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Abstract  With the advancement of neuromorphic computing, spiking neural networks (SNNs)
are expected to be widely deployed in real-time scenarios and safety-critical applications. SNNs
simulate the behavior of neurons in biological brains through spatiotemporal neuronal dynamics.
Neurons in SNNs update their membrane potentials over time and output spike signals of 0 and 1.
Existing studies have shown that the discrete characteristics of internal information representation
of SNNs make them less sensitive to small perturbations than traditional artificial neural net-
works (ANNs), and therefore they are considered to be more robust to adversarial attacks than
traditional ANNs. Research in recent years has shown that SNNs also face similar threats from

adversarial attack as ANNs, Existing reviews of SNNs primarily focus on the structural design,
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training methods, and hardware implementation. Given the fundamental differences between
SNNs and ANNs, the robustness mechanisms as well as attack and defense strategies of SNNs
are unique, and thus cannot be directly derived from the well-established ANN framework. This
paper focuses on the robustness and systematically reviews adversarial attacks and defense meth-
ods for SNNs for the first time. Regarding attack methods, this paper summarizes attack meth-
ods based on data modality, gradient attack methods based on differentiable approximation, and
gradient-independent attack methods. The first category targets input data modalities, including
attacks on static images, attacks on neuromorphic event datasets, and general attack methods ap-
plicable across data modalities. The second category of attacks leverages the differentiable ap-
proximation training methods commonly used in deep SNNs, generating input perturbations
through techniques such as conversion approximation, backpropagation through time approxima-
tion, and spike rate approximation. The third category comprises gradient-independent attack
methods, designed to overcome the issues associated with differentiable approximations. In terms
of defense mechanisms, many studies have explored their robustness, showing their potential in
adversarial defense. This paper summarizes several common defense methods, including input
defense methods, network defense methods, output defense methods, etc. , aiming to improve
the security and stability of the model when dealing with perturbations. The defense mechanisms
cover the entire network processing pipeline. At the input stage, spike encoding and filtering
methods are employed. During the network processing stage, robustness is enhanced through im-
proved neuron design, interval bound propagation, adversarial training, regularization training,
and network lightweighting. At the output stage, spike decoding methods are utilized. Existing
research indicates that SNNs are inherently more robust than traditional ANNs. These defense
methods aim to further exploit their intrinsic mechanisms or draw insights from traditional de-
fense methods. Finally, this paper summarizes several challenges in current research and looks
forward to the future development direction of SNNs in adversarial attack and defense research.
On the attack side, researchers should explore novel methods that target defense vulnerabilities,
exploit spiking encoding mechanisms, and leverage event-based data properties, while developing
lightweight and highly generalizable gradient-based or gradient-free approaches. On the defense
side, it is essential to enhance robustness by integrating spiking encoding principles, temporal
processing, and bio-inspired mechanisms, design specialized defense solutions for emerging SNN
architectures, achieve effective protection under neuromorphic hardware constraints, and validate
effectiveness in real-world scenarios. The secure deployment of SNNs depends on the continuous
evolution of attack and defense technologies alongside synergistic advances in neuromorphic com-

puting.
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Background

Spiking neural networks (SNNs) are expected to be
widely used in real-time scenarios and safety-critical applica-
tions due to their less sensitivity to small random perturba-
tions compared to artificial neural networks (ANNs). How-
ever, SNNs face security and privacy challenges due to their
training using differential approximation techniques. Current
attack methods include gradient-based and gradient-independ-
ent approaches. Researchers have also explored SNNs’ per-
formance on event streams and images, as they are naturally
suited for processing event streams generated by event cam-
eras. SNNs have distinct encoding and learning mechanisms.,
offering significant potential in defending against adversarial

perturbations. To boost the application of SNNs, lots of re-

searchers work on attacking and defending SNNs, including
input defense methods, network defense methods, output
defense methods, etc.

In this paper, we review the existing attack and defense
methods for SNNs. First, we briefly overview the basics of
SNNs, hardware, and their safety-critical applications. Sec-
ond, we review the adversarial attack methods for SNNs.
Third, we review the existing defense methods for SNNs.
Finally, we give the prospect of future work on adversarial
attack and defense for SNNs.
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