1 0 A5 78 2 HORE A
ARAETREFHEMMIESEREERNEE
Migiez—,

5.3 AEEZHERESTHER

ARSCH N Sk B AR = A0 A1 RS o K A - 3
Tot R B BE BIE PR Lo, B TR CR 58
O MAEFE BRI PR Loeor AL —1 KL HUE 2
W Lo o« HRARTR S IR B bs LA R 4G %)
e 2 WU R PE B 1 AR BT R , A SCHEAT T — R B Al
S A RTEN R 5,

S LB R, DAL & Lo, 19 BLE 4k 4% )1
kS O BLEU 480k 37.27) .

(1) Y78 L., FERE EAINGIA Loeeor (BF Lo +
Lo ) BERISEY) BLEU 4380 BT #9055 T R,
M 37,27 BEZE 37.10, A SCHEM , 3X 7] B & B AR
R AR5 TR AN 58 8 B e BE AT BRI R ),
{8 TRV 50 5 SR A B AR 0] B R — E R
JE B b AR, 5 BIORE A PE E R AR 3 R T e
A,

() BEALTE Lo FEBE EWIN Ly, 33830 CED L,
+ Ly, ) - AR PERE [R)AE 2 80T Bk 4, 73 BLEU

IYEUON 37.27 WER 36,77, M PR R N W] fE7E
T, DU E AR R B X6 AS 58 4% L 4R B 3 5 T Y B 4R
HEA BB TR Lo, X 5 2 S8 4 4% T 4 A it Jin
1) 24 BT TR 5 O R 2% > 1) () TR AR 25

(BRI BRI 5T Lo FI Lo, 19 58BN 25
H AR A58 1 B A4S T 2 % $2 7+, 73 BLEU 4
BN 37. 27 $2TF = 38.19, MR, #5515 LU [R] B 2
IR AN SR e A T AT R AR T
IEH Lo ARCH T PFE BT /B0 5 A, 98045%
AR R YRR Y 2ok B ARORE L DA T AT R T R A Pk R
A @k

L5 BT R MG A Lo B L, TTHETC
BEHZRTE E S /NER WA T L, AL TR,
=& 1455 Re s A 24 = B PERE IR W] 1 A 3
ST T B I 25 07 3k A s .
5.4 AEMENEBLETHER

AR SCHE— AR 5T T AEAS [R) i A A i fin Bl AL 44
XA AYVERE A 52 MR, 7E A SCHE 3 1 Ours-Robust-
CoT HER b SR T 7ETE & fn A IS 2 5% it 8 40
Yoyt Jon BEAILHE i 1) SR, BT 2 DL a = 0. 2 I
LK token B I ZAH . R o BIPEAS 26 1H &
i A FILIEL 24 5 i I i B AL A A ) 2 ST B T AR
L ASGHAT T — RN R S5, 25 PR L3R 6.

£5 AEINZBRFEASE T Ours-RobustCoT-7B # & ) BLEU 4 %

Lo Lo L. Fr—>En De—>En Es—>En Zh—En Ja—>En It—>En S ¥ (il
N N NG 44.21 41.48 45. 46 27. 81 27.11 43.08 38.19
J X N/ 43.06 40. 52 44. 36 25.28 25.51 41. 86 36. 77
NG N/ X 42.53 40. 16 44. 49 27. 62 26. 48 41. 29 37.10
N/ X X 42. 86 40. 33 44, 43 27. 36 26. 94 41.70 37.27

K6 AFEFEHEBAET Ours-RobustCoT-7B # & ) BLEU 4 #

Ry Pt Fr—>En De—>En Es—En Zh—En Ja—En It—>En S
NG N/ 44.21 41.48 45. 46 27. 81 27.11 43.08 38.19
X J 44.07 41. 54 45. 46 28.35 25. 71 42. 99 38.02
J X 43.18 40. 74 44. 82 27.91 26.52 42.19 37.56

Ours-CoT-7B 42. 86 40. 33 44.43 27. 36 26. 94 41.70 37.27

SR EIR, UAEEBEA Ours-CoT-7B
BRI Ry JEAE CF- 34 BLEU 43508 37. 27)

(1) 2S00 5 i A\t o 4 ) B A5 780 4 e A
F Ours-CoT-7B 523 745 0. 29 BLEU B4/ 45
Tho B 25 AT 92 B PR A A X i A P Bl i
BeMEAR 8 T — o

(ML Z o 25 AUk JE 2 B iy o it o 48 A, A
B BLEU 0803 Ours-CoT-7B 48 | F
¥10.75 BLEU W i 887t X R 76 A 4e 4% 1 iF

AT HERSARAE | BERS AT R0 22 fift A AL 0T BT A= 1 S8 4 i Y
i HE AR 1) e

(3) 2, [) B 70 1 i A 55 JEL 4 e s 796 A s
PRy BB PR BE AR AT T — iR T R E T
38.19 fJF1 BLEU 440, #% T Ours-CoT-7B £
J+7T 0.92 BLEU 47,

