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摘 要 随着神经形态计算的发展,脉冲神经网络有望广泛部署于实时场景和安全关键型应用。现有研究表明,
脉冲神经网络内部信息表示的离散特点导致其相比于人工神经网络,可能对微小扰动不敏感,因此被认为相比于

传统人工神经网络具有更强的抗干扰能力。近年来的研究表明,脉冲神经网络同样面临与人工神经网络类似的对

抗攻击威胁。目前针对脉冲神经网络的现有综述主要关注脉冲神经网络的结构设计、训练方法及硬件实现。本文

聚焦于脉冲神经网络的鲁棒性,首次对脉冲神经网络对抗攻击和防御方法进行了系统综述。针对攻击方法,本文

归纳了基于数据模态的攻击方法、基于可微近似的梯度攻击方法以及梯度无关的攻击方法;在防御上,当前已有多

项研究围绕脉冲神经网络鲁棒性展开探索,显示出其在对抗防御中的潜力。本文归纳了当前常用的防御方法,包
括输入防御方法、网络防御方法、输出防御方法等,旨在提升模型应对扰动时的安全性与稳定性。最后,本文总结

了当前研究面临的挑战,并展望了脉冲神经网络在对抗攻击与防御研究中的未来发展方向。
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Abstract 
 

With
 

the
 

advancement
 

of
 

neuromorphic
 

computing,
 

spiking
 

neural
 

networks
 

(SNNs)
 

are
 

expected
 

to
 

be
 

widely
 

deployed
 

in
 

real-time
 

scenarios
 

and
 

safety-critical
 

applications.
 

SNNs
 

simulate
 

the
 

behavior
 

of
 

neurons
 

in
 

biological
 

brains
 

through
 

spatiotemporal
 

neuronal
 

dynamics.
 

Neurons
 

in
 

SNNs
 

update
 

their
 

membrane
 

potentials
 

over
 

time
 

and
 

output
 

spike
 

signals
 

of
 

0
 

and
 

1.
 

Existing
 

studies
 

have
 

shown
 

that
 

the
 

discrete
 

characteristics
 

of
 

internal
 

information
 

representation
 

of
 

SNNs
 

make
 

them
 

less
 

sensitive
 

to
 

small
 

perturbations
 

than
 

traditional
 

artificial
 

neural
 

net-
works

 

(ANNs),
 

and
 

therefore
 

they
 

are
 

considered
 

to
 

be
 

more
 

robust
 

to
 

adversarial
 

attacks
 

than
 

traditional
 

ANNs.
 

Research
 

in
 

recent
 

years
 

has
 

shown
 

that
 

SNNs
 

also
 

face
 

similar
 

threats
 

from
 

adversarial
 

attack
 

as
 

ANNs.
 

Existing
 

reviews
 

of
 

SNNs
 

primarily
 

focus
 

on
 

the
 

structural
 

design,
 



training
 

methods,
 

and
 

hardware
 

implementation.
 

Given
 

the
 

fundamental
 

differences
 

between
 

SNNs
 

and
 

ANNs,
 

the
 

robustness
 

mechanisms
 

as
 

well
 

as
 

attack
 

and
 

defense
 

strategies
 

of
 

SNNs
 

are
 

unique,
 

and
 

thus
 

cannot
 

be
 

directly
 

derived
 

from
 

the
 

well-established
 

ANN
 

framework.
 

This
 

paper
 

focuses
 

on
 

the
 

robustness
 

and
 

systematically
 

reviews
 

adversarial
 

attacks
 

and
 

defense
 

meth-
ods

 

for
 

SNNs
 

for
 

the
 

first
 

time.
 

Regarding
 

attack
 

methods,
 

this
 

paper
 

summarizes
 

attack
 

meth-
ods

 

based
 

on
 

data
 

modality,
 

gradient
 

attack
 

methods
 

based
 

on
 

differentiable
 

approximation,
 

and
 

gradient-independent
 

attack
 

methods.
 

The
 

first
 

category
 

targets
 

input
 

data
 

modalities,
 

including
 

attacks
 

on
 

static
 

images,
 

attacks
 

on
 

neuromorphic
 

event
 

datasets,
 

and
 

general
 

attack
 

methods
 

ap-
plicable

 

across
 

data
 

modalities.
 

The
 

second
 

category
 

of
 

attacks
 

leverages
 

the
 

differentiable
 

ap-
proximation

 

training
 

methods
 

commonly
 

used
 

in
 

deep
 

SNNs,
 

generating
 

input
 

perturbations
 

through
 

techniques
 

such
 

as
 

conversion
 

approximation,
 

backpropagation
 

through
 

time
 

approxima-
tion,

 

and
 

spike
 

rate
 

approximation.
 

The
 

third
 

category
 

comprises
 

gradient-independent
 

attack
 

methods,
 

designed
 

to
 

overcome
 

the
 

issues
 

associated
 

with
 

differentiable
 

approximations.
 

In
 

terms
 

of
 

defense
 

mechanisms,
 

many
 

studies
 

have
 

explored
 

their
 

robustness,
 

showing
 

their
 

potential
 

in
 

adversarial
 

defense.
 

This
 

paper
 

summarizes
 

several
 

common
 

defense
 

methods,
 

including
 

input
 

defense
 

methods,
 

network
 

defense
 

methods,
 

output
 

defense
 

methods,
 

etc.,
 

aiming
 

to
 

improve
 

the
 

security
 

and
 

stability
 

of
 

the
 

model
 

when
 

dealing
 

with
 

perturbations.
 

The
 

defense
 

mechanisms
 

cover
 

the
 

entire
 

network
 

processing
 

pipeline.
 

At
 

the
 

input
 

stage,
 

spike
 

encoding
 

and
 

filtering
 

methods
 

are
 

employed.
 

During
 

the
 

network
 

processing
 

stage,
 

robustness
 

is
 

enhanced
 

through
 

im-
proved

 

neuron
 

design,
 

interval
 

bound
 

propagation,
 

adversarial
 

training,
 

regularization
 

training,
 

and
 

network
 

lightweighting.
 

At
 

the
 

output
 

stage,
 

spike
 

decoding
 

methods
 

are
 

utilized.
 

Existing
 

research
 

indicates
 

that
 

SNNs
 

are
 

inherently
 

more
 

robust
 

than
 

traditional
 

ANNs.
 

These
 

defense
 

methods
 

aim
 

to
 

further
 

exploit
 

their
 

intrinsic
 

mechanisms
 

or
 

draw
 

insights
 

from
 

traditional
 

de-
fense

 

methods.
 

Finally,
 

this
 

paper
 

summarizes
 

several
 

challenges
 

in
 

current
 

research
 

and
 

looks
 

forward
 

to
 

the
 

future
 

development
 

direction
 

of
 

SNNs
 

in
 

adversarial
 

attack
 

and
 

defense
 

research.
 

On
 

the
 

attack
 

side,
 

researchers
 

should
 

explore
 

novel
 

methods
 

that
 

target
 

defense
 

vulnerabilities,
 

exploit
 

spiking
 

encoding
 

mechanisms,
 

and
 

leverage
 

event-based
 

data
 

properties,
 

while
 

developing
 

lightweight
 

and
 

highly
 

generalizable
 

gradient-based
 

or
 

gradient-free
 

approaches.
 

On
 

the
 

defense
 

side,
 

it
 

is
 

essential
 

to
 

enhance
 

robustness
 

by
 

integrating
 

spiking
 

encoding
 

principles,
 

temporal
 

processing,
 

and
 

bio-inspired
 

mechanisms,
 

design
 

specialized
 

defense
 

solutions
 

for
 

emerging
 

SNN
 

architectures,
 

achieve
 

effective
 

protection
 

under
 

neuromorphic
 

hardware
 

constraints,
 

and
 

validate
 

effectiveness
 

in
 

real-world
 

scenarios.
 

The
 

secure
 

deployment
 

of
 

SNNs
 

depends
 

on
 

the
 

continuous
 

evolution
 

of
 

attack
 

and
 

defense
 

technologies
 

alongside
 

synergistic
 

advances
 

in
 

neuromorphic
 

com-
puting.
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1 引 言

人工智能(Artificial
 

Intelligence,
 

AI)的终极目

标是构建具有与人类智慧水平相当的强人工智能系

统,以完成人类各种智能行为。自2012年以来,深
度学习作为人工智能的重要分支迅猛发展,成为第

三次人工智能浪潮的推动力量[1-3]。深度学习利用

多层神经网络从数据中学习到有用的特征和模式。
然而,对抗攻击的出现对计算机视觉、自然语言处

理、医疗诊断等各个领域构成严重挑战[4-7]。脉冲神

经网络(Spiking
 

Neural
 

Network,
 

SNN)被誉为继

基于非线性激活函数人工神经网络(Artificial
 

Neu-
ral

 

Network,
 

ANN)的第三代人工神经网络[8-10]。
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传统ANN使用浮点数表示信息。而SNN通过时

空动力学和脉冲表示模拟生物大脑中的神经元行

为[11-13]。SNN的神经元随着时间更新其膜电位并

输出0和1的脉冲信号[14-17]。
对抗攻击通过向原始数据添加微小扰动产生使

深度学习模型误判的对抗样本[4-5,18-19],带来安全和

隐私方面的风险。例如,一张猫的图片,经过添加人

类难以察觉的扰动后,可能就会被深度学习模型错

误地识别为狗。这说明深度学习模型对于输入数据

的特定变化非常敏感。在自动驾驶系统中,对抗样

本可能误导模型无法正确地识别道路标志或行人,
造成严重的交通事故[20]。或者在人脸识别系统中,
对抗样本可能使用户无法正确地验证身份或授权,
导致身份盗窃或信息泄露[21]。

SNN被认为在鲁棒性上具有相比于传统ANN
的优势[4,22]。国内外知名科研机构正在积极开展如

何利用SNN改善鲁棒性的研究工作[23-25]。研究认

为SNN离散的信息表示和天然时域滤波机制有助

于解决深度学习中模型易受对抗扰动误导的问题。
脉冲的离散特点使攻击者更难通过微小的输入连续

变化改变SNN输出[26]。而SNN时序编码使得扰

动可以在不同时间被处理,减小了网络处理扰动的

压力[27],有助于在面临对抗攻击时保持稳定性和高

准确性[28]。
即使SNN具有一定抗扰动特质,其仍会受到

对抗攻击的威胁[29-30]。构造对抗扰动需要让网络测

试时损失函数增大,近年发展的端到端反向传播训

练SNN方法为攻击提供了有效梯度。传统 ANN
中梯度的计算方式通常是固定的。而SNN得到梯

度的方式非常多样,每一种梯度计算方法都能用于

对抗样本构造[25]。例 如,SNN 可 以 通 过 从 传 统

ANN转换得到,也可以通过端到端随时间反向传

播训练得到。因此,SNN的对抗攻击挑战实际比传

统ANN更复杂。
目前关于SNN的综述大多聚焦于网络结构设

计、训练方法以及神经形态硬件实现等方面[31-34],对
鲁棒性研究的整理与分析较为有限。相比之下,传
统ANN在对抗攻击与防御方面已形成较为成熟的

研究体系[35-36]。由于SNN与ANN存在本质差异,

SNN鲁棒性表现及攻击防御机制具有独特性,不能

简单套用ANN领域的研究成果。在此背景下,有
必要系统综述SNN的对抗攻击与防御方法,梳理

研究进展,分析挑战,为后续研究提供理论和技术参

考。图1基于SNN推理过程,对现有国内外研究进

行了整理与归纳。本文进一步汇总相关攻击与防御

方法,便于读者理解与应用。

图1 脉冲神经网络对抗攻击及防御方法研究进展总结

  攻击方法通过影响输入模式,使得网络得到错误

输出。攻击方法可以被归纳为:(1)在输入数据攻击

上,研究者提出了针对不同输入数据模态的攻击方

法。在视觉任务中,输入数据可以是包含时间长度、
数据高度和数据宽度的神经形态数据,也可以是传统

的图像数据。因此,攻击方法从输入类型上可分为:

①针对静态图像的攻击方法;②针对神经形态事件数

据集的攻击方法;③跨数据模态的通用攻击方法。其

中,针对传统静态图像的攻击方法主要结合ANN中

的攻击方法。针对神经形态事件数据集的攻击方法
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考虑了数据的多维性和时间性质[37-39]。跨数据模态

的通用攻击方法可攻击的数据包括神经形态数据和

图片 数 据 等 模 态,旨 在 融 合 考 虑 数 据 模 态[40-41]。
(2)深度SNN训练目前最常用可微近似。结合SNN
可微近似,研究者提出了结合不同SNN可微近似的

攻击方法。这些方法主要包括以下几种:①转换可微

近似的攻击方法[25-26];②随时间反向传播可微近似的

攻击方法[26,29];③脉冲发放率可微近似的攻击方

法[25,30]。这些方法借助SNN训练方法的有益经验反

过来为SNN构造输入扰动。(3)除了基于可微近似

的方法之外,为了绕开可微近似带来的模型误差和对

抗攻击适应性问题,研究者还提出了梯度无关的攻击

方法。
防御方法利用SNN在输入、网络处理和输出

上的时序特点和离散特点设计相关方法提高SNN
的鲁棒性。研究者提出方法旨在挖掘SNN的内在

鲁棒性机理,或旨在从传统 ANN防御方法中借鉴

经验。现有研究已明确指出,SNN天然具有比传统

ANN更好的鲁棒性[22,25]。根据处理阶段,防御方

法可归纳为:(1)针对网络输入,研究者提出了①基

于脉冲编码的方法[26-28,42-43]
 

以及②基于滤波的方

法[44-45]。(2)针对SNN,研究者提出了①基于神经

元设计的防御方法[46]
 

;②基于区间边界传播的防御

方法[25];③基于对抗训练的防御方法[24];④基于正

则训练的防御方法[25]
 

