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摘 要 在协作多智能体系统(Multi-Agent
 

System,MAS)中,智能体之间的通信因移动、干扰或带宽受限而动态

变化,导致消息丢失与网络拓扑不连通,影响协同决策效率。同时传统的探索策略缺乏针对性,智能体易陷入局部

最优,无法充分覆盖环境空间。针对这些问题,提出一种协作多智能体强化学习方法(Graph-based
 

Reinforced
 

Ex-
ploration

 

Multi-Agent
 

Reinforcement
 

Learning,GREMARL),该方法将自激励探索(Self-Motivated
 

Exploration,

SME)与图神经网络(Graph
 

Neural
 

Network,GNN)多智能体通信方法相结合。其中SME模块通过将状态-动作对

熵增量设计为内在奖励信号,使每个智能体能够根据自身对环境未知区域的好奇心动态调整探索优先级。并且

SME通过可学习权重参数来自适应衰减,保证在后期更偏重于环境外部奖励,实现从广度探索向深度利用的平滑

过渡。GNN通信模块则以动态图卷积网络为基础,通过时序图神经网络端到端地学习通信拓扑的动态演化规律,
确保在不同任务阶段关键信息能够沿着最优路径快速传播,而冗余或次要通道则被自动弱化。为了验证 GRE-
MARL算法的有效性,将GREMARL方法应用于星际争霸(StarCraft

 

Multi-Agent
 

Challenge,SMAC)与谷歌足球

(Google
 

Research
 

Football,GRFootball)环境中。实验结果表明,该方法在SMAC等复杂任务环境中的平均胜率达

到了88.8%,比目前最优算法高16.8%。通过设计消融实验,从多个方面验证了自激励探索与图神经建模对

GREMARL的必要性。
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Abstract 
 

In
 

collaborative
 

multi-agent
 

system
 

(MAS),
 

the
 

communication
 

between
 

agents
 

dy-
namically

 

changes
 

due
 

to
 

mobility,
 

interference,
 

or
 

bandwidth
 

limitations,
 

resulting
 

in
 

message
 

loss
 

and
 

network
 

topology
 

disconnection,
 

which
 

affects
 

the
 

efficiency
 

of
 

collaborative
 

decision-
making.

 

At
 

the
 

same
 

time,
 

traditional
 

exploration
 

strategies
 

lack
 

specificity,
 

and
 

intelligent
 

a-
gents

 

are
 

prone
 

to
 

falling
 

into
 

local
 

optima,
 

unable
 

to
 

fully
 

cover
 

the
 

environmental
 

space.
 

A
 

col-
laborative

 

multi-agent
 

reinforcement
 

learning
 

method,
 

Graph-based
 

Reinforced
 

Exploration
 

Multi
 

Agent
 

Reinforcement
 

Learning
 

(GREMARL),
 

is
 

proposed
 

to
 

address
 

these
 

challenges.
 

This
 



method
 

combines
 

Self-Motivated
 

Exploration
 

(SME)
 

and
 

Graph
 

Neural
 

Network
 

(GNN)
 

for
 

multi-agent
 

communication.
 

The
 

SME
 

module
 

uses
 

state
 

action
 

entropy
 

increment
 

as
 

an
 

intrinsic
 

reward
 

signal
 

to
 

enable
 

each
 

agent
 

to
 

dynamically
 

adjust
 

exploration
 

priority
 

based
 

on
 

their
 

curi-
osity

 

about
 

unknown
 

areas
 

of
 

the
 

environment.
 

And
 

the
 

learnable
 

weight
 

parameters
 

of
 

SMEs
 

are
 

adaptively
 

attenuated,
 

ensuring
 

a
 

greater
 

emphasis
 

on
 

external
 

environmental
 

rewards
 

in
 

the
 

later
 

stage,
 

achieving
 

a
 

smooth
 

transition
 

from
 

breadth
 

exploration
 

to
 

depth
 

utilization.
 

The
 

GNN
 

communication
 

module
 

is
 

based
 

on
 

a
 

dynamic
 

graph
 

convolutional
 

network,
 

which
 

learns
 

the
 

dy-
namic

 

evolution
 

law
 

of
 

communication
 

topology
 

end-to-end
 

through
 

a
 

temporal
 

graph
 

neural
 

net-
work,

 

ensuring
 

that
 

key
 

information
 

can
 

quickly
 

propagate
 

along
 

the
 

optimal
 

path
 

at
 

different
 

task
 

stages,
 

while
 

redundant
 

or
 

secondary
 

channels
 

are
 

automatically
 

weakened.
 