RS A R R WY A P RE 4R T IR
% JEL AR BE 43 it 6% e BIL A A BN O A
HEAT A [5) B R A Ok A AN M RE Y 25 . Bk, =



14 G DRULAF - Bk T8 M S A B 1 QT 5 R AL 3 Bl T 1 53
G I A O S T S B A AL A fiE R 5.6 BAEFEHMIEFIRANEIRE
B, Hy TR A b ) 2D PR T RS R

5.5 AEHVEBERa THER

Ry it — 2R GE BE AL 5w rh R T A 3R o X AR
TR R () HARSE Wi, A SCXF Ours-RobustCoT-7B A5
RITEANTF] o BUE T M RBIEAT T HEAPAL . £ 7 45
RVE W A 7S 1A B R REBE o (EAS LB,
HART 5. BEE o fHMN 0 JF 4h 36 i, A5 50 Y 57 1y
BLEU 780w 2 ML RIS HIFE o =0. 2
WA E] T 38.19 BLEU MY, BL)E .7 o [A4k%E
MR B PE BRI R B B T R R g, X — e
T 5 B (0 VB th 2k R WL 5 > i BE DL IE 14 BR 65 A AL
PETHER Y B PR AR L G AT B R . SR,
JE B HERD CH o (B2 ) DU 25 51 A b 2 Y I 75, fifi 7
IR AE 55 b F RIME , 52 B0k fE 2 T R . BRIk,
TEBE G0 1) A ARE R 6 T S5 ¢ 1 RH R M AR & OC
B, GAERE R A UELZEFE =02 1R
Ours-RobustCoT 45 %Y v FE AL R 5 A% 4%

HE HMEMR MR WG IR E N LN R
— o PRI AR SO B A % v ) o AR R R R
AR BB EAT T VAL . BRI F A SCE X
iE (Fr) 515 (De) \PEHE 15 (Es) K KAE (To
AP R AT 3 55 1R %8 (Word Error Rate, fi] K
WER) . 1l 14 1 3 (Zho) Rl H i (Ja) R T B 36 A&
HiE = B 7 A48 1% R (Character Error Rate,
CERME N PFAN 545 .

W 8 Frm A SCHR 1Y & 1 4 EE LAY Ours-
RobustCoT-7B A% T % HL i B 4E BEBI R Ours-CoT-
TBEFTA ASAE T L AE S R0 A DR I BT
i, BARE JAPEERAR M 9. 660 FRERE 9. 1604,
PAF T 0.5 NED AR, RS RIEW] A
ST ) R A T N A RR P T B A B
. AR RO SR R S Y TR RO R R, AT
Sy 2 o AR AR R B0 T A A e ) 2P R

x7 AEMHEBEFZE « T Ours-RobustCoT-7B # E i) BLEU 5 £

i 7 Fr—En De—En Es—~>En Zh—En Ja—En It—En S {E
Ours-CoT-7B 42. 86 40. 33 44.43 27.36 26. 94 41. 70 37. 27
Ours-RobustCoT-7B (a=0. 1) 44.01 41. 43 45. 44 28.00 26. 44 42. 87 38.03
Ours-RobustCoT-7B (a=0. 2) 44.21 41.48 45. 46 27.81 27.11 43.08 38.19
Ours-RobustCoT-7B (a=0. 3) 44.03 41. 66 45. 36 26. 65 25. 87 43.10 37.78
Ours-RobustCoT-7B (a=0. 4) 42.97 40. 69 44.18 24.71 26. 44 41. 68 36.78
Ours-RobustCoT-7B (a=0. 5) 43.25 40. 84 44.58 21.93 24.73 42.09 36. 24
x8 BAEHTMIEFTIRNERE D
A Fr De Zh Ja It S
Ours-CoT-7B 9. 30 6.48 12. 34 18. 88 6.18 9. 66
Ours-RobustCoT-7B 8.78 6.00 11.78 17.99 5.81 9.16

5.7 MEFRINBERNEBEESH

Shy it — 2 e AL AR SCRT 4 Hh i) T A R
T T X AN 58 55 o () 5 SR IS I AT S0P L AR SO A A
FEAN TR 8 B B A DR T I B ME BB AT T v Al
Bro 78 SOB IR 4R R 45 Ours-CoT-7B #5858 2 1 1)
JELAE 5 rp [R5 SR SOR B HE R 98 (WER 5 CER) i# 47
143, 3EXF T Ours-CoT-7B 5 Ours-RobustCoT-
7B IR TE X SR [] 4 R R X [H] ) BLEU 43 %4, 45
RWME 3 FrR. WEPR, A SO Y Ours-Ro-
bustCoT-7B #ERI7E JL T T A B33 J7 ] AL 15 %6 X
] F MR T 3R 7 T8 LY Ours-CoT-7B £
B, U R QBN 2, Bl v [R] 7 S SO 1 B R R T
Th AR SO B R R B ik 0 3 R I A b Y
B SRR 22, A SCRT B O ik 1 ol RO A

