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Abstract In collaborative multi-agent system (MAS), the communication between agents dy-
namically changes due to mobility, interference, or bandwidth limitations, resulting in message
loss and network topology disconnection, which affects the efficiency of collaborative decision-
making. At the same time, traditional exploration strategies lack specificity, and intelligent a-
gents are prone to falling into local optima, unable to fully cover the environmental space. A col-
laborative multi-agent reinforcement learning method, Graph-based Reinforced Exploration Multi

Agent Reinforcement Learning (GREMARL), is proposed to address these challenges. This
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method combines Self-Motivated Exploration (SME) and Graph Neural Network (GNN) for
multi-agent communication. The SME module uses state action entropy increment as an intrinsic
reward signal to enable each agent to dynamically adjust exploration priority based on their curi-
osity about unknown areas of the environment. And the learnable weight parameters of SMEs are
adaptively attenuated, ensuring a greater emphasis on external environmental rewards in the later
stage, achieving a smooth transition from breadth exploration to depth utilization. The GNN
communication module is based on a dynamic graph convolutional network, which learns the dy-
namic evolution law of communication topology end-to-end through a temporal graph neural net-
work, ensuring that key information can quickly propagate along the optimal path at different
task stages, while redundant or secondary channels are automatically weakened. In order to veri-
fy the effectiveness of the GREMARL algorithm, experiments were conducted in the StarCraft
Multi Agent Challenge (SMAC) and Google Research Football (GRFootball) environments.
The experimental results showed that the average win rate of GREMARL in the SMAC complex
task environment reached 88. 8%, which was 16. 8% higher than the SOTA algorithm. By desig-
ning ablation experiments, the necessity of self excitation exploration and graph neural modeling
for GREMARL was verified from multiple aspects.

Keywords deep reinforcement learning; multi-agent reinforcement learning; self-motivation;

multi-agent exploration; graph neural network
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