In
 

order
 

to
 

veri-
fy

 

the
 

effectiveness
 

of
 

the
 

GREMARL
 

algorithm,
 

experiments
 

were
 

conducted
 

in
 

the
 

StarCraft
 

Multi
 

Agent
 

Challenge
 

(SMAC)
 

and
 

Google
 

Research
 

Football
 

(GRFootball)
 

environments.
 

The
 

experimental
 

results
 

showed
 

that
 

the
 

average
 

win
 

rate
 

of
 

GREMARL
 

in
 

the
 

SMAC
 

complex
 

task
 

environment
 

reached
 

88.8%,
 

which
 

was
 

16.8%
 

higher
 

than
 

the
 

SOTA
 

algorithm.
 

By
 

desig-
ning

 

ablation
 

experiments,
 

the
 

necessity
 

of
 

self
 

excitation
 

exploration
 

and
 

graph
 

neural
 

modeling
 

for
 

GREMARL
 

was
 

verified
 

from
 

multiple
 

aspects.
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1 引 言

作为深度强化学习[1-2]的重要分支,多智能体强

化学习(Multi-Agent
 

Reinforcement
 

Learning,MARL)
由于涉及多个智能体,因而需要学习有效的策略,使
任务的累计奖赏最大化。近年来,基于协作的多智

能体 强 化 学 习(Collaborative
 

Multi-Agent
 

Rein-
forcement

 

Learning,CMARL)因 其 在 机 器 人 协

作[3-4]、智能交通[5-6]、无人机编队[7-8]等领域的广泛

应用而备受关注。多智能体系统具备通过局部交互

与协同合作完成复杂任务的潜力,使其在自适应、容
错以及分布式控制等方面拥有明显优势。然而,在
实际应用中,CMARL面临的两个主要挑战使得该

领域的研究进展受到限制。
首先,在多智能体中探索不足问题尤为突出[9]。

传统 MARL方法主要依赖环境提供的外部奖励信

号进行学习,当奖励较为稀疏或存在延迟时,智能体

很难获得充分的反馈,导致探索过程易陷入局部最

优,无法有效发现全局最优策略。特别是在复杂、
动态环境下,如何促使每个智能体主动发现未开

发的信息区域和潜在任务目标,成为亟待解决的

问题[10]。
其次,通信低效问题也是多智能体系统的核心

瓶颈[11]。现有方法往往采用固定或者简单的信息

传输策略,而在实际场景中,智能体之间的交互关系

可能具有高度动态性和非线性特征。传统通信机制

难以捕捉这种复杂性,限制了智能体在协同决策时

的信息共享效率,从而影响系统整体性能。如何构

建一种灵活、高效的通信机制,使各智能体在多变环

境中能够实时共享和整合关键信息,是推动 MARL
发展的关键。

为了解决上述问题,本文引入了两种创新思路。
首先 是 自 激 励 探 索(Self-Motivated

 

Exploration,

SME),该方法通过构建自激励信号促使每个智能

体在环境中主动探索,从而克服传统探索策略中局

部最优和反馈稀疏的问题。自激励模块不仅依托于

智能体自身的状态信息,还结合了历史行为和探索

多样性指标,确保在面对复杂环境时能够捕捉到更

多潜在信息,从而推动策略进化。
其次是图神经网络通信(Graph

 

Neural
 

Net-
work,GNN)的思想,将多智能体系统映射为图结

构,其中每个智能体被视为图中的一个节点,智能体

之间的交互关系则通过边权重进行量化。利用

GNN强大的消息传递与信息聚合能力,可以有效捕

捉智能体之间复杂的时空动态关系,实现高效的信

息共享和协同决策。通过构造动态通信图,系统不

仅能自适应地调整智能体之间的联系,还能在信息
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传输过程中自动识别并过滤噪声信息,提高整体决

策的准确性和鲁棒性。
基于上述思路,本文提出了一种融合自激励探

索和图神经网络通信的多智能体协作方法 GRE-
MARL。该方法不仅在探索过程中引入内部激励

机制,促使智能体主动拓展未知领域,而且利用图神

经网络构造动态通信结构,实现高效、灵活的信息共

享。本文进一步设计了联合优化算法,动态平衡各

智能体的内部奖励与全局任务奖励,通过集中训练

与分散执行策略(Centralized
 

Training
 

with
 

Decen-
tralized

 