;⑤基于网络轻量化的防御方

法[47-48]。(3)针对网络输出,研究者提出了基于脉冲

解码的方法以提高SNN的鲁棒性。
研究SNN对抗鲁棒性具有两方面意义。其一,

理解SNN的安全可靠性有助于开发高可信的生物启

发的深度学习模型,提高其在工业应用中的稳定性。

SNN更加适合部署在易成为黑客攻击对象的终端边

缘设备的神经形态系统中,因此研究SNN的鲁棒性

具有极高的现实意义;其二,SNN是类脑计算的重要

研究方向,探索SNN对抗鲁棒性相比于传统方案有

助于理解人脑鲁棒工作机制。综上,SNN对抗攻击

与防御研究具有应用与理论双重意义。
本文将面向SNN对抗攻击与防御学术研究前

沿,探讨网络可微性质、神经形态数据特点等因素对

鲁棒性的影响。本文后续内容组织结构安排如下:
第2节简要介绍SNN相关背景,包括传统ANN常

用的攻击防御方法以及SNN研究进展;随后,第3
节介绍了SNN对抗攻击方法;在第4节,本文介绍

了SNN的防御方法;第5节本文提出了未来可能的

研究方向;第6节对全文进行了总结。

2 脉冲神经网络及攻防背景

SNN的信息处理模式相比于传统 ANN有所

不同,在对抗攻击上挑战也与 ANN 不完全相同。
本节首先对 ANN对抗攻击与防御方法进行概述;
接着介绍SNN及其学习方法;最后,介绍SNN应

用场景与挑战。

2.1 深度学习对抗攻击与防御

  对抗攻击旨在改变模型输入导致模型预测与标

签有较大偏差。Szegedy等人通过攻击研究指出了

深度神经网络关于输入中扰动的脆弱性,只需添加

微小的扰动构造对抗样本即可误导网络产生错误输

出[49]。对抗攻击还被发现具有可迁移性,相同扰动

图像可以影响多个模型。图2展示了一个经典案

例。一个图像分类模型在没有扰动的情况下以

57.7%的置信度正确识别一张熊猫图像。在对抗攻

击后,该图像分类模型却以99.3%的置信度错误地

将其分类为长臂猿[4]。

图2 深度学习对抗攻击

对抗攻击可以被形式化为优化问题,求解在未

受扰动数据x 的lp 邻域空间如何设计扰动δ 满足

式(1):

argmax
δ

L f x+δ;W  ,y  s.t.δ p ≤ (1)

其中,L 为损失函数,f 为深度网络,其为参数
 

W。y
为真实标签, 为扰动强度。攻击方法的代表为基于

梯度的方法,如快速梯度符号法(Fast
 

Gradient
 

Sign
 

Method,
 

FGSM)[4]。该类方法可以沿着梯度方向对

数据实施有效扰动。从目标模型参数是否对攻击者

的可见性上看,攻击方法可依照是否了解目标模型信

息被大体分为白盒攻击[50]和黑盒攻击[18]。
为了应对攻击方法,研究者提出了多种神经网
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络防御方法,旨在提升模型的鲁棒性:
其一是预处理方法。该类方法在将图像输入神

经网络前对其进行处理,以减小对抗样本的影响。
预处理通常包括去噪、随机分块、重构、缩放与像素

量化等操作。该类方法通常不需要对模型进行修

改,可以直接应用于已经训练好的模型,计算开销相

对较低[51-53]。然而,其鲁棒性提升受限,难以防御针

对预处理机制本身设计的攻击。
其二是对抗训练,被广泛认为是提升深度模型

鲁棒性的最有效策略之一。其核心思想是对抗样本

参与训练,使模型在学习过程中可以在潜在攻击影

响下获得泛化能力,从而具备在攻击下维持性能的

能力。然而,该方法需在每个训练步骤内确定数据

的对抗样本,计算开销大大增加;此外,对抗训练后

模型对某种范数下生成的对抗样本有效性强,但对

其他类型扰动鲁棒性有限[54-56]。
其三是正则化方法。该类方法通过正则化约

束梯度变化,提高模型对扰动的抵抗力。例如,

Parseval正则化约束网络中的权重矩阵保持近似

正交,从而限制扰动在每一层的放大。流形正则

化网络在模型损失中加入样本在数据流形上的邻

近性假设,通过对同一类样本在嵌入空间中的相

似性进行约束,限制扰动带来的决策边界偏移。
此外,梯度惩罚类正则通过约束输入梯度范数,引
导模型学习平滑的判别函数,提高模型对输入微

小扰动的鲁棒性[57-59]。
其四是特征去噪。该类方法在卷积模块中加入

处理特征图的去噪模块。去噪模块如基于注意力机

制的噪声选择、鲁棒池化操作或非局部均值去噪可

以显式地抑制中间特征的噪声。虽然本身可能不会

提高模型在原始数据集上的分类准确率,但当其与

对抗训练结合使用时可提高模型的鲁棒性[60]。另

外,一些研究还提出特征压缩方法,通过删除冗余通

道,减少攻击者可操控空间,从而降低对抗攻击成功

率。该类方法在计算效率方面相对较高,易于与现

有模型结构兼容[61]。
总体而言,深度学习的防御方法主要的思路是训

练时进行网络全局的鲁棒性优化,而在推理时进行扰

动抑制。这一思路同样适用于SNN。前者可为鲁棒

训练方法借鉴,如SNN适合的对抗训练;而后者则需

结合SNN输入格式设计相应的预处理模块,以发挥

其时序优势并增强其抵抗输入扰动的能力。

2.2 脉冲神经网络及其学习方法

  SNN在信息处理模式上类似生物神经元,需要

接收一段时间的离散脉冲并产生输出[14,62]。通常

处理过程包含输入编码、脉冲表征、输出解码等流

程,如图3所示。与最常用的深度ANN不同,SNN
类似循环神经网络具有天然时间维度,当输入图像

等静态数据需要额外编码方法参与[16]。最常用的

脉冲神经元是漏电积分-发放模型(Leaky
 

Integrate-
and-fire

 

model,
 

LIF)。积分发放神经元的动态过

程可以被形式化为式(2)~(4)。

vl
i[t]=λul

i[t-1]+∑
j
wl

ijsl-1
j [t] (2)

sl
i[t]=H(vl

i[t]-θ) (3)

ul
i[t]=vl

i[t](1-sl
i[t]) (4)

式中,来自j 个突触前神经元的脉冲输入sl-1
j 加权

构成第l层第i个神经元的输入电流。wl
ij 表示权

重。λ 表示膜电位泄漏参数。当充电后的膜电位vl
i

超过阈值θ 时,在该时刻产生脉冲。在脉冲产生后,
神经元的膜电位将被重置为静息电位,默认为0,如
式(4)所示。这种“重置到静息电位0”的方式被称

为硬重置。相比之下,另一种常用方式为软重置。
硬重置将膜电位归零,软重置则是在现有膜电位基

础上减去阈值。软重置下,神经元状态会在脉冲发

放后减少与阈值相等的电压但并不保证回到静息电

位。其过程可表示为式(5):

ul
i[t]=vl

i[t]-θsl
i[t] (5)

  当表示积分发放模型(Integrate-and-fire
 

mod-
el,

 

IF)[9]时,λ=1。H(·)为单位阶跃函数,只有当

输入大于0时输出为1,否则为0。

SNN接收序列输入,因此图片需要在经过编码

后才能作为SNN首层输入,如图3所示。编码将静

态图片表示为输入序列。目前深度SNN最常用直

接编码,将每一个像素映射为像素值不变的时间序

列。它能够有效地保留原始输入的信息,使得SNN
可以更好地理解和学习复杂的数据特征。之后被广

泛用于基于代替梯度训练的SNN中[63-65]。频率编

码通常考虑脉冲计数[66-68]、时间相关频率[69]、群体

活动频率[70]。SNN解码通常采用脉冲计数频率对

信息。

SNN学习方法主要关注如何构建能够在神经

形态芯片上执行计算功能SNN。不同于深度学习

的反向传播,目前SNN学习领域并没有出现公认

的最佳方法[71-72]。目前常用的深度SNN训练方法

更多考虑如何在SNN上传递监督信号,进而有监

督地训练网络。与传统神经网络不同,SNN中的脉

冲产生函数是不可导的单位阶跃函数。依照学习监
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图3 脉冲神经网络示意图

督方式可以被划分为早期有监督方法、间接监督方

法、近期有监督方法。
早期有监督方法通过调整脉冲时间回避了脉冲

产生函数不可导的问题,它们被视为早期的时序学

习 方 法[73],例 如 SpikeProp
 [74] 和 ReSuMe

 [75]。

SpikeProp通过链式法则基于脉冲时间进行反向传

播,但其具有一定的局限性:仅适用于SRM 模型,
并且神经元脉冲次数限制为1。为了突破局限性,

Ghosh-Dastidar等人提出了 Multi-SpikeProp学习

方法,允许神经元多次触发[76]。相对于SpikeProp,

Multi-SpikeProp在EEG和Iris分类任务上显著提

高了分类准确率。然而,上述工作主要集中在浅层

神经网络上,无法应用在深层SNN中。
间接监督方法间接利用 ANN训练好的权重,

将其 转 换 到 深 度 SNN 上[77-78]。因 此 也 被 称 为

ANN-SNN转换方法。Perez等人开展最早的SNN
转换研究,实现了对神经形态视觉传感器数据的实

时处理[79]。随后,Cao等人提出了ANN和SNN的

精确转换关系,首次将ReLU激活的ANN转换为

IF神经元
 [80]。其后,Diehl等人提出了一种权重标

准化方法,解决神经元激活过高或过低导致的准确

性损失问题。该方法首次为 ReLU 激活的转换工

作提供了原则性的指导[81],并设计了数据驱动的标

准化方法自动调整神经元参数。Rueckauer等人

之后进行了对 ANN-SNN转换的详细理论解释,
发现SNN神经元的输出与ReLU激活输出存在误

差,并提出软重置方式降低误差。这项工作还拓

展了转换方法的网络模块适用范围,真正使转换

方法变成实用技术[82]。进一步的工作集中在频率

编码方法上,采用脉冲频率对应ReLU的方法,并
将其应用于不同应用场景,如物体检测与跟踪[83]。
考虑到神经形态芯片的约束和能耗要求,除频率

编码之外的神经元编码方式也被提出用于转换,
包括时序编码和相位编码[84-86]。上述工作推动了

ANN到SNN转换的发展,使其适应了更广泛的应

用需求。
近期有监督方法主要研究基于代替梯度的端到

端反向传播方法,它通过代理梯度函数等工具近似

梯度并沿时间展开进行反向传播训练[15,66]。代替

梯度用于替代不可导的阶跃函数[15,87-89]克服了脉冲

的不可导性。SNN在前向传播中记录每个时间步

上的膜电位和脉冲,而在反向传播中将每个时间步

展开以进行梯度传递,类似于循环神经网络的时间

展开梯度传播方式,因此也称为时空反向传播(Spa-
tio-temporal

 

backpropagation,
 

STBP)或随时间反

向传播(Back
 

propagation
 

through
 

time,
 

BPTT)[17]
 

。图4
中展示了反向传播过程。原本绿色箭头处是单位阶

跃函数梯度无法传递。代替梯度函数通过平滑阶跃

函数使得梯度可以通过绿色箭头传递。确定某时刻

膜电位的损失函数需要来自下个时刻膜电位的梯度

信息(红色箭头)以及来自本时刻的脉冲梯度信息

(绿色箭头),而本时刻的脉冲梯度信息需要下个时

刻的膜电位的梯度信息(蓝色箭头)。近期研究工作

使用各种技术提高SNN分类任务的性能,例如批

标准化等[90-92]。与转换方法相比,这些经过直接有

监督训练的SNN具有更低的推理延迟[14,93],但训

练时需要更多的计算资源和内存[94]。因为反向传

播需要在时间上对梯度进行积分,增加了计算和内

存管理的复杂性。近年兴起了另一类端到端学习时

序学习方法,通过前后层的脉冲时间传递梯度,可充

分利用脉冲时间编码的优势[95-96]。时序学习方法也

采用类似代替梯度的思想。Kim等人提出了脉冲

时间和膜电位的偏导数由前后两个时间步的膜电位

的负倒数来替代。近年的工作极大地提高了时序学

习方法的可用性。Zhang等人提出了神经元间和神

图4 随时间反向传播
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经元内反向传播机制,用于学习时序信息[95]。另一

项由Zhu等人的工作发现了时序学习方法的梯度

不变性性质,即前一层脉冲时间的偏导数之和等于

后一层脉冲时间的偏导数之和。该发现极大地提高

了时序学习的理论有效性,并提供了相应的改进方

法[96-97]。
上述学习算法在为深度SNN带来更好性能的

同时也为SNN带来了潜在的威胁。其梯度信息可

以用来设计有效的攻击方法。

2.3 脉冲神经网络应用潜力与鲁棒性挑战

  SNN相对于传统 ANN在硬件计算方面具有

高并行性和低能耗的优势,因此在某些对响应速度

和能效比要求较高的实际应用中具有巨大潜力。图

5展示了SNN相关应用,如机器人控制[98-99]、智能

飞控系统[100-101]、自动驾驶[102-103]
 