LIS B 915 (Fr—En) 19 B AT 55 8 1, 405 & 5%
ST R B B (WER 0~ 20%) , A SC 7 He 4 R 1Y
BLEU {HE£FALH 1. 04 435 SR T, Y 5% AT R AR #
JEEE T (WER 80 % ~100%0) , HEREAE # 5 % T 5. 76
BLEU 45, HoAth %0 32 77 7] -t J2 30 2R 0L 0 e 3
X — 3G V5 A b 3 B, Y D i IR 2 R TR A
“H T R AR TR R o R A R 15 1) A BT M g
SRR B T A SCH 1Y s RE A T AT s A6 A DR
UR T A5 5 ok 2 IF B3 2 % JEL A 4 v i) 8 R, B
ST R A TH A 58 96 e S R B R S IR
B, AT ) & X6 M RE R, /R4S Ours-RobustCoT-
7B B, HL BH R O AT B B S A R R Y T
1M R, % T A SO SR Y 8 & 40 15 2% Whisper
A B O BB ISR AR SO AT iR
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54 L2 I S| N N 2026 4F
Fr-En De-En Es-En
50 £ Ours-7B-CoT E—J Ours-7B-CoT 50 £ Ours-7B-CoT
[ Ours-7B-RobustCoT [ Ours-7B-RobustCoT [ Ours-7B-RobustCoT
it o L]
40
wl ] 4 wl
0 3195 392
3104 30 28.49) 2999
5 301 5 - 30+
=) o] o 2544
= = =
m m m

20 17.18

20-40

2821
2431
243
2052 | 19.46|
204 1936 20 o i
16.64) 1474
14.10) 126)
992
10 824 10 805 10 827 797
as8 522
0 e + — t 0 - - + e T t 0 e T T t
40-60 40-60

020 6080 80100  >100 020 60-80  80-100  >100 020 4060  60-80  80-100  >100
WER (%) WER (%) WER (%)
Zh-En Ja-En It-En
35
73 Ours-7B-CoT 401 7~ Ours-7B-CoT 0 7~ Ours-7B-CoT
1 Ours-7B-RobustCoT 3 Ours-7B-RobustCoT [ Ours-7B-RobustCoT
30 muws 5 2, 4B
4 v ol P -
3 0 2731 3241
2143 25.26)
204 1572 25 30 29,16 202
= 2 >
l:]l 1713 li‘l 20 l:]l
a 157 1512 a o5t w2 | A
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Background

The field of Speech Translation (ST). which aims to
convert speech from a source language directly into text in a
target language, is a critical area of research at the intersec-
tion of speech processing and natural language processing.
Its importance is continually growing due to its vital applica-
tions in facilitating cross-lingual communication in scenarios
international conferences, online education, and

such as

global business. Internationally. the field has progressed
from traditional cascaded systems to end-to-end models.
More recently, the advent of Large Language Models
(LLMs) has ushered in a new era, with Chain-of-Thought
(CoT) prompting emerging as a powerful technique. How-
ever, while CoT improves performance by breaking down the
task, it introduces a critical vulnerability: the model’s tend-
ency to over-rely on the intermediate transcription, causing
transcription errors to propagate and degrade the final trans-
lation quality and robustness.

This paper directly addresses this limitation by propo-
sing a novel Robust Chain-of-Thought (RobustCoT) method
for LLM-based speech translation. Our approach enhances
the model’s robustness by reducing its dependence on the in-
termediate transcription and forcing it to leverage the original
acoustic information.

This is achieved through a training

strategy that combines random masking of the CoT with a

ASSP). Barcelona, Spain, 2020: 8229-8233
FENG Yang. Ph. D.. professor, Ph. D. supervisor.
Her research interests are natural language processing and

large language models.

Kullback-Leibler (KL) divergence regularization term, which
ensures predictive consistency. Extensive experiments on the
CoVoST 2 benchmark demonstrate that our method substan-
tially improves translation quality, yielding an average BLEU
score increase of 2.78 points over a standard baseline and
0. 92 points over the conventional CoT method, with per-
formance gains being most pronounced in high-transcription-
error scenarios.

The implications of this research extend beyond the immedi-
ate task of ST. By developing a method to enhance the reliability
of a sequential reasoning process, this work offers valuable in-
sights for improving the robustness of other complex, multi-step
generation tasks where the integrity of an intermediate chain of
reasoning is crucial. The principles of using targeted masking and
distributional consistency as regularization can inspire further in-
novations in building more trustworthy and reliable Al systems
that are less susceptible to single-point-of-failure errors in their
internal processing steps.

Furthermore, enhancing the robustness of speech trans-
lation technology has significant practical value. More relia-
ble and accurate translation systems can significantly lower
communication barriers in critical multilingual settings, from
international diplomacy and business negotiations to emer-

gency response and healthcare. This research., by making ST
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systems less fragile, contributes directly to the goal of foste-
ring more seamless and effective global collaboration and un-
derstanding, ultimately impacting various domains that rely
on clear cross-lingual communication.

Our research group has previously contributed to the
fields of machine translation and speech translation, establis-

hing a strong foundation for the current work. This study is

part of our broader, ongoing effort to advance the state-of-
the-art in cross-modal language technologies. The Robust-
CoT method presented here solves a key challenge within this
larger agenda, pushing the boundaries of what is possible for
robust, next-generation speech translation systems and offer-
ing a practical solution that can drive future research and re-

al-world applications.