Execution,CTDE)实现系统的快速收敛和

稳健协同。实验结果表明,该方法在加快收敛速度、
提升任务完成率以及增强系统鲁棒性方面均优于传

统方法。
本文的主要贡献可以总结为以下3点:
(1)提出了一种融合自激励探索与图神经网络

通信的多智能体强化学习方法,有效解决了探索不

足与通信低效的双重挑战。
(2)设计了联合优化算法,实现内部激励奖励与

全局任务奖励之间的动态平衡,提升了系统在复杂

场景下的协同决策性能。
(3)通过实验验证了该方法在多种复杂任务场

景下的优越性,为大规模、多任务的多智能体系统协

作提供了新思路和新方法。
本文第2节总结了该领域的相关研究成果;第

3节详细介绍了本文提出的模型GREMARL,包括

模型中的组成成分、实现细节和训练过程;第4节

为本文的实验部分,在2个多智能体任务上进行

实验分析;最后得出结论,并介绍未来可能的研究

工作。

2 相关工作

2.1 协作多智能体强化学习

  多智能体强化学习是强化学习(Reinforcement
 

Learning,RL)在 MAS中的扩展,旨在使多个智能

体通过不断试错和学习,最终形成一套协调一致的

策略,以完成复杂任务[12]。

MARL一般包含以下要素:
(1)状态空间:表示智能体所处的环境状态,可

为全局可观测或部分可观测。
(2)动作空间:智能体在当前状态下可采取的所

有可能动作集合。
(3)奖励函数:智能体根据动作获得的回报,可

能是全局共享奖励或个体奖励。
(4)策略:智能体基于状态采取行动的映射,可

以是确定性策略或随机策略。
(5)环境动态:描述智能体采取动作后,环境状

态的变化情况。

CMARL则可以从数学模型、算法范式以及通

信机制3个方面进行阐述。

2.1.1 数学模型

CMARL将强化学习问题建模为局部可观测马

尔可夫决策过程(Decentralized
 

Partially
 

Observa-
ble

 

Markov
 

Decision
 

Process,Dec-POMDP)。Dec-
POMDP可以描述为九元组G=<S,A,U,P,r,Z,

O,N,γ> ,其中S 表示环境的全局状态,A 表示n
个智能体的集合,U 为动作空间。在每个时间步t,
智能体a∈A ≡ {1,…,n}选择一个动作u∈U ,
形成一个联合行动u∈U ≡Un ,进而导致由状态

转移函数P(s'/s,u)表示的环境转换表示为S×
U×S→ [0,1]。所有的智能体都共享相同的奖励

函数r(s,u):S×U→R ,而γ∈[0,1)是一个折扣

因子。
整个系统的目标是最大化全局累计回报

J(π)=Ε ∑
∞

t=0
γt(st,a1

t,a2
t,…,aN

t )  (1)

其中,π={π1,…,πN}为各智能体的策略组合。

2.1.2 算法范式

目前基于协作多智能体强化学习的算法可以分

为基于值函数分解(Value
 

Decomposition,VD)与
基于策略梯度(Policy

 

Gradient,PG)两种。

VD方法通过对联合Q值函数Qtot =(s,a)进

行因式分解,降低学习难度。如 VDN(Value-De-
composition

 

Networks,VDN) 假 设 Qtot =

∑Qi(oi,ai)保留了个体贡献的可加性,但忽略了

高阶交互[13]。QMIX(Monotonic
 

Value
 

Function
 

Factorization,QMIX)增 加 了 单 调 性 约 束,

∂Qtot/∂Qi ≥ 0,通 过 可 学 习 的 混 合 网 络 保 证

argmaxaQtot=(argmaxa1Q
1,…,argmaxaNQN),在

一定程度上平衡了表达与可分解能力[14]。

QPLEX(Duplex
 

Dueling
 

Multi-agent
 

Q-learning,

QPLEX)
 

则通过引入
 

双路竞争网络结构,将联合

动作值函数分解为优势函数与状态值函数,在严

格保持单调性约束的同时,理论上保证了对于最

优联合策略的完整表达能力。该方法避免了复杂

的辅助优化目标,具有更高的样本效率与学习稳
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定性[15]。
基于PG的方法直接优化策略参数,使期望回

报最大化。如COMA(Counterfactual
 

Multi-Agent
 

Policy
 

Gradients,COMA)方法通过设计对照基线

∑j≠iQtot(s,(ai
ref,a-i))

 