、脑机接口[104-105]、
神经形态相机处理[79,90]等方面。这些系统往往需

在复杂动态环境中快速做出决策,或以较低能耗持

续处理大量的传感数据[106]。SNN的事件驱动计算

机制与这些场景中对异步稀疏数据的处理需求天然

契合。然而,鲁棒性不足将可能带来严重的安全隐

患,导致系统在关键任务中做出错误响应。

图5 脉冲神经网络典型应用

SNN适合处理高速、异步的传感器数据流,如
视觉、听觉和触觉输入[107-108]。结合神经形态传感

器,SNN能充分发挥其在处理稀疏时序脉冲信息方

面的能力。例如,动态视觉传感器(Dynamic
 

Visual
 

Sensor,DVS)采用地址事件编码格式生成稀疏脉冲

流。当像素检测到亮度变化超过对数阈值时,传感

器会产生包含像素位置、时间和极性的事件(+1
 

或
 

-1)。此类传感器通常具有较高的时间分辨率和动

态范围[109],可以在毫秒或更短的时间内响应。由

于其事件特性,适合与神经形态芯片结合用于高速

识别、跟踪。该数据形式与SNN输入特征高度匹

配,在快速移动目标跟踪和复杂光照条件下的场景

感知中具有优势[110-112]。这些任务往往部署在资源

受限的边缘设备中,需要神经形态计算芯片保持低

功耗的同时具备高吞吐计算能力。
鲁棒性的提升不仅依赖于算法与训练策略的改

进,还与底层硬件平台的协同设计密切相关。神经

形态计算的发展推动了一系列支持SNN计算的芯

片诞 生 如 Neurogrid[113]、TrueNorth[114]、SpiNNa-
ker[115]以及Darwin[116]。它们通过模拟神经元和突

触之间的事件驱动通信,提供了低功耗、高并发的计

算支持。与此同时,混合架构的 Tianjic芯片,将

SNN的生物拟态与传统ANN计算性能相融合,为

SNN的应用提供了更具灵活性和计算性能的硬件

支撑[11]。在传感端,神经形态视觉传感器根据视觉

功能的生物启发原则设计,分为差分型[109,117]和积

分型[110,112,118],前者更适合运动检测,后者则提升了

纹理捕捉能力。上述高采样率、低冗余的传感器生

成的事件流数据能够有效与SNN及其芯片平台协

同工作,减少因处理高密度事件流的拥塞而带来的

输入扰动影响。
随着SNN在各类关键场景中的广泛部署,其

安全性问题亦愈发重要。研究证明,SNN同 ANN
一样面临传统深度网络的对抗攻击威胁[22-24]。如图

6所示,SNN受到来自深度学习攻击方法和SNN
可微近似的双重挑战。某些基于代替梯度的训练方

法,可能使攻击者更易获取网络的近似梯度方向,从
而生成对抗样本实施攻击[25-26]。其次,梯度攻击方

法需要与可用的近似梯度方法叠加使用,提高了网

络的鲁棒性挑战[30,40]。

图6 脉冲神经网络的鲁棒性挑战

因此,在推动SNN落地应用的同时需同步加

强对抗攻击等防御方法的研究,提升其在现实应用

中的鲁棒性与安全性。

3 脉冲神经网络对抗攻击方法

SNN的对抗攻击与传统神经网络对抗攻击有
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很大不同。传统ANN攻击方法输入和输出都是连

续的实数值,通过梯度生成对抗样本,如FGSM 与

PGD。这些方法需要ANN具有可微和反向传播能

力。而SNN无法直接反向传播。因而发展出两类

方法:可微近似梯度攻击和梯度无关攻击。本节将

介绍相关设计。本节首先分析SNN 的脆弱性成

因。接着介绍数据模态、可微近似以及梯度无关的

攻击方法。

3.1 脆弱性分析

  从深度学习视角来看,SNN可以被攻击并不

意外。本 节 首 先 分 析 SNN 的 脆 弱 性。从 神 经

元、编码以及网络层面分别介绍SNN的脆弱性

成因。
(1)脉冲神经元

为实现训练,SNN常采用可微近似方法,但可

微化处理也暴露了其脆弱性。攻击者一旦知道网络

结构和参数就能够借助可微近似构造精确扰动。攻

击者可以通过扰动操控膜电位越过阈值或抑制其发

放,导致输出错误。
(2)网络编解码

SNN主流的输入输出编码方式多为频率编码。
因此,SNN在处理上也与传统ANN接近。频率编

码降低了时序动态特性,信息表示为一种统计平均

形式,忽略了时间结构也能够表示信息的事实。在

频率编解码中,层间通过脉冲累积传递信息,类似

ANN的加权求和加激活函数。SNN前向传播在计

算图上与 ANN几乎等价,仅将连续值替换为脉冲

频率。频率编码中的直接编码被认为给SNN带来

了较差的鲁棒性。Kundu等人认为直接编码的

SNN鲁棒性较差[24]。Sharmin等人认为基于直接

编码转换的
 

SNN
 

包含较少的动态信息,导致网络

鲁棒性较差[26]。
(3)网络编解码

SNN中信息在层间通过脉冲逐步积累并影

响最终决策。输入扰动一旦进入网络,便可能在

膜电位与脉冲中逐层累积并传递至输出,在深层

SNN中尤为明显。因此,即使单个时间步的扰动

幅度很 小,也 可 能 在 推 理 过 程 中 导 致 误 分 类 的

行为。

3.2 基于数据模态的攻击方法

  在计算机视觉领域,SNN既可以用于静态图像

相关的任务,又可以用于神经形态数据相关的任务。
事件数据每个序列都是异步的,非常适合神经形态

芯片处理。常用的神经形态数据又可分为事件数据

和脉冲数据[119]。因此为了验证SNN鲁棒性需要

为静态图像数据集合事件数据集分别设计攻击方

法。对于静态图像数据的攻击可以适当结合深度学

习方法完成,然而对事件数据则不同。并不是所有

的可微近似都适合这种序列数据。例如有些可微近

似要求将神经元序列响应看作浮点值,需要额外设

计才能得到序列扰动方案。下面分别介绍针对静态

图像的对抗攻击方法、针对事件数据的对抗攻击方

法,以及跨数据模态的攻击方法。图7中给出了三

种方法的示意图。

图7 基于数据模态的攻击方法

(1)针对静态图像的攻击方法

图像输入SNN需要首先经过编码。攻击方法

目前已经覆盖常用的频率编码方案,包括泊松编码

和直接编码。

Sharmin等人首先提出了针对泊松编码的静态

图像的对抗攻击方案[22]。作者首先对图像进行泊

松编码,即根据输入的像素强度以一定的概率在每

个时间步触发脉冲。转换后的泊松序列输入到第一

个卷积层并得到第一层卷积层的输出。对第一层卷

积层的输出关于损失函数求导可得其梯度。将其梯

度输出序列的梯度求平均并反卷积到和输入维度一

样可得估计的泊松编码前图像的梯度,并据此设计

FGSM、PGD等攻击。该方法建立在白盒设定下,
需获取完整模型结构与梯度信息。但是作者也进行
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了黑盒攻击测试,即攻击者不知道目标模型的参数结

构,验证了攻击方法的迁移效果。该方法本质上是通

过梯度近似。除了上述梯度近似方法,Sharmin等

人[26]还设计了一种基于ANN的间接SNN攻击方

法,该方法规避了在脉冲域求导的挑战。下文将其

命名为转换可微近似的攻击方法。Mukhoty等人

的工作中同样涉及针对泊松编码的白盒攻击[120]。
作者采用的做法是攻击过程中利用直通估计器解决

泊松编码中非可导节点的梯度传播问题,从而可在

反向传播中计算扰动方向。

Kundu等人针对直接编码的静态图像提出攻

击方法[24]。直接编码相比于泊松编码更容易得到

对抗扰动,因为直接编码并不涉及将图片编码到某

个脉冲域上,梯度扰动可以直接施加在数据上。作

者使用了BPTT方法计算损失函数对每个输入像

素的梯度再在时间轴上累加起来。其余步骤与

ANN攻击相同。作者验证了应用FGSM 和PGD
攻击的效果。然而复杂攻击方法的效果不明。这一

缺点在后续论文中得到改进。Ding等人将直接编

码的图像攻击方法拓展到RFGSM、BIM 等攻击方

法中[25]。Liu等 人 将 这 种 攻 击 方 法 拓 展 到 Au-
toPGD多步攻击,通过自动调节步长实现更有效的

攻击[121]。此外,作者还采用了集成攻击的框架,在
每个测试样本上尝试所有攻击组合,只要有一种成

功使模型输出错误,就判定为攻击成功。该方式极

大提高了模型鲁棒性评估的可靠性。Ding等人将

l2 约束的攻击加在了直接编码攻击上,拓展了该类

攻击的范数约束[42]。Jiang等人设计了基于 MIM
的直接编码梯度攻击[122]。

Bagheri等人设计了适用于概率SNN的白盒

攻击方法[41]。该方法特点在于Bagheri等人考虑了

直接编码、泊松编码以及TTFS编码的攻击。添加

脉冲、删除脉冲以及翻转脉冲。攻击受到Hamming
 

距离控制。Marchisio等人提出也提出了类似的工

作,通过梯度反向传播在图像中添加特定模式输入

噪声,在推理过程中导致SNN位翻转[123]。该方法

高度隐蔽,适配了频率编码之外的方法。然而为了

设计扰动,方法需在梯度空间中反复迭代优化,计算

成本较高。
上述所有攻击方法都需要攻击者了解模型的结

构和参数,也就是需要白盒信息。这对于部分攻击

场景是不可行的。另外还有针对图像数据的黑盒攻

击方法。Marchisio等人提出黑盒对抗攻击算法攻

击脉冲深度信念网络[124]。该方法不依赖模型结

构、参数或训练数据,仅通过输入和输出信息进行攻

击。作者通过定义感知距离度量图像扰动的可感知

度和分类间隔描述目标类别概率与其余类别中最大

概率之间的差值,实施迭代扰动。每轮迭代选择扰

动优先级最高的像素,直至感知距离超过预设阈值。
该方法优势是可以迁移到其他深度结构上,但缺点

是攻击效率受限于启发式搜索,需逐像素评估扰动

方向与幅度,难以扩展至高分辨率图像。
综上,针对静态图像的对抗攻击方法主要通过

对白盒设定下频率编码设计梯度扰动策略,目前已

经扩展到更复杂的多步攻击和范数约束攻击,同时

也出现了无需模型结构信息的黑盒攻击,但在攻击

效率方面仍存在挑战。
(2)针对事件数据的攻击方法

与传统的帧采集相比,DVS采集异步事件数

据[125]。事件数据集为事件相机采集或相机原理模

拟出的数据集合,包括 DVS-Gesture和 NMNIST
等,可用于训练和测试SNN模型。现有的对抗攻

击方法应用到事件数据上存在挑战[37],数据形式不

同。事件数据中事件时间是连续值,处理时可能需

要转换为帧。因此,攻击工作主要在事件的表征上

进行。
首先,Marchisio等人提出DVS-Attacks扰动,

包含了很多基于事件数据的扰动方法[126]。这些方

法包括稀疏攻击方法、帧攻击方法等等。为了攻击

DVS数据,作者首先将DVS数据变换为具有时空

维度的数据格式。稀疏攻击方法根据数据每个序列

的损失函数逐步更新扰动量。该方法利用掩码来选

择应添加扰动的特定事件帧。之后,输出预测概率

以及扰动下获得的损失函数值。最后,根据损失函

数关于输入的梯度更新扰动值。之后,作者提出了

若干非对抗扰动的方法。作者提出简单的帧攻击方

法,在数据周围添加一个事件框。该方法将导致事

件数量增加,影响
 

SNN
 

推理延迟。角点攻击依次

修改图像角落像素,根据分类结果自适应调整扰动

区域与强度。该方法的缺点是并非所有样本都受到

相同强度的扰动。难攻击的数据上扰动更容易被发

现。连字攻击在空间上集中于图像边缘的相邻像素

点,扰动不会导致事件数量大量增加。上述方法中

只有稀疏攻击方法是涉及白盒设定的梯度,其余均

为黑盒方法。
受到 Marchisio等人的工作启发,Büchel等人

提出了更具可拓展性以及更高效的事件攻击方

案[37]。作者提出基于深度学习攻击方法DeepFool
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的SpikeFool方法。该方法同时具备可拓展性和稀

疏性,通过迭代寻找网络决策边界,对扰动进行稀疏

约束。为了保持事件数据的离散性,SpikeFool
 

在

每次迭代时将输出四舍五入到最接近的整数。最

后,SpikeFool
 

利用上下限约束来施加二进制约束

或限制发放率,从而使其适应于不同类型的数据。
该方法的优势在于基于DeepFool的方法攻击性能

较好,劣势在于计算复杂度较高。
在上述工作后,Lee和 Myung提出了基于事件

脉冲张量表征(Event
 

Spike
 

Tensor,EST)的事件数

据攻击方法[39]。该方法首先通过一个多层感知器

卷积核卷积,将事件数据转换成多通道网格表示构

建EST表征[38]。作者为了攻击原始事件的时间,
设计了基于梯度的攻击方法,其中攻击扰动被认为

是数据中事件时间的偏移。此外,作者还随机生成

了额外的对抗事件,在没有事件的位置添加空事件,
并利用空事件的损失梯度迭代地来确定额外对抗事

件的位置。该方法的优势在于,扰动后的数据格式

和事件数据的原格式相同。且攻击方法对于SNN
和ANN具有通用性。缺点在于扰动的范数仅仅建

立在数据上,并没有验证扰动量是否可以在真实场

景上被人类观察到。

Marchisio等人设计了一种针对事件帧的时空

对抗攻击算法[127]。该攻击采用掩码选定哪些帧需

要扰动,从而控制扰动的稀疏性。作者分别针对无

防御SNN、有防御但是攻击者知道或者不知道防御

的情况三种条件进行攻击。使用交叉熵损失对扰动

进行迭代优化,基于目标类别的概率变化计算损失,
并通过反向传播逐步调整扰动。该方法的优势是在

不同事件数据集都具有较好性能,劣势是攻击仍基

于帧数据,而不是原始事件数据。
为了直接攻击在事件数据上,克服上述工作的

不足,Yao等人设计了一种能够直接对事件相机输

出的数据格式进行扰动的对抗攻击框架[128]。作者

提出Gumbel-Softmax采样策略和直通估计器,将
离散优化问题转化为可微的连续优化问题,从而使

得梯度优化可行。该方法集合了其他事件工作的优

势,通过梯度攻击提高了攻击性能,同时直接攻击原

始事件数据。同时,攻击样本在稀疏性和扰动幅度

上较小。但是其限制是攻击方法需要模型梯度信

息,难以直接在黑盒条件下应用。
综上,针对事件数据的攻击方法通过扰动事件

的时间、位置或数量实现攻击,包括帧转换、稀疏优

化、EST表征以及可微采样等多种策略,部分方法

兼顾稀疏性与攻击性能,但仍存在计算复杂度高等

限制。
(3)跨数据模态的攻击方法

除了上述特别针对图像或者事件的攻击方法,
一些方法并没有针对任何数据类型,而是可以灵活

地应用在图像或事件数据上。

Liang等人提出了一种既适用于图像数据,也
适用于事件数据的通用对抗攻击方法[29]。其核心

在于将图像输入转换为泊松输入,而将事件输入转

换为三值的离散值,从而使得两种数据得到统一,实
现跨模态对抗攻击。扰动的形式为基于梯度计算出

的0/1翻转。对于图像数据,作者通过反向传播获

得时空梯度信息,再将这些梯度在时间维度上聚合

得到像素扰动。作者提出将连续梯度映射为三值

(-1,
 

0,
 

1)梯度,解决梯度与脉冲输入格式不兼容

的问题。同时,为应对SNN中常见的梯度消失问

题,作者还在全零梯度时引入随机翻转。该方法的

优点是扰动梯度经过特别设计较为可靠。缺点是只

能进行01翻转,对图像来说扰动粒度较粗。

Lin等人提出了一种基于脉冲概率建模的对抗

攻击方法SPA,可兼容图像数据和事件数据[129]。
其主要原理和Liang等人意一样,也是对图片利用

泊松编码,使之转化为和事件相同的脉冲序列格式,
并基于概率生成扰动,从而在脉冲空间中构造对抗

样本。该方法优势是有较高的攻击效率,迭代次数

少、收敛快。然而,该方法应用在黑盒攻击上时,计
算开销较大。针对上述劣势,Lin等人提出SFTA,
该方法为跨模态的黑盒攻击方法[130]。作者提出利

用训练好的替代模型提取其中间层的脉冲特征并结

合输出层梯度构造损失函数。在统一数据模态上,
该方法也与前述方法类似。该方法的攻击效果依赖

于构建的替代模型,好处是无需目标模型信息,可以

实施黑盒攻击。然而若替代模型与目标模型分布偏

差过大,攻击效果会下降。
上述方法输入数据为离散脉冲数据。然而还有

一类方法,图片输入采用直接编码,而事件数据被处

理成帧数据。Bu等人提出的RGA攻击[30]和 Hao
等人提出的HART攻击[40]就属于这个类型。这两

个方法相当于默认模型采用频率编码,好处是扰动

在事件数据上时不是扰动脉冲,而是扰动事件一段

时间平均而成的帧,如此可以直接使用连续梯度攻

击,而不需要特殊处理成离散信号。
综上,跨数据模态的攻击方法通过统一编码或

特征表征策略使图像和事件数据在同一域中,以此
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支持同一攻击框架,但仍面临替代模型依赖性强和

攻击效率较低等挑战。

3.3 基于可微近似的梯度攻击方法

  之前介绍了数据模态视角的攻击方法,从SNN
本身来看,其不可导特点带来了基于可微近似的梯

度攻击方法这一分类。依照采用的可微近似类型不

同,可分为转换可微近似的攻击方法、随时间反向传

播可微近似攻击方法以及脉冲发放率可微近似攻击

方法。图8中给出了三种方法的示意图。下面介绍

相关方法:
(1)转换可微近似攻击方法

转换可微近似攻击(Conversion-based
 

Approx-
imation,CBA)方法的基本思想是将SNN转换为具

有相同权重和偏置的 ANN,并用 ANN生成SNN
的对抗样本。Sharmin等人提出了这种方法的初始

版本,即利用一个随机初始化的
 

ANN
 

模型,将其权

重替换为训练好的
 

SNN
 

的权重,然后使用
 

FGSM
 

方法对输入进行扰动,得到对抗样本[26]。这种方法

利用了SNN和ANN之间的转换关系,可以直接使

用ANN的梯度信息来构造对抗样本,而不需要对

SNN进行可微近似或修改。在 Ding等人的研究

中,这种攻击方法正式被称作为转换可微近似的攻

击方法[25]。转换可微近似的方法简单易实现,攻击

者不需要知道
 

SNN
 

的实现细节(例如神经元模型、
推理时间步长等),只需要知道其结构,就能依据

SNN发放率与ANN激活值近似等价[87]构建近似,
直接使用 ANN的梯度信息来构造对抗样本,而不

需要对SNN进行可微近似。然而,这种方法的不

足也很明显:因为
 

ANN
 

和
 

SNN
 

存在时序动力学

和脉冲编码上的差异,这些差异在发放率等价中无

法表达,因此该方法生成的对抗样本不够精确,攻击

性能有限。

图8 基于可微近似的梯度攻击方法

  综上,转换可微近似攻击方法通过将SNN转

换为结构相同的ANN并借助ANN的梯度生成对

抗样本,具备实现简便和不依赖SNN细节的优点,
但由于忽略了SNN的时序动态与脉冲特性,导致

攻击精度和效果受限。
(2)随时间反向传播可微近似攻击方法

随时间反向传播可微近似攻击(Backward
 

Pass
 

Through
 

Time,BPTT)方法利用了代替梯度来克服
 

SNN
 

的不可微性质[26]。基于随时间反向传播的可

微近似攻击的设计思路是在反向传播时,用可微函

数替代
 

SNN
 

中的阶跃函数,从而得到损失函数关

于样本的梯度,并用它来生成对抗样本。随时间反

向传播的过程可表示为式(6):

∂L
∂sl[t]

=
∂L

∂sl+1[t]
∂sl+1[t]
∂vl+1[t]

∂vl+1[t]
∂sl[t]

+
∂L

∂sl[t+1]
∂sl[t+1]
∂vl[t+1]

∂vl[t+1]
∂ul[t]

∂ul[t]
∂sl[t]

(6)

其中,t代表第t时间步,ul[t]指的是神经元充电

前的膜电位,vl[t]代表的是神经元充电后的膜电

位,sl[t]代表的是神经元充电后产生的脉冲,L 是

损失函数。该方法的优势是可以利用
 

SNN
 

的时空

动态信息生成与端到端训练梯度不正交的有效梯

度,从而构造出有效的对抗样本。缺点是它需要在

每一层每一时刻进行梯度计算,这会增加计算的复

杂度和开销。为了改善攻击的计算开销,Krithiva-
san等人提出减少攻击时SNN的推理时间生成梯

度攻击[131]。另外,攻击效果会依赖于代替梯度函
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数的选择,不同的代替梯度函数可能会导致不同的

攻击效果。
目前,随时间反向传播可微近似攻击方法广泛

用于SNN的鲁棒性验证[23,26,120],是当前众多攻击

方法中的基线方法。
(3)脉冲发放率可微近似攻击方法

脉冲 发 放 率 可 微 近 似 攻 击(Backward
 

Pass
 

Through
 

Rate,BPTR)[25,62]同基于随时间反向传播

的攻击一样,也是一种针对SNN的梯度攻击方法。
区别在于,这类方法不是使用时间维度上的梯度近

似,而是计算SNN 的平均发放率用于反向传播。
脉冲发放率可微近似公式可表示为式(7):

∂L
∂sl[t]

=
∂L

∂rl+1[t]
∂rl+1

∂rl
(7)

其中,rl 代表第l层的发放率。由于SNN的非线性

激活函数不可导,因此该方法使用了直通估计器的

思想近似∂rl+1/∂rl 。对于IF神经元,该偏导可以

近似为常数1。如此,攻击时就不需要考虑神经元

的动力学和时序信息,有效降低了计算资源需求。
它可以直接利用SNN的发放率信息来构造有效的

梯度攻击,而不改变SNN的前向传播过程。然而,
相比于基于随时间反向传播的攻击,它忽略了SNN
的时序信息,可能无法捕捉到SNN的动态特征,因
此会导致梯度估计不够准确。该方法首先由Ding
等人提出,用于攻击SNN

 [25]。

Bu等人拓展了脉冲发放率可微近似攻击,针对

SNN提出了更具有普适意义的速率梯度近似攻击

RGA
 [30]。RGA使用基于发放频率的代理梯度进行

反向传播进行攻击。此外,他们还提出了一种延长

攻击仿真时间的增强版本,以减小攻击中随机性带

来的影响,从而能够生成更有效的对抗样本。该方

法在白盒攻击和黑盒攻击场景下都比BPTT更为

有效。此外,该方法对神经元参数的敏感性较低,显
示出较强攻击能力。然而,该方法目前局限于频率

编码的神经元。

Hao等人在RGA基础上提出了一种新的攻击

框架HART
 [40]。HART方法强调仅基于频率并不

能高效攻击SNN。因此提出基于频率和时间信息

的混合对抗攻击。HART保持标准的前向传播模

式,但修改了反向传播链以增强对频率和时间信息

的捕捉,允许动态调整代替梯度函数中时序梯度信

息的保留程度。同时,其在时间维度上降低了不同

时间步之间的相关性,能够更加精准地捕获频率信

息。HART相较于其他脉冲发放率攻击方法提升

了攻击成功率,并适用于多种攻击环境和数据类型。
综上,脉冲发放率可微近似攻击方法利用SNN

的平均发放率进行梯度估计,降低了对时序信息的

依赖,具备计算效率高和适用性强的优势,但也因忽

略时序结构导致梯度精度有限。
针对可微近似的攻击方法具有鲜明特点,三者

都旨在解决SNN梯度问题,其中CBA采用间接方

案,而 BPTT 采 用 精 确 方 案。相 比 于 CBA 和

BPTT,BPTR类的方法在梯度的准确性和效率中

维持了平衡。Ding等人对这三种方法的攻击性能

进行了比较,表1摘录了不同可微近似攻击下SNN
的分类准确率和计算效率。详细参数设计以及模型

设置参见文献[25]。作者发现BPTT和BPTR攻击

效果更好,而CBA则攻击能力较差。作者认为,这
是因为CBA改变了SNN网络前向传播过程,使用

了ReLU激活函数来替代SNN的脉冲发放。这一

过程与深度学习能够产生有效攻击的可微近似反向

传播 (Backward
 

Pass
 

Differentiable
 

Approxima-
tion,BPDA)技术的原则相悖。BPDA要求在前向

传播过程中保持原始的非可微函数,而只在反向传

播过程中使用可微近似函数。这样可以避免产生不

准确或无效的梯度信息。BPTR方法则正好能够匹

配BPDA的需求。在计算效率上,BPTR只需要在

每一层计算一次梯度,而BPTT需要计算梯度次数

与时间步成正比,因此BPTR的计算开销更低。作

者实 测 计 算 时 间 为 BPTT 的 三 分 之 一。因 此,

BPTT和 BPTR 同 为 性 能 较 好 的 攻 击 方 法,而

BPTR的攻击计算代价较低。

表1 脉冲可微近似梯度对抗攻击方法比较

CBA BPTT BPTR
FGSM 54.34% 12.78% 10.59%
PGD 37.30% 0.04% 0.10%

计算时间 1× 3× 1×

3.4 梯度无关的攻击方法

  可微近似的攻击方法依赖白盒设定,同时需要

可微近似方法的参与。针对不了解目标模型、参数

的黑盒设定,研究者提出了梯度无关的攻击方法用

于设计对抗扰动。下面介绍相关方法:

Bagheri等人提出针对概率SNN的几种梯度

无关的攻击方法[41]。这些方法均采用直接修改输

入脉冲的方法实现,不依赖梯度信息。该方法一边

去除、翻转、添加脉冲,一边衡量哪个操作能够有效

对数据进行攻击。作者汉明距离计算扰动大小,并
设计了相应贪心算法,选择能够最大化目标类别的
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修改动作。为了降低计算复杂度,攻击只在输入脉

冲序列的前几个时间步内进行搜索。该攻击方式完

全基于对输入脉冲模式的修改操作实现了对SNN
的有效扰动。然而,该方法攻击搜索空间有限,难以

应对高复杂度或深层网络结构。

Venceslai等人提出了梯度无关攻击方法 Neu-
roAttack[123]。该方法通过精心设计的输入噪声影响

 

SNN的安全性。与上述工作一样,该方法也不依赖

网络的梯度信息,主要是通过扰动使得网络中间神经

元脉冲模式发生变化,从而影响SNN鲁棒性。攻击

者通过输入扰动使得特定神经元超过脉冲阈值,从而

完成对目标权重位的翻转。攻击者首先需要选择攻

击目标层和目标神经元,再确定输入触发区域,并采

用优化算法迭代更新输入扰动以最大化目标神经元

的激活程度。该方法存在一定不足,例如方法对攻击

场景依赖性较强,需要攻击者能够在神经形态硬件中

植入木马,实际中实现难度较大;其次,输入扰动位置

选择需要进行模拟测试,缺乏自动化优化流程设计。

Marchisio等人设计了在黑盒场景下脉冲深度

置信网络的梯度无关攻击方法[124]。该方法通过贪

心启发式算法生成对抗样本。方法首先在图像中选

择一个区间,衡量每个像素对分类结果的敏感度,再
根据优先级排序,选择对分类影响最大的像素进行

调整。通过迭代优化,在设定扰动范围内持续调整

输入像素。该方法由于需要频繁评估像素敏感度,
计算代价较高,难以处理大规模复杂输入场景或实

时攻击应用。
上述方法目标模型是可访问的,且攻击构建过

程直接与目标模型相关。下面方法通过构建代理模

型来攻击目标模型:

Lin等 人 提 出 一 种 高 效 的 无 梯 度 攻 击 方 法

SPA
 [129]。该方法基于泊松编码,将脉冲交叉熵损失

和扰动的l2 范数作为扰动的优化目标。该方法更新

扰动向量,直到判断攻击成功并且扰动足够小时退出

优化过程。这一早停设计加快了优化的收敛速度。
在黑盒攻击场景下,该方法为目标模型构建了代理模

型,利用与目标模型输入输出之间的关系估计梯度方

向,并优化代理模型,使其生成的对抗样本能有效迁

移并误导目标模型。该方法的优势在于考虑了代理

模型攻击的迁移性,具备迁移到更多模型上的可能。
然而该方法的劣势在于攻击效果与代理模型的拟合

质量有关,若代理模型与目标模型存在较大差异,迁
移攻击效果可能大打折扣。其次,对于大规模脉冲输

入,该方法仍然存在计算开销较大的问题。

之后,Lin等 人 提 出 了 SNN 黑 盒 攻 击 方 法

SFTA[130]。该方法通过修改代替模型的特征表示

实施攻击。该方法为某一隐藏层的脉冲表示设计扰

动,通过抑制和增强特定特征提升对抗样本的迁移

性与攻击效果。SFTA
 

首先估计代替模型隐藏层的

特征梯度,设计扰动的优化目标函数。在优化过程

中,SFTA抑制正向梯度对应的特征以及增强负向

梯度对应的特征,逐步生成具有强迁移性的对抗样

本。然而该方法存在以下不足:首先,该方法需要提

取目标模型中间层特征,若代替模型与目标模型差

异过大,则转移攻击效果受限。其次,该方法存在较

多参数调优,缺少合适的调参方法。此外,该方法攻

击时迭代次数和仿真步长,计算效率有提升空间。
综上,梯度无关的攻击方法通过直接修改脉冲

输入、设计扰动策略或构建代理模型,在无需访问梯

度信息的黑盒设定下就可实现对SNN 的有效攻

击,但仍面临搜索空间受限、代理模型影响及计算成

本较高等问题。

3.5 攻击方法对比与总结

  本文将攻击方法分为基于数据模态的方法、可微

近似的梯度攻击方法以及梯度无关的方法三个大类。
基于数据模态的方法主要是与SNN常用的输

入数据模态有关。如果采用针对特定数据模态的攻

击将有较好的性能。跨模态方法通过统一编码策略

提升输入数据的适配性。攻击的复杂度与采用的数

据形式有关,若采用帧形式则计算量较小;而若需逐

对事件数据进行逐事件调整,则可能计算量较大。
单模态的攻击方法迁移性较差,而跨模态攻击方法

在通用性和迁移性上较好。
可微近似的梯度攻击方法可以借鉴深度学习的

梯度攻击方法。其主要用于白盒场景,高度依赖模

型梯度信息、神经元类型与网络参数。这类方法由

于梯度信息可用拥有精准的扰动控制能力,能够基

于模型梯度计算构造强攻击样本。然而,可微近似

的梯度攻击方法中性能最好的随时间反向传播攻击

复杂度高,原因是需构建完整的反向传播链。而脉

冲发放率攻击在计算复杂度上介于随时间反向传播

攻击和转换攻击之间,而攻击能力较好。在白盒设

定下通用性较强,适配各类SNN架构。
梯度无关的方法适合黑盒场景,无需模型梯度

或结构信息即可实施攻击。这类方法通常需要设计

启发式策略提高其攻击能力;且需频繁评估扰动效

果,或根据目标模型构建代理模型,导致整体效率下

降。这些方法迁移性较好,适合难以访问模型信息
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的场景。
表2总结了文中提到的攻击方法在具体算法、数

据模态、可微近似、范数约束、输出格式、计算效率与

攻击类型多个角度的特征。可以观察到以下趋势:

表2 脉冲神经网络攻击方法总结

参考
文献

数据
模态

可微近似 具体算法 约束 输出
计算
效率

类型

[41] 图像 — — l0 离散张量 低 白盒

[122] 图像 — — l∞ 离散张量 低 灰盒

[124] 图像 BPTT FGSM/PGD/MIM/BIM l∞ 连续张量 低 白盒

[22] 图像 BPTT FGSM/PGD l∞ 连续张量 低 黑盒/白盒

[24] 图像 BPTT FGSM/PGD l∞ 连续张量 低 黑盒/白盒

[131] 图像 BPTT FGSM/PGD l∞ 连续张量 低 黑盒/白盒

[25] 图像 CBA/BPTT/BPTR FGSM/PGD/RFGSM/BIM l∞ 连续张量 低/高/低 黑盒/白盒

[26] 图像 CBA/BPTT FGSM/RFGSM l∞ 连续张量 高/低 黑盒/白盒

[120] 图像 BPTT FGSM/PGD l∞/l1 连续张量 低 白盒

[42] 图像 BPTT EOT+FGSM/PGD l∞/l2 连续张量 低 黑盒/白盒

[130] 图像 — — 改进l1 连续张量 低 黑盒

[37] 事件 BPTT Deepfool l0 离散张量 低 白盒

[123] 事件 BPTT — l1 离散张量 低 白盒

[126] 事件 BPTT/- — l1 离散张量 低 黑盒/白盒

[39] 事件 BPTT PGD l∞ 连续张量 低 白盒

[132] 图像/事件 — — l0/l2 离散张量 低 黑盒/白盒

[29] 图像/事件 BPTT — l2 离散张量 低 白盒

[133] 图像/事件 — PGD l2 连续张量 低 黑盒

[23] 图像/事件 BPTT FGSM l∞ 连续张量 低 白盒

[30] 图像/事件 BPTR FGSM/PGD l∞ 连续张量 高 黑盒/白盒

[40] 图像/事件 HART FGSM/PGD l∞ 连续张量 高 黑盒/白盒

  (1)目前大部分攻击方法仍以图像数据为主要

攻击对象[22,24-26,42]。跨模态攻击方法数量排在第

二[29-30,40,129-130]。而针对事件数据的攻击研究相对

较少[37,39,126,128]。因此,未来可以围绕事件数据设计

更多攻击方法。
(2)BPTT的可微近似是当前使用最广泛的可

微近似方法[22,24-25,39,120],原因是其可精准构建时间

维度上的梯度信息,但计算开销大。未来可积极研

究计算量较小的方法,如脉冲发放率的攻击方法。
(3)受到深度学习影响,FGSM 与PGD

 

是最常

见的基础攻击方法[22-24,39,42],可结合多种范数生成

对抗样本。目前有少量研究使用多步攻击、基于优

化的攻击等方法实施进阶攻击[37,42,122],提高了攻击

方法的多样性。梯度无关攻击[41,123,124,129,130]适用于

黑盒条件,但通常攻击效率较低。未来可在进阶攻

击和梯度无关攻击上提高攻击性能以及改善计算复

杂度。
(4)图像攻击大多直接使用连续张量扰动[22-25],

便于直接优化像素值,
 

范数约束通常为l∞ 。事件数

据和概率SNN攻击多为离散张量扰动[37,126,128,129],
需考虑脉冲数量、位置等整数约束,范数约束通常为

l1,l2。

(5)计算效率大多较低,主要原因是采用BPTT
可微近似或梯度无关攻击方法[37,124];脉冲发放率类

方法在计算效率上[30]表现更好。目标模型的透明

度上,攻击以白盒攻击为主[24-25,122],但部分工作支

持黑盒或灰盒设定[42,124,129,130]。
当前SNN攻击和防御工作目前主要围绕识别任

务展开。常用数据集包括静态图像数据如 MNIST、

FMNIST、CIFAR-10/100和神经形态数据如 DVS-
Gesture、N-MNIST、DVS-CIFAR10、N-Caltech101。目

前常用的性能量化指标主要包括分类准确率与攻击

成功率(Attack
 

Success
 

Rate,ASR)。分类准确率表

示模型在对抗样本上的正确分类比例。攻击成功率

表示在所有用于测试的对抗样本中,能够成功欺骗模

型使其输出错误预测的比例,如式(8):

ASR=
Nsuccess

Ntotal
(8)

其中,Nsuccess 表示攻击成功的样本数,Ntotal表示攻

击样本总数。
攻击方法的能力越强,分类准确率越低,ASR

 

越高。表3显示,在强度范围为0.03至0.1的攻击

下,多种方法在上述数据集上取得了超过90%的攻

击成功率,部分方法如Büchel、Liang和Hao等甚至
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  表3 脉冲神经网络攻击性能

攻击方法
攻击
强度

网络
结构

数据集
攻击

成功率

Liang等人[29] — 8层SNN MNIST 91.31%

Bu等人[30] 8/255 VGG-11 CIFAR10 93.74%

Liang等人[29] — 8层SNN CIFAR10 98.68%

Ding等人[25] 8/255 VGG-11 CIFAR10 99.63%

Hao等人[40] 8/255 VGG-11 CIFAR10 100.00%

Bu等人[30] 8/255 ResNet-17 CIFAR100 92.06%

Bu等人[30] 8/255 VGG-11 CIFAR100 94.72%

Ding等人[25] 8/255 VGG-11 CIFAR100 99.59%

Hao等人[40] 8/255 VGG-11 CIFAR100 99.96%

Marchisio等人[126] — — N-MNIST 74.41%

Liang等人[29] — 7层SNN N-MNIST 97.38%

Büchel等人[37] 0.5 LeNet-5 N-MNIST 99.88%

Bu等人[30] 8/255 VGG-11 DVS-CIFAR1059.56%

Liang等人[29] — 5层SNN CIFAR10-DVS 100%

Ding等人[25] 8/255 VGG-DVSDVS-CIFAR1087.11%

Hao等人[40] 8/255 VGG-DVSDVS-CIFAR1093.03%

Marchisio等人[126] — — DVS-Gesture 92.44%

Büchel等人[37] 0.1 LeNet-5 DVS-Gesture 99.87%

Lee等人[39] 0.1 ResNet N-Caltech101 95.50%

接近100%,显示出端到端可微近似策略在攻击图

像与事件数据方面的强大效果,进一步凸显了SNN
在安全性方面所面临的严峻挑战。

4 脉冲神经网络防御方法

第3节说明SNN在面对对抗攻击时表现出脆

弱性。这些攻击方法大部分借鉴了ANN中的梯度

攻击技术,实施有效的攻击。目前已有研究工作指

出SNN在某些方面具有比传统 ANN更强的鲁棒

性。因此,如何发挥SNN在鲁棒性方面的优势,以
及如何进一步增强这种优势,成为了研究者们关注

的问题。本节首先将分析SNN鲁棒性原因,并且

从输入层面、网络层面以及输出层面分别介绍SNN
防御方法。

4.1 鲁棒性分析

  SNN与传统 ANN使用的数据表征和信息处

理方式有区别,因此在面对噪声时表现出不同的计

算性质。本节将介绍SNN 鲁棒性分析的理论框

架,为后文SNN具体防御方法作铺垫。
(1)脉冲神经元

脉冲神经元具有滤波功能。其原因有二。其

一,从神经元动力学角度看,深度SNN 最常用的

LIF神经元因衰减漏电等行为可以被视为滤波器,

能对输入信号进行滤波。例如脉冲响应模型(Spike
 

Response
 

Model,SRM)就存在两个具有滤波功能

的滤波器。响应核描述神经元如何对来自其他神经

元的输入脉冲反应。不应期核描述神经元在发放脉

冲后对后续脉冲活动的抑制作用[9]。其二,脉冲神

经元在达到阈值后发放脉冲并进行重置操作。重置

操作在清除残余膜电位的同时也清除了历史噪声,
从而保持对后续输入的准确响应。

(2)网络编解码

SNN输出离散的脉冲序列。假设推理时间步

为T ,使用频率编码实际能表征的数据范围应在集

合 1
T
,2
T
,…,1  中取到。即使扰动影响输入落在

离散表征范围中间,编码结果不受影响。
目前,频率编码中的泊松编码被认为具有天然

鲁棒性。研究人员已经提出了用于解释这种鲁棒性

的理论。泊松分布具有一定的随机性,能够帮助神

经网 络 适 应 了 带 有 噪 声 的 输 入。Sharmin 和

Marchisio等人进行了 ANN与SNN的对比研究,
发现SNN相较于 ANN在对抗性攻击方面具有一

定程度的固有鲁棒性。论文论证了泊松编码的能

力[22]。延迟编码以及首次脉冲时间编码等方法也

在其他论文中被证实具有一定鲁棒性[28,134]。因此,
选择合适的输入编码方式可以显著提高SNN对随

机噪声和对抗噪声的鲁棒性。Bhaskar等人使用随

机平滑分析讨论泊松编码下SNN 的鲁棒性[120]。
随机平滑可以确定输入带噪声情况下分类器对于输

入变化的容忍度。Bhaskar等人提出针对SNN的

随机平滑定理。该定理将图像像素的0-1张量视

为即将输入到一个平滑分类器的伯努利随机变量的

采样。该分类器能够给出每个类别的概率分布。框

架认为对于任意输入扰动δ,扰动δ 的l1 范数要小

于带有扰动输出中最大概率和次大概率之间差的一

半。该理论表明SNN视为的平滑分类器在一定程度

上对扰动具有鲁棒性,能够保持分类结果的稳定性。
(3)网络信息处理机制

SNN的脉冲编码过程导致其与 ANN信息处

理机制存在差异。目前有两套理论框架可以帮助理

解SNN相比于ANN在鲁棒性上的优势。

①误差放大理论

Ding等人提出SNN误差放大理论[25]。ANN
中的扰动放大主要考虑扰动前后激活值的距离

 

‖al-a~l‖ 和神经网络输出
 

‖f(al)-f(a~l)‖
的关系。SNN误差放大理论借鉴Lipschitz分析将
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整个推理过程的脉冲表征视为激活,并分析其前后

层脉冲距离的放大情况。记SNN第l层的输出脉

冲序列为
 

Sl={sl(t)|t=1,2,…,T}∈χT×Nl
 

(χ

∈{0,1}),其中T 是总时间步,Nl
 是第

 

l
 

层中神经

元的数量。扰动距离可以定义为式(9):

d(Sl,S
~l)=‖Sl-S

~l‖2 (9)
理论得到脉冲序列距离

 

Lipschitz
 

分析结果为式(10):

d(Sl,S
~l)2≤

1
θ2

Λl2d(Sl-1,S
~l-1)2+Γl (10)

其中,Λl 是脉冲表征的Lipschitz系数,Γl 是关于

第l层参数的常数。Ding等人在论文中论证SNN
的Lipschitz常数要小于 ANN 的Lipschitz常数。
因此认为SNN的鲁棒性理论上会优于 ANN的鲁

棒性。

②输入边界传播分析

Liang等人从可证鲁棒性的角度剖析了SNN
鲁棒性[23]。该理论方法在确定输入上下限后确定

膜电位和脉冲函数的上下限。假定u 为膜电位,s
为脉冲,H 为Heaviside阶跃函数,脉冲激活函数生

成的上下限ulb 和uub 可以由式(11)给出:

H ulb[t]-θ  ≤st  
 

H uub[t]-θ  (11)

  

  通过更加精细的线性上下限控制,作者将脉冲

产生函数约束在一个由膜电位上下限划分的三角形

区域中(如式(12)~(13)):

0≤s[t]≤
ut  -ulb[t]
θ-ulb[t]

(12)

0≤uub[t]-θ<θ-ulb[t] (13)