,精确量化个体行为对全

局回报的边际贡献,缓解了多智能体信用分配问

题[16]。MADDPG(Multi-Agent
 

Deep
 

Deterministic
 

Policy
 

Gradient,MADDPG)将DDPG扩展至多智

能体场景,使用集中式全局 Q网络和局部策略网

络,保证了样本效率与策略稳定性[17]。文献[18]提
出的 UPDET(Universal

 

Policy
 

Decoupling
 

with
 

Transformers)通过引入 Transformer模块解耦多

智能体策略,并在多个复杂任务中表现出色。其显

著特点是以注意力机制聚合局部信息,通过共享架

构提升泛化能力。尽管 UPDET在StarCraft
 

II环

境中的性能强劲,但在更具异构性和高动态性的场

景(如 GRFootball)中仍存在适应性不足的问题。
文献[19]则从值函数稳定性角度出发,重新设计了

训练技巧,增强了收敛性,但其对通信建模能力有

限,适用于低干扰场景。

2.1.3 通信机制

通信在CMARL中不仅是信息传递,更是隐式

的协同图拓扑学习。近年来,GNN提供了统一的消

息传递理论,表示为

h(l+1)
i =σ(∑

j∈N(i)
fθ(h

(l)
i ,h

(l)
j ,ωij)) (2)

其中,h(l)
i 指在第l层时,智能体(或图节点)i的特

征向量(隐藏表示)。N(i)指节点i在当前通信图

中的邻居集合,即所有与i有边相连的其他智能体

索引集合。ωij 指边 (i,j)的权重,用于量化i与j
之间通信的重要性或带宽等属性,且可随训练动态

更新。fθ 为消息函数,参数为θ,将节点i和邻居j
的特征及它们的边权重映射到一条消息向量。σ(·)
指非线性激活函数,用于给聚合后的特征添加非线

性变换。
尽管CMARL具备较强的协作与优化能力,但

随着智能体数量的增加,仍然面临着一系列挑战:
(1)状态和动作空间的指数增长。
在 MAS中,状态空间和动作空间随着智能体

数量呈指数级增长,导致传统强化学习方法难以直

接扩展到多智能体环境。例如,在N 个智能体的情

况下,联合状态空间S 和联合动作空间A 分别是

S =∏
N

i=1
Si ,A =∏

N

i=1
Ai (3)

其中Si 和Ai 分别表示智能体i的状态和动作空间

维度。当N 较大时,计算复杂度急剧上升。
(2)智能体间的非平稳性

在多智能体环境中,每个智能体的策略都会不

断变化,使得环境对其他智能体而言是非平稳的。
这种非平稳性导致传统单智能体 RL方法(如 Q-
learning方法)在 MARL中难以收敛[20]。

为了解决非平稳性问题,文献[21-22]提出了一

系列方法,如集中训练-分布执行(CTDE)框架,即
在训练阶段收集全局信息进行优化,而在执行阶段

每个智能体独立决策。文献[23]提出马尔可夫博

弈,利用博弈论建模智能体之间的动态交互,以求

Nash均衡策略。
(3)智能体之间的信息不对称

在现实场景中,智能体往往无法访问全局状态,
只能基于局部观测信息进行决策。例如,在自动驾

驶场景中,每辆车只能观察到自身传感器范围内的

车辆,而无法直接获取整个路网的交通状况。这种

部分可观测性(Partially
 

Observable
 

Markov
 

Deci-
sion

 

Process,POMDP)进一步增加了决策难度。这

种部分可观测性通常建模为部分可观测马尔可夫决

策过程,使得智能体需要使用递归神经网络或注意

力机制来整合历史信息[24]。
(4)通信效率与信息共享

在协作型任务中,智能体需要交换信息以进行

决策,但通信成本、带宽限制和噪声干扰都会影响信

息共享的质量。因此,如何在CMARL中设计高效

的信息共享机制是当前研究热点之一。部分学者提

出基于GNN 的通信模型。智能体构建一个通信

图,通过GNN 进行信息聚合和共享,提升通信效

率[25]。

2.2 自激励探索

  在传统的强化学习中,智能体依赖环境提供的

外部奖励进行学习。然而,在稀疏奖励环境下,智能

体可能面临难以有效探索的问题,从而导致学习过

程缓慢。为了解决这一问题,文献[26]提出了SME
策略,通过设计内部奖励机制,鼓励智能体在缺乏外

部奖励时进行有效的探索。SME策略主要包括几

种方法:(1)预测误差驱动的探索通过学习预测环境

状态变化,利用较大的预测误差为智能体提供更高

的内部奖励,激励其探索未曾到达的状态。(2)状态

新颖性驱动的探索则基于状态的罕见性或新颖性来

定义内部奖励,如使用随机网络蒸馏(Random
 

Net-
work

 