  以此类推,可以将所有层的膜电位上下界都确

定好并得到输出的上下界。SNN输出不会超过上

下限的约束范围。

Calaim等人[135]进一步确定,SNN的输出边界

由多种因素决定,例如解码器矩阵的属性、神经元调

整、阈值的异质性以及网络内的连接性。网络参数

的变化。作者发现负反馈、组件异质性和模块化等

都能够明显改变网络鲁棒性。
4.2 输入防御方法

  既然SNN可以用于静态图像任务以及神经形

态数据任务。相应地,防御方法也会涉及两种数据

模态,静态图像输入到SNN需要脉冲编码,因此可

以设计脉冲编码从源头改善鲁棒性。同时,神经形

态事件数据也可通过滤波方法进行防御。下面介绍

基于脉冲编码的方法和基于滤波的方法。图9中给

出了这两类方法的示意图。

图9 输入防御方法

  (1)基于脉冲编码的方法

Sharmin
 

和
 

Marchisio
 

等人研究表明,特定的

输入编码方法可以提升SNN的鲁棒性。目前,泊
松编码、延迟编码以及首次脉冲时间编码被实验证

明在 小 数 据 集 上 展 示 出 了 一 定 程 度 的 鲁 棒

性[28,43,135]。同时新兴的一些编码方法也被研究人

员提出,它们有的借鉴类脑机制,有的利用了SNN
时序特性。

Sharmin等人通过实验发现,鲁棒性提升与编

码和训练的结合有关。泊松编码引入的随机性[136]

可提升鲁棒性,尤其是黑盒攻击[26]。作者发现由于

SNN直接训练相比转换保留了时序上的内在随机

性与动力学特性,因此在多数攻击场景下表现出更

强鲁棒性。该方法的优点在于泊松编码实现简单,
却能为输入带来扰动提升了网络对扰动的抵抗力。
然而,编码的随机性会给推理准确率带来负面影响。
作者在实验中还结合泊松编码验证了SNN

 

中神经

元的动态特性,如漏电率和时间步长,对鲁棒性的影

响。Sharmin等人绘制了量化后的激活函数在使用

泊松编码时带来的误差示意图,并指出若考虑泊松

编码和神经元结合可以减弱扰动强度。

Mukhoty等人系统论证了基于泊松编 码 的

SNN具备可证对抗鲁棒性[120]。作者将泊松编码视

为对输入Bernoulli采样的随机平滑。在此基础上,
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作者构造平滑分类器,证明在l1 范数下一定强度的

输入扰动会导致输出不变,从而得到理论上的扰动

可证半径。该方法为泊松编码的首个l1 范数下的

理论可证鲁棒性框架。作者的分析兼容转换后的

SNN模型,只要平滑后的分类器满足鲁棒性判据即

可。然而,作者提出的方法也有一定缺点。方法给

出的可证半径受时间步数制约,随着时间增加,模型

在长时间推理下的鲁棒性无法保证。

Ding等人设计了一种基于编码机制的鲁棒性

增强策略[42],通过引入随机门控对脉冲信号进行编

码调控。该方法模拟了生物神经系统中突触传输和

离子通道的随机性,使得每一层的脉冲传输在时间

上具有不确定性,从而增强模型对输入扰动的鲁棒

性。该方法指出泊松编码实质上是随机门控在输入

层的特例,并从理论上为泊松编码提升SNN鲁棒

性的现象给出了数学解释。该方法机制简单,具有

合理理论支持,并可在不改变网络结构的情况下与

其他防御策略联合使用,然而该方法会导致网络分

类准确率略有下降,且训练复杂度提高。
除了泊松编码,研究人员还探索了很多脉冲编

码方法的鲁棒性。首次脉冲时间编码(Time-to-
First-Spike,TTFS)不依赖于脉冲频率而是通过神

经元第一次脉冲的时间表示信息。Nomura等人的

论文通过引入时间惩罚项并发现,降低参考时刻有

助于提高 SNN 的鲁棒 性[28]。Park等 人 分 析 了

SNN在噪声环境下使用频率编码、相位编码等,并
提出 时 间 平 均 脉 冲 编 码 用 于 改 善 SNN 的 鲁 棒

性[134]。Leontev等人发现使用延迟编码的SNN在

对抗攻击下表现出较强的防御力[43]。延迟编码引

入时间维度增强信息的表征。Ding等人提出基于

同步的编码方法,通过控制脉冲发放的起始和终止

时刻,改善了低时间步下的鲁棒性[137]。为了支持

编码策略的效果,作者结合多种反向传播训练算法

与攻击场景对鲁棒性进行了验证,证明了编码中时

间结构信息是SNN鲁棒性的关键。上述这些方法

说明了编码对于鲁棒性的重要性,然而,这些方法在

对比时通常还是与频率编码进行比较,防御较为

被动。

Zhang等人提出类视网膜编码[133]。该方法模

拟了人眼在视觉感知中的动态扫描特性,通过模拟

眼动生成一系列非重复的时间步图像输入,代替传

统直接编码方式,充分展示了SNN的时序处理能

力。然而,相比于泊松编码和直接编码,该方法引入

了额外图像预处理开销。

在此基础上,Wu等人提出了一种基于随机平

滑编码的防御方法,以提升SNN在对抗攻击下的

鲁棒性[138]。该方法将高斯随机扰动引入输入编码

过程,从而实现与传统随机平滑方法等价的对抗防

御机制。与泊松编码相比,该方法具有协方差稳定

的优势。同时,通过控制噪声方差与训练目标权重,
可灵活调节鲁棒性与性能。然而,该方法在未受扰

动数据上性能会有所下降,需引入额外教师网络与

损失,训练流程较为复杂。
综上,引入具有时间结构和随机性的脉冲编码

方法可以提升SNN在对抗攻击下的鲁棒性,但同

时也存在准确率下降和训练复杂度增加等权衡

问题。
(2)基于滤波的方法

滤波方法在深度学习中可以过滤掉任务无关信

息提高网络对于重要信息的特征提取,以此改善鲁

棒性。在事件数据集上,滤波方法主要过滤事件。
而在图像数据集上,滤波方法处理图像中的特征。

Marchisio等人提出了一种基于滤波的方法R-
SNN以增强 DVS输入下SNN 的鲁棒性[127]。R-
SNN通过分析DVS信号时空相关性,发现噪声事

件更稀疏且缺乏时空聚集性。若事件与邻域内其他

事件的时间差超过一定阈值,则该事件被视为噪声

并被删除。该方法计算开销小,滤波仅在局部域上

进行,便于部署在资源受限的神经形态硬件上。然

而,该方法防御能力受限于参数选择,缺乏通用设

计。对于模拟真实事件动态扰动的攻击,该方法可

能失效。
除此之外,Marchisio等人还针对DVS背景噪

声提出了背景活动滤波器(Background
 

Activity
 

Fil-
ter,

 

BAF)和 掩 码 滤 波 器(Mask
 

Filter,
 

MF)[126]。

BAF基于事件的时空相关性,设定一定的邻域窗口

和时间阈值,仅保留相关性较强的事件;而MF则根

据每个像素在指定时间窗口内的脉冲频率设定掩

码,过滤掉脉冲频率过高的像素点所产生的事件。
上述方法都属于数据预处理手段,具有良好的计算

效率,适用于边缘设备。然而,当噪声不存在或参数

设置不当时误滤掉原始有用事件而导致性能降低。
上述方法主要适用于 DVS数据,对于图像数

据,研究人员也进行了大量研究。Li等人提出的混

合注意力机制本质上是一种滤波方法[139]。该方法

通过注意力图对编码层输入进行动态调控,从而实

现对背景干扰的抑制与有用信息的保留。该方法通

过弱监督目标鼓励注意力图具有稀疏性与平滑性,
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使得SNN在时空上集中注意力上保持连续性。该

方法的优点在于其是数据驱动的动态滤波过程,无
需手动设计滤波方法。另外,该方法还能注意力机

制节省能耗与计算开销。然而,该方法训练时引入

的ANN模块可能带来额外计算成本。

Xu等人提出的FEEL-SNN方法涉及一种基于

滤波思想的鲁棒性增强机制,将输入图像转换至频

域,通过逐时间步使用不同频率掩码抑制高频至低

频信息,从而模拟生物神经系统的选择性视觉注意

力并去除干扰[140]。该机制相比时空滤波能更准确

保留图像有效低频结构,同时滤除攻击引入的中高

频成分。然而,该机制对DVS数据的时空处理能力

有待拓展。

Chen等人提出了一种图像滤波的防御方法[141]。
该方法通过图像去噪实现对对抗攻击的防御,是
一种显式的图像空间滤波策略。方法滤波主要由

图像净化模块完成。该净化模块由噪声估计网络
 

NeSNN和图像重建网络
 

RecSNN组成。两个网络

都是SNN。作者设计了滤波前后图片检测方法,
比较图像净化前后的变化程度判断图像是否为对

抗样本。该方法可有效去除对抗扰动,且对原始

图像内容影响较小。图像重建网络
 

RecSNN可

作为预处理步骤集成到任意SNN架构,而无需

修改主干网络。然而,该方法会存在图像信息丢

失风险,一些细节信息可能被误删,进而影响分

类准确性。

Cheng等人提出了基于侧向抑制的SNN以增

强SNN的抗干扰能力[44]。LISNN通过引入生物

学的侧向抑制连接,使其在面对干扰时能够有效地

过滤 无 关 信 息,从 而 更 接 近 大 脑 的 处 理 方 式。

LISNN网络中有卷积层、池化层和全连接层,其中

卷积层负责基础特征提取,池化采用平均池化替代

最大池化以减少信息损失。网络通过动态神经场模

型增强显著特征区域并抑制噪声区域,模拟生物学

中的侧向交互机制的功能,进一步提高了对噪声干

扰的 抵 御 能 力。该 方 法 生 物 启 发 性 强,提 升 了

SNN的生物合理性。且方法仅对局部神经元进行

修正,容易集成到现有SNN架构中。然而,局部

性机制受感受野限制,可能对跨大尺度扰动的处

理能力有限。

Zhang等人在神经元层面抑制由对抗扰动引起

的异常激活,从而实现对输入扰动的动态过滤[142]。
方法建模同一通道内神经元间的侧抑制关系,等同

于高频抑制滤波器防御对抗扰动的高频分量,并保

持其他激活结构。该方法可无缝集成到多种SNN
主干网络中,能够有效抑制高频分量扰动。然而,由
于使用固定侧抑制结构,该方法对一些复杂或非均

匀扰动可能适应性不足。

Dapello等人提出了 VOneNet网络,旨在通过

模拟灵长类动物初级视觉皮层的处理过程来提高图

像识别任务中的鲁棒性[143]。该网络关键设计体现

了SNN的特点:VOneNet的核心VOneBlock结合

了Gabor滤波器组、简单和复杂细胞的非线性特性

以及V1神经元的随机编码。该方法能够有效抵御

白盒对抗攻击和常见图像缺损。随机编码的引入不

仅提高了模型对噪声的鲁棒性,还减少了对特定噪

声模式的过度适应。

Perez-Nieves提出了一种利用神经异质性来提

升SNN鲁棒性的方法[45]。通过神经元在不同时间

尺度上的动态响应,起到对输入扰动的时域过滤作

用。该方法通过引入个体神经元独立的膜电位衰减

常数,使得不同神经元对输入脉冲的响应在时间上

具备不同的保留能力。因此,在处理具有复杂时序

结构的任务时,SNN能更稳定地从扰动中提取关键

信息。该方法具备生物合理性,无需增加神经元或

连接,仅通过增加少量神经元参数,即可获得鲁棒性

提升。然而,该方法主要受制于神经动态的训练调

整,没有显式滤波模型解析或量化滤波频段或响应

特性。
综上,滤波方法可通过时空特征筛选、频率抑制

或神经动态调控等机制,有效去除任务无关干扰,从
而提升SNN在事件数据和图像数据上的对抗鲁棒

性,但其效果往往依赖参数设计、训练策略及模型结

构的适配性。

4.3 网络防御方法

  网络层面提高鲁棒性的方法更为丰富,可以借

鉴深度学习防御方法或者设计SNN特定方法。借

鉴深度学习方法有对抗训练、正则训练、网络轻量化

等方法。而SNN特定方法有区间边界传播方法、
基于神经元设计的方法等。图10中给出了这些类

型的示意图。下面将介绍这些方法。
(1)基于神经元设计的方法

神经元设计可以通过调整神经元膜时间常数、
阈值等参数改变神经元动力学性质,进而改善模型

性能。

El-Allami等人认为,SNN的鲁棒性受到一些

关键神经元结构参数的显著影响。因此作者提出了

一种系统化的方法,通过调整膜电位阈值和推理时
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图10 网络防御方法

间长度改善SNN鲁棒性[46]。作者提出搜索算法,
通过在不同的膜电位阈值和推理时间长度组合下训

练SNN,评估它们在对抗攻击中的表现。作者还指

出,某些初始表现良好的参数组合并不一定在对抗

攻击中表现鲁棒。该方法首次揭示结构参数与鲁棒

性的关系,为SNN领域提供了结构性设计的调优

方向。另外,调节神经元阈值与时间窗口无需大量

额外计算。然而,该方法需人工调参,缺乏自动化鲁

棒性最优化流程,因此SNN设计中需要更加全面

的参数调优方法。

Xu等人提出的FEEL-SNN方法给SNN神经

元加入进化泄漏因子。每个神经元在每个时间步上

都能自主学习最优泄漏强度,既保留有效信号,又过

滤扰动传播[140]。进化泄漏因子通过动态学习保持

信息表达能力,在提升鲁棒性的同时保证未受扰动

样本的高准确率。然而,训练时进化泄漏因子对每

个神经元和时间步引入可训练参数,计算代价略增。

Geng等人提出了一种基于神经元自适应阈值

的鲁棒性增强方法[144]。作者受到生物神经系统中

稳态调节机制的启发,提出了一个改进的LIF神经

元模型。在该模型中,神经元的阈值不再是固定的,
而是按照其膜电位的扰动误差与其历史期望值动态

调整。作者从理论上证明改进神经元满足有界输入

-有界输出稳定性,避免扰动效应逐层累积。该方

法有较好理论支持,模拟大脑中调控神经活动强度

的稳态调节机制。然而,目前实验使用静态图像数

据集,对事件数据任务的适配用有待探索。
除此之外,研究人员还提出很多利用神经元动

力学上的调整影响和改善鲁棒性的方法。Chen等

人提出的噪声估计网络
 

NeSNN
 [141]中,使用的是具

有多阈值脉冲神经元增强对噪声的响应灵敏度。

Ding等人从非线性动力系统的稳定性出发分析了

LIF神经元在输入扰动下的膜电位演化过程,并提

出动态LIF神经元以实现对神经元时间演化过程

的主动调控[145]。动态神经元中逐步可训练参数通

过最小化膜电位扰动的均方差调整,以增强SNN
的鲁棒性。这些方法与标准SNN训练相比,需记

录神经元浮点变量,增加存储和训练复杂度。
综上,通过调整神经元的膜电位阈值、泄漏因子

等参数影响神经元结构与动力学设计可以提升

SNN对抗鲁棒性,但也面临参数调优复杂、计算成

本上升等挑战。
(2)基于对抗训练的方法

对抗训练能够有效提高深度网络的鲁棒性,对

SNN也不例外。Bagheri等人提出将对抗训练用于

训练SNN的方法[41]。然而该方法仅在浅层SNN
结构上进行验证,深层能力为止。因此,基于上述方

法,Kundu等人将对抗训练应用到深层SNN上[24]。
作者提出了HIRE-SNN训练方法,旨在不显著增加

额外训练时间的前提下通过引入构造扰动来增强

SNN的鲁棒性。时间步被划分为相等长度的周期,
在每个周期结束时为输入图像添加噪声。然而,该
方法仅针对图像数据集验证,尚未在事件数据或时

序任务中拓展。该方法涉及的对抗训练思想还在后

续其他方法体现[42,121,140,144]。

Ding等人拓展了对抗训练的扰动样本使用[25]。
在Kundu等人工作中,只有FGSM被使用。在Ding
等人工作中,作者构建了多种梯度近似攻击的扰动样
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本,在训练过程中随机采样混合扰动样本进行对抗训

练,使模型能够泛化到不同攻击方法上。然而,采用

多种梯度近似攻击也会导致训练时间大大增加。

Özdenizci等人提出了一种基于ANN转换SNN
的对抗训练防御方法,通过整合预训练ANN中的鲁

棒性,提升SNN的鲁棒性[132]。作者引入深度学习中

增强的对抗训练方法TRADES和 MART优化ANN,
并将网络转换为SNN。随后,该方法对SNN进行对抗

微调,联合优化突触连接权重和各层发放阈值。该方

法的不足在于需要训练ANN,不适用于纯事件数据的

任务,且训练过程复杂,整体训练开销较大。

Mukhoty等人使用对抗训练框架时对网络中

的随机性采用直通估计器进行梯度估计,从而生成

有效扰动样本[120]。

Ding等人提出新的对抗训练目标以及辅助损

失函数,以提高SNN鲁棒性[145]。作者从LIF神经

元的动力学方程出发,推导出扰动前后膜电位的演

化差值公式,并构建可微的扰动度量指标即膜电位

扰动的均方差。训练时,作者采用未受扰动样本和

扰动后样本的平均任务损失的基础上,引入膜电位

扰动的均方差作为对抗训练辅助损失函数,鼓励网

络对输入扰动在特征层面的响应更加一致。该方法

使用简单,不会增加太多计算量。然而,膜电位扰动

的均方差损失依赖动力学假设,实际中可能受到数

据分布等其他因素的干扰。
综上,对抗训练已被广泛用于提升SNN的鲁

棒性,引入扰动样本、辅助损失函数或结合ANN训

练策略均可有效增强SNN抗干扰能力,但是会带

来训练开销增加等问题。
(3)基于正则训练的方法

正则训练方法通过向模型加入正则化改善模型

的能力。正则化的对象可以为权重、脉冲激活以及

梯度等。

Ding等人通过理论分析认为SNN具备一定相

比于ANN的鲁棒性优势[25]。作者提出了正则化

对抗训练RAT方法,通过SNN的理论分析结果增

强SNN的鲁棒性。作者推导出脉冲Lipschitz常数

刻画扰动在脉冲传播中的放大效应,并引入谱范数

约束,减小扰动距离的扩张。该方法采用谱范数正

则化从结构约束角度防止扰动放大,且可以与对抗

训练互补增强鲁棒性。然而,该方法对不同架构需

调参评估鲁棒性性能,且当前调控脉冲Lipschitz常

数的方式是间接方式。

Liu等人发现SNN对于随机扰动的鲁棒性远

高于对抗扰动下的鲁棒性,并证明了两种鲁棒性之

间的差异可以被网络梯度的稀疏性所约束[121]。作

者提出基于梯度稀疏性正则化的SR训练方法,旨
在通过减小对抗鲁棒性与随机鲁棒性之间的差异,
来提升SNN的对抗鲁棒性。为了避免将梯度的l0
范数直接作为正则化项导致的二次反传问题,作者

使用了有限差分来估计梯度的范数。该方法主要在

梯度上进行操作,不依赖于损失函数的具体形式,也
不依赖于攻击方式,且理论基础较好。然而,该方法

在面对非梯度攻击或梯度遮蔽等场景下可能存在问

题,且引入SR后训练时间增加幅度较大。
综上,正则化方法通过引入结构性约束抑制脉

冲放大和梯度异常,可有效提升SNN的对抗鲁棒

性,但仍面临调参复杂、训练耗时等挑战。
(4)基于区间边界传播的方法

区间边界传播方法可以确定网络扰动后可证明

的输出边界范围。然而ANN中方法无法直接使用

在SNN中,研究人员为SNN设计并修改了区间边

界传播方法以支持SNN的脉冲激活传播。

Liang等人基于区间边界传播的框架探讨了

SNN的鲁棒性问题[23]。作者提出了两种方法:S-
IBP(Spiking

 

Interval
 

Bound
 

Propagation)和 S-
CROWN(Spiking

 

CROWN),通过为SNN的神经

元建模和输入形式设定边界,提升其对对抗攻击的

抵抗力。S-IBP方法主要针对SNN中的脉冲产生

函数,通过线性松弛计算神经元发放脉冲时的上下

界,确保在扰动较小时模型的输出依然稳定。该方

法将SNN的复杂动态行为转化为可计算的上下

界,确保模型能够应对各种扰动。S-CROWN方法

基于CROWN,最初是为权重噪声鲁棒性设计的验

证方法。S-CROWN利用线性方程来表述输入对输

出的影响,从而处理SNN中的复杂神经元动态行

为。作者以线性形式描述SNN的输出边界,进而

为不同输入类型设定边界条件。训练时作者使用下

界作为损失函数,逐步增加训练中的边界半径提高

模型的鲁棒性。该方法首次实现SNN的可认证鲁

棒训练,并支持脉冲输入、图像输入等格式。然而,
该方法计算成本较高,需分别进行前向和反向边界

传播。脉冲产生函数附近的松弛带来较大误差,使
得可证半径不准确也会影响模型性能。

基于上述工作,Mukhoty等人将发放率编码过

程视为一种对输入加入伯努利噪声的随机平滑,建
立了SNN可证防御模型的框架[120]。为了构建可

证边界,作者首先建立了单伯努利噪声扰动下的理

032 计  算  机  学  报 2026年



论鲁棒性界限,然后推广到多变量伯努利噪声编码

的情况。作者还结合对抗训练策略,在伯努利平滑

分类器的基础上进一步增强鲁棒性。通过使用直通

估计器处理非可导的随机采样节点。该方法有可证

半径保证,但是需要大量蒙特卡洛采样得出可证边

界,计算开销较大。
综上,区间边界传播方法通过为SNN建模上

下输出边界,实现对扰动下模型行为的可证保障,以
此增强鲁棒性表现,但仍受限于边界松弛误差、脉冲

函数不可导及较高计算成本等实际问题。
(5)基于网络轻量化的方法

稀疏性和量化可以通过移除冗余连接或正则化

改善过拟合,以此增强神经网络泛化能力和鲁棒性。
在SNN中也有相关工作。

Li等人提出将感知量化与对抗训练及推理相

融合,以缓解量化引起的性能下降并提升对抗鲁棒

性[47]。训练过程中,作者在每轮训练迭代中引入对

抗攻击以增强模型鲁棒性,提出将对抗训练与感知

量化训练相结合的综合框架,使得模型能够在感知

量化过程中进行对抗训练,减少攻击影响。作者通

过设计融合感知量化的推理过程,在推理阶段采用

感知量化后的模型,提高对抗攻击下的推理精度。
该方法的优势是作者在PKU-NC64C类脑芯片上

进行硬件验证,证明了量化方法在实际硬件部署中

的有效性。然而,方法存在以下不足。方法实验主

要集中在较小规模模型和数据集,缺乏大规模、复杂

任务的系统验证。另外,模型需要在训练时精细调

整比特宽度和量化比例,缺乏自动化调整手段。
改善稀疏性有助于降低SNN计算能耗。Schmolli

 

等人提出了一种基于稀疏结构的对抗鲁棒
 

SNN
 

转

换方法,旨在提高鲁棒性的同时兼顾稀疏性与能

效[48]。该方法首先在ANN训练阶段采用TRADES
鲁棒训练框架进行对抗训练,并通过稀疏剪枝方法

生成稀疏但鲁棒的
 

ANN
 

权重和连接结构。作者在

转换后的稀疏
 

SNN
 

上进行对抗微调,微调阶段使

用基于代替梯度的反向传播方法,并结合正则化的

对抗训练目标,稳定神经元的输出响应。该方法得

到的SNN不仅比传统端到端稀疏
 

SNN
 

训练方法

具有更高的对抗鲁棒性,还显著降低了计算成本。
然而该方法也存在不足,方法需要多阶段训练流程,
训练复杂度较高:整体训练流程复杂、周期长,对于

资源受限的应用仍然有较大负担。
综上,网络轻量化方法通过稀疏性剪枝与量化

等手段在改善SNN能效的同时增强其鲁棒性,但

仍面临训练流程复杂等问题。

4.4 输出防御方法

  Ding等人探讨了通过调整SNN的输出解码方

法来增强鲁棒性的方法[137]。当前常用的解码策略

是通过平均脉冲发放率来确定模型的输出类别。作

者引入了首次脉冲时间解码(Time-to-first-spike,

TTFS)这种时间依赖的解码方式。该方法不依赖

输出脉冲的数量,更加关注输出神经元首次发放脉

冲的时间点,作为模型决策和误差信号的依据。作

者发现采用
 

TTFS
 

解码的模型整体鲁棒性更优,可
以在面对黑盒攻击时表现出较好的鲁棒性。作者也

指出 TTFS输出防御方法的局限性。为了保证
 

TTFS
 

解码的可微分性,训练过程中需要对首次脉

冲时间进行可微分处理以配合交叉熵损失函数。这

带来了额外的计算开销和复杂度。
输出防御方法利用时间信息提升SNN对抗鲁

棒性,但需对解码进行可微处理以适配训练,增加了

计算复杂度。

4.5 防御方法对比与总结

  本文将防御方法分为输入防御方法、网络防御

方法以及输出防御方法三个大类。
输入防御方法主要针对扰动样本在进入网络前

的处理,可分为基于脉冲编码与基于滤波两类,前者

从编码源头提升鲁棒性,后者从数据预处理角度过

滤扰动。这类方法的优势在于实现灵活且易于部

署,能够直接作用于输入数据而不改变网络结构。
然而,其鲁棒性提升常与参数选择或随机性有关,存
在降低准确率或增加训练复杂度的情况。

网络防御方法更注重从模型本体出发提升

鲁棒性,可分为五类:神经元设计、对抗训练、正
则训练、区间边界传播与网络轻量化策略。在神

经元设计方面,研究者通过调整神经元膜电位阈

值、泄漏因子等参数,改善SNN的鲁棒性。然而

在计算成本和调参复杂性上存在挑战。对抗训

练方法通过引入扰动数据和辅助损失函数提升

鲁棒性。这些方法改善了泛化性但训练耗时增

加。正则训练方法利用结构或梯度正则约束防

止扰动放大,可不依赖攻击方法但存在额外调参

与训练开销。区间边界传播方法建模脉冲激活

的上下界实现可证鲁棒性,但受限于边界松弛误

差与高计算代价。网络轻量化如稀疏剪枝与感

知量化,则兼顾鲁棒性与能效,适合边缘部署,但
训练流程复杂。整体而言,这些方法通过模型设

计与训练策略的多层优化通常理论基础扎实,适
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合在训练阶段提升模型鲁棒性,但也带来了效率

与性能的权衡问题。
输出防御方法通过改变解码方法提升SNN

的对抗鲁棒性。当前常用的输出方式多基于平

均脉冲发放率,研究者提出使用首次脉冲时间解

码增强鲁棒性,强化了SNN对时间信息的利用。

输出防御方法无需修改模型结构,适合作为后处

理模块集成进模型;但实现时需权衡优化时的计

算代价。
表4总结了文中提到的防御方法所涉及的防御

方案、防御类型、进行了验证的攻击类型以及测试用

的数据集。可以观察到以下趋势:

表4 脉冲神经网络防御方法总结

参考
文献

输入 网络 输出
防御
类型

验证攻击 数据集

① ② ③ ④ ⑤ ⑥ ⑦ ⑧
主动/
被动

黑盒/白盒

[144] √ 被动 白盒 MNIST/CIFAR10/CIFAR100
[127] √ 被动 白盒 MNIST
[28] √ 被动 白盒 MNIST/FashionMNIST
[31] √ 被动 白盒 MNIST/CIFAR10/CIFAR100
[46] √ √ 被动 白盒 ImageNetC
[134] √ 被动 白盒 MNIST/CIFAR10/CIFAR100

[146] √ 被动 黑盒
MNIST/FashionMNIST/
NMNIST/DVSGesture

[140] √ 被动 黑盒 CIFAR10/ImageNetC
[137] √ 被动 黑盒/白盒 MNIST/CIFAR10
[26] √ 被动 黑盒/白盒 CIFAR10
[22] √ 被动 黑盒/白盒 CIFAR10/CIFAR100

[147] √ √ 被动 黑盒/白盒
MNIST/FashionMNIST/

CIFAR10
[41] √ √ 被动 黑盒/白盒 CIFAR10
[143] √ 被动 黑盒/白盒 MNIST

[23] √ 主动 白盒
MNIST/FashionMNIST/

NMNIST

[120] √ √ √ 主动 白盒
CIFAR10/CIFAR100/
SVHN/ImageNet100

[48] √ 主动 白盒 USPS
[45] √ 主动 黑盒 MNIST/FashionMNIST
[25] √ √ 主动 黑盒/白盒 CIFAR10/CIFAR100
[24] √ 主动 黑盒/白盒 CIFAR10/CIFAR100