Distillation,RND)[27]衡量当前状态的新颖
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性,或者通过信息增益方法估计状态的不确定性,从
而鼓励智能体探索更多未知区域。(3)计数驱动的

探索则在离散状态空间中,根据智能体对某一状

态的访问频率来调整奖励,对于较少访问的状态

给予更 高 奖 励,促 进 对 环 境 中 未 探 测 区 域 的 探

索[28]。这些策略通过有效的内部奖励机制,使智

能体能够在稀疏奖励环境中加速学习,充分探索

环境。

2.3 基于图建模的多智能体通信

  早期的CMARL方法主要依赖于共享状态信

息或固定规则的通信协议,但这些方法难以扩展到

大规模、多智能体系统中。近年来,GNN[29]在处理

复杂网络数据方面表现出了显著优势,特别是在捕

捉局部邻域和全局结构信息上,将多智能体系统视

为图结构,每个智能体作为图中的一个节点,边则代

表智能体之间的距离、任务相关性或历史交互信

息[30]。通过GNN的邻域信息聚合与传递,智能体

能够获取全局环境的有效表达,从而提升协同决策

的水平。在GNN模型中,智能体作为图节点,而智

能体之间的交互则通过边连接,边的权重基于任务

相关性、物理距离或历史交互等因素。信息聚合机

制通过GNN的消息传递方式,促进智能体之间的

信息 交 流 与 协 作,显 著 提 高 系 统 的 整 体 协 作 效

率[31-32]。

2.4 融合探索与通信的研究现状

  尽管自激励探索和图神经网络通信各自为多智

能体系统带来了不同程度的提升,但目前大多数工

作集中于单一模块的优化,如何将两种方法有机结

合,既保持智能体探索的主动性,又确保协作通信的

高效性,仍是当前研究的难点[33]。

3 GREMARL方法

3.1 图神经通信模块

  在多智能体协作中,智能体间的实时信息共享

至关重要。为此,本模块通过构造图结构对通信进

行建模。

3.1.1 图结构构造

将各个智能体视为图节点,依据任务相关性、物
理距离及状态相似性构造边,并为不同边赋予不同

权重。之后利用图神经网络对节点状态信息进行传

递与聚合,捕捉复杂的时空交互关系,使每个智能体

能获得邻域内更为准确的全局信息。
首先,每个智能体通过环境获得局部观测oi 与

位置pi ,之后进行图构建,输入为智能体的观测状

态集合 {oi}N(i=1),位置信息集合 {pi}N(i=1),构建节

点特征,表示为

h(0)
i =MLP([oi‖pi])∈RR

(dh) (4)
其中,dh 为嵌入维度,MLP 为多层感知机。

边权重计算表示为

eij =σ(We·[h
(0)
i ‖h

(0)
j ‖dij]) (5)

其中,dij 为智能体i与j之间的欧氏距离,σ(·)表示

sigmoid函数,We ∈R
3dh×1,只保留每个节点的

Top-3边。

3.1.2 动态更新

hhist
i =GRU(h(0)

i ,hhist
i ) (6)

3.1.3 GNN编码器进行消息传递(三层迭代)

m(l)
ij =ReLU(W (l)

m [h
(l)
i ‖eij]) (7)

h(l+1)
i =LayerNorm(h(l)

i +W (l)
u ∑j∈N(i)mij

(l))

(8)
其中,W (l)

m 与W (l)
u 为可学习参数,N(i)表示节点i

的邻居。

3.1.4 多头注意力增强

 Attn(Q,K,V)=softmax
QKT

dk

☉M  ·V (9)

其中,Q,K,V 为节点嵌入h(3)
i 线性变换得到。掩

码矩阵M 由邻接矩阵定义,屏蔽非连接节点。

3.1.5 解码器与混合网络

  Qi=Wq2·GELU(Wq1·h
(3)
i )∈RR A (10)

其中,Wq1 ∈RR
(dh×256),Wq2 ∈RR

(256× A ),A 为动

作空间维度。

Qtot=W2·Relu(W1·[Q1,…,QN]+b1)+b2
(11)