[125] √ √ 主动 黑盒/白盒
CIFAR10/CIFAR100/
TinyImageNet

[142] √ √ √ 主动 黑盒/白盒 CIFAR10/CIFAR100

[138] √ √ 主动 黑盒/白盒
SVHN/CIFAR10/

CIFAR100/TinyImageNet

[145] √ √ 主动 黑盒/白盒
SVHN/FMNIST/
CIFAR10/CIFAR100

[141] √ √ √ 主动 黑盒/白盒
CIFAR10/CIFAR100/
TinyImageNet

[139] √ 主动 黑盒/白盒 SVHN/CIFAR10/CIFAR100
[131] √ √ 主动 黑盒/白盒 CIFAR10/CIFAR100

[47] √ 主动 黑盒/白盒
CIFAR10/CIFAR100/
TinyImageNet/ImageNet

[42] √ √ √ 主动 黑盒/白盒 CIFAR10/CIFAR100
[44] √ 主动/被动 黑盒 NMNIST/DVSGesture
[126] √ 主动/被动 黑盒 NMNIST/DVSGesture

注:表中序号对应防御技术:①脉冲编码;②滤波;③神经元设计;④正则训练;⑤网络轻量化;⑥区间边界传播;⑦对抗训练;⑧脉冲解码。
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  (1)脉冲编码是目前研究最广泛的输入防御技

术,说明从输入提升鲁棒性是主流研究方向。其次

是滤波方法,尤其在神经形态数据中应用广泛,说明

这类方法在处理事件噪声上具有实际价值。在网络

层面,神经元设计、对抗训练和正则训练被多项研究

高频采用,表明SNN内部结构与训练策略是网络

层面鲁棒性增强的核心。区间边界传播与网络轻量

化现频次较低,未来研究可在此方向继续发展。输

出防御方法目前较少,只有脉冲解码唯一子类。鉴

于其防御效果,未来研究可在此方向进一步研究。
(2)防御类型上,表中被动防御主动防御几乎参

半。被动防御指防御方法不了解攻击方法的细节,
也无法利用攻击后的数据提高鲁棒性,例如编码、滤
波方法;而主动防御指防御方法可利用攻击后的数

据提高鲁棒性,例如对抗训练。主动防御方法思想

上与深度学习对抗鲁棒性增强方法一致性较高,能
够利用的是SNN网络层面的独特性设计方法。而

被动防御能够主要体现SNN本征鲁棒性并进行发

扬。因此,两个防御类型都是未来重要研究方向。
(3)黑盒攻击是目前评估SNN防御方法的主

要方法。多数编码与滤波方法适用于黑盒攻击场

景,说明输入上的操作具有良好的通用性。区间边

界传播、对抗训练与正则训练方法则主要在白盒攻

击下验证鲁棒性。未来研究需要设计能同时抵御黑

盒与白盒攻击的方法。
(4)CIFAR10是当前SNN鲁棒性研究的主要

评估数据集,几乎所有防御方法都基于该数据集进

行了 实 验 验 证。其 次 是 MNIST、CIFAR100 与

FashionMNIST等中小规模数据集。用于事件数据

验证的方法相对较少,事件模态下的防御策略仍处

于发展初期,未来需要更多面向DVS等任务的防御

方法,以及面向大规模图像数据集的防御方法。
防御方法评估时使用的性能指标与攻击方法相

同。模型的防御能力或鲁棒性越好,攻击后分类准

确率越高,攻击成功率越低。表5通过CIFAR10数

据集下的白盒FGSM攻击实验,展示了近年来部分

SNN防御方法在攻击前后准确率的变化情况。整

体趋势表明,SNN防御方法的鲁棒性自2020年起

逐年有所提升,反映出该领域的持续进展。然而,近
年来提升趋于缓慢。部分研究指出,尽管某些防御

方法能够显著提升SNN的鲁棒性,但在原始数据

上的性能依然较低。这一现象体现了深度学习领域

中普遍存在的鲁棒性与准确率之间的性能权衡问

题,提示未来防御设计需兼顾扰动前后的整体表现。

通过进一步对比表3与表5可以发现,当前SNN模

型在整体上仍面临攻击强度高于其防御能力的严峻

挑战。

表5 脉冲神经网络防御性能

防御方法
网络
结构

年份
攻击前
准确率

攻击后
准确率

Sharmin等的方法[26] VGG5 2020 89.3% 15%
Sharmin等的方法[26] ResNet20 2020 86.1% 31.3%
Kundu等的方法[24] ResNet12 2021 91.9% 21.1%
Kundu等的方法[24] VGG5 2021 87.9% 35.5%
Ding等的方法[25] VGG-11 2022 90.74% 45.23%
Bhaskar等的方法[120] VGGSNN 2023 79.55% 75.57%
Ding等的方法[25] VGG-11 2024 90.13% 45.75%

5 未来研究方向

在未来的研究中,SNN的攻击与防御方法的探

索应当从多层次展开,以应对其安全挑战。同时需

要针对SNN特点及特定应用设计相应防御方法。
下面列举了一些未来攻击方法和防御方法可以涉及

的研究方向:
对于攻击方法:
(1)针对防御方法漏洞的攻击方法:未来的攻击

方法需要分析现有SNN防御方法中的弱点。通过

对这些防御方法的脆弱性分析,开发针对性的精细

攻击方法,提升攻击成功率。这一研究方向需要动

态且持续地设计新型攻击手段,以应对未来防御方

法的发展。
(2)针对数据特点的攻击方法:目前SNN兼容

处理静态数据、动态事件等。事件数据由于其隐

私性好、动态范围广等已成为研究热点。未来可

围绕事件数据集设计攻击方法。同时,针对运动

物体的物理世界攻击[146]也将成为关键研究方向,
这涉及如何对数据施加合理的范数约束,使网络

做出误判断。
(3)针对脉冲编码特点的攻击方法:未来攻击方

法可以针对SNN将浮点输入转换为脉冲的编码机

制展开攻击。脉冲编码既涉及神经元层面的编码方

式,也体现在整个网络结构的脉冲信息传递过程中。
未来的攻击方法应针对不同层面的编码方式展开,
探索如何通过干扰神经元的发放模式或操纵网络内

的脉冲传递路径,破坏SNN输出信号。这类攻击

不仅可以在单一神经元层面进行微观操作,还可以

在网络层面进行操控,从而影响整个脉冲信息处理

过程,提升攻击的有效性。
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(4)结合现有深度学习技术的攻击方法:未来攻

击方法可以继续借鉴深度学习中已经成熟的攻击方

法,尤其是基于梯度的攻击方法,并结合SNN的特

性进行脉冲版本的变体改进。未来还可以进一步引

入深度学习中的前沿技术,如自监督学习、度量学习

和生成式学习等,以增强对SNN的攻击能力。通

过这些技术,构建更加适应性强的攻击方法,能够在

更广泛的场景和模型上保持高效,提升攻击的可迁

移性和泛化能力,从而使攻击方法在不同的SNN
架构和任务中均可表现良好。

(5)探索其他梯度或梯度无关的有效攻击方法:
在没有明确梯度信息的情况下,传统基于梯度的攻

击方法可能失效,因此需要探索新的攻击路径。未

来的研究应开发无梯度或代替梯度的攻击方法,如
基于黑盒优化、进化方法、随机搜索等方法,这些技

术可以通过操控输入数据或网络结构,破坏SNN
的学习和决策过程。

(6)探索计算量小的有效攻击方法:目前有效的

SNN攻击计算量均较大。SNN梯度攻击需要借助

可微近似施加扰动。而梯度无关的算法需要大量迭

代和推理次数。目前有趋势可以借助计算量较小的

脉冲发放率可微近似方法实现有效攻击方法。未来

应设计计算量较小且有效的攻击方法。
对于防御方法:
(1)结合脉冲编码特点的防御方法:未来防御方

法需要基于对SNN脉冲编码机制的深刻理解设计

防御方法。通过优化脉冲生成和传输的过程,增强

网络的鲁棒性。可以通过随机化脉冲的发放间隔或

动态调整脉冲频率,增加系统对攻击的抗扰动能力。
此类防御方法应在防御攻击上表现出通用性,能有

效应对基于时序和频率特征的高级攻击。
(2)针对SNN时序数据特点的防御方法:未来

防御方法将提升SNN 在处理时序数据时的鲁棒

性。由于SNN在时序数据处理上具有显著优势,
未来的防御方法应设计出能够适应和抵御时序扰动

的机制。方法应具备对输入数据的时间偏移的鲁棒

性。针对噪声干扰或脉冲丢失问题,防御方法应包

含去噪机制或丢失信息的重建能力。
(3)结合现有深度学习技术的防御方法:未来防

御方法将借鉴深度学习中成熟的防御技术,增强

SNN的鲁棒性。可发展对抗样本检测技术识别威

胁,并改进对抗训练方法。未来可引入基于范数约

束的正则化手段提高网络的防御能力。通过将这些

深度学习中的防御技术与SNN的特点相结合,有

望显著提升SNN在复杂攻击环境下的鲁棒性。
(4)新型脉冲架构的防御方法:未来防御方向需

要围绕近年来的创新SNN架构进行深入探索。例

如,基于 Transformer架构的SNN和attention机

制的SNN在处理复杂时序数据和长范围依赖关系

方面表现出色[148-151],因此需要研究如何为这些新

型架构设计有效的防御方法。针对这些新架构的防

御方法应考虑其独特的网络结构和信息处理方式,
开发针对防御方法。

(5)生物启发的防御方法:未来防御方法将从生

物神经系统机制中汲取灵感,以开发SNN的防御

方法。SNN的设计初衷便是模仿生物神经系统的

工作方式,因此,深入探索生物系统中的信息处理和

调控机制可以为SNN提供宝贵的防御思路。生物

神经系统中的自适应学习、冗余编码等特性,可以启

发开发出新型的防御方法,以提高SNN的鲁棒性

和安全性。这类防御方法能推动生物学和人工智能

领域的交叉研究,拓展防御技术的应用边界。
(6)神经形态范式下的防御方法:未来防御方向

需要在硬件资源限制的条件下提升SNN的防御能

力。SNN应用于神经形态计算时,依赖专门的硬件

平台。这些平台通常具有特定的资源约束,如计算

能力、存储空间和能耗限制。因此,未来的防御研究

需要在这些硬件限制下开发高效的防御方法。研究

应着重于设计能够在有限硬件资源下实现的防御

机制。
(7)SNN典型应用场景测试和任务验证:未来

防御方法需要在SNN的实际应用环境中评估其防

御能力。SNN在事件驱动的视觉计算、脑机接口等

典型应用场景中展现出独特优势。因此,未来的研

究需要在这些真实场景中进行深入测试。此外,还
需要保证SNN在典型场景中的实际效果,例如在

物体分类、目标检测和时序预测等任务中验证SNN
的性能,评估其在处理不同类型输入数据时的鲁棒

性和稳定性。

6 总 结

近年国内外在SNN对抗扰动和防御研究领域

取得了显著进展。本文总结了当前在攻击与防御方

法领域的研究成果,并探讨了未来可能的研究方向。

SNN在一定程度上由于其离散的内部信息表示和

时序滤波的信息处理方式展现出一定的鲁棒性。然

而,多模态数据输入和端到端梯度训练的普及也带
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来了负面影响,使得SNN同样容易受到攻击。SNN
在实际应用中实现更安全的部署需要神经形态计算

技术的不断进步以及对抗方法和防御方法的持续升

级。推动SNN在实际应用中的安全部署不仅对提

升其自身的安全性至关重要,也为整个深度学习领

域的安全研究提供了新的视角和启示。
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Background
  Spiking

 

neural
 

networks
 

(SNNs)
 

are
 

expected
 

to
 

be
 

widely
 

used
 

in
 

real-time
 

scenarios
 

and
 

safety-critical
 

applica-
tions

 

due
 

to
 

their
 

less
 

sensitivity
 

to
 

small
 

random
 

perturba-
tions

 

compared
 

to
 

artificial
 

neural
 

networks
 

(ANNs).
 

How-
ever,

 

SNNs
 

face
 

security
 

and
 

privacy
 

challenges
 

due
 

to
 

their
 

training
 

using
 

differential
 

approximation
 

techniques.
 

Current
 

attack
 

methods
 

include
 

gradient-based
 

and
 

gradient-independ-
ent

 

approaches.
 

Researchers
 

have
 

also
 

explored
 

SNNs’
 

per-
formance

 

on
 

event
 

streams
 

and
 

images,
 

as
 

they
 

are
 

naturally
 

suited
 

for
 

processing
 

event
 

streams
 

generated
 

by
 

event
 

cam-
eras.

 

SNNs
 

have
 

distinct
 

encoding
 

and
 

learning
 

mechanisms,
 

offering
 

significant
 

potential
 

in
 

defending
 

against
 

adversarial
 

perturbations.
 

To
 

boost
 

the
 

application
 

of
 

SNNs,
 

lots
 

of
 

re-

searchers
 

work
 

on
 

attacking
 

and
 

defending
 

SNNs,
 

including
 

input
 

defense
 

methods,
 

network
 

defense
 

methods,
 

output
 

defense
 

methods,
 

etc.
In

 

this
 

paper,
 

we
 

review
 

the
 

existing
 

attack
 

and
 

defense
 

methods
 

for
 

SNNs.
 

First,
 

we
 

briefly
 

overview
 

the
 

basics
 

of
 

SNNs,
 

hardware,
 

and
 

their
 

safety-critical
 

applications.
 

Sec-
ond,

 

we
 

review
 

the
 

adversarial
 

attack
 

methods
 

for
 

SNNs.
 

Third,
 

we
 

review
 

the
 

existing
 

defense
 

methods
 

for
 

SNNs.
 

Finally,
 

we
 

give
 

the
 

prospect
 

of
 

future
 

work
 

on
 

adversarial
 

attack
 

and
 

defense
 

for
 

SNNs.
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