权重W1 与W2 和偏置b1、b2 由超网络生成,表示为

[W1,b1,W2,b2]=HyperNet(sglobal) (12)
超网络设计为

HyperNet(sglobal)=MLP(sglobal)☉Abs(·) (13)
其中,Abs(·)确保权重非负。

3.2 自激励探索模块

  为应对传统强化学习中探索不足的问题,本模

块为每个智能体设计了内部激励信号。
内部奖励设计:每个智能体基于当前状态、历史

轨迹和环境不确定性生成自激励奖励,使其在环境

中更主动地探索未知区域。通过将自激励奖励与环

境外部奖励相结合,利用 QMIX更新智能体策略,
从而达到探索与利用的平衡。
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内在奖励计算为

 ri
int=α·H(πi(·|s))+β·

1
N(si)+1

(14)

其中,H(πi)=-∑aπi(a|s)logπi(a|s)为策略

熵,N(si)为状态si 的历史访问次数。
总奖励表示为

 rtotal=rext+rint+η·∑
i≠j

IIconflict(ai,aj) (15)

其中,IIconflict为冲突指示函数,η为冲突惩罚系数。

3.3 联合训练与策略优化模块

  为同时优化探索和通信两个模块,提出了一种

多目标联合优化方法。(1)联合损失函数:构造包含

外部任务奖励、自激励探索奖励与图神经网络通信

误差的联合损失函数。(2)动态权重调整:在训练过

程中根据任务进展动态调整各项奖励权重,保证系

统在不同阶段既能保持充分探索,又能实现高效信

息共享。

TD误差损失表示为

 LTD =EE[Qtot(s)-(r+γmaxa'Qtot(s'))2] (16)
通信一致性损失表示为

Lcomm=
1
N∑

N

i=1
DKL(henc

i |hdec
i ) (17)

策略熵正则化表示为

Lent=-
1
N∑

N

i=1∑aπi(a|s)logπi(a|s)

(18)
总损失表示为

Ltot=LTD +0.1Lcomm+0.01Lent (19)
如图1所示,其为GREMARL的算法结构图,

该算法包括智能体模块、图通信模块、编码器模块、解
码器模块、自适应探索模块以及联合训练与损失计算

模块。其中蓝色箭头表示环境状态和奖励流向智能

体模块。绿色箭头表示通信图、编码、解码、融合及策

略输出的正向数据流。橙色箭头表示自适应探索模

块输出的最终决策反馈给智能体。红色箭头表示联

合训练中的反向传播更新,反馈给各网络模块。
智能体模块包括观测与策略网络等内容,将各

智能体的观测与内部奖励经过策略网络计算后,再
传递给通信图构建模块。而在反向传播时,联合训

练模块的损失通过红色箭头反馈更新智能体的网络

参数。
图通信模块主要根据各智能体的位置信息、状

态相似度和历史交互构建通信图,确定图的节点和

边,并将构建好的图结构(节点与边)以绿色箭头传

递给编码器模块。
编码器模块利用GNN与掩码多头注意力机制

对通信图中的节点与边进行嵌入和信息聚合。编码

后的嵌入信息以绿色箭头传递给解码器模块。
解码器模块汇聚编码器输出,生成更新后的

 

智能

体表征,并计算Q 值,以绿色箭头传递到混合网络。
混合网络融合各智能体的输出,生成全局决

策信息,并将融合后的全局信息传递到自适应探

索模块。
自适应探索模块根据混合网络的输出,以及各

 

智能体内部奖励与外部奖励,计算和更新探索参数

α,决定最终动作采样策略。
联合训练与损失计算模块整合外部奖励、内部

奖励、通信一致性损失以及值函数损失,计算联合损

失函数。联合损失通过反向传播(红色箭头)更新

Agent策略网络、编码器与解码器网络的参数,实现

系统的持续优化。
具体算法流程如算法1所示。

算法1.GREMARL算法流程

输入:
 

经验回放池 D、训练轮数E、批量大小B、折扣因子

γ、目标网络更新率τ、初始探索率ε
输出:

 

训练后的策略网络参数θdec、θmix

1.
 

初始化:GNN
 

编码器、解码器、混合网络,复制目标网络

参数、经验回放池,设置优化器

2.
 

开始训练循环

3.
 

环境交互:每个智能体通过环境获得局部观测与位置(公
式(3))

 

4.
 

构建动态通信图

5.
 

节点特征提取(公式(4))
 

6.
 

边权重计算(公式(5))
 

7.
 

GNN
 

编码器生成节点嵌入(公式(7),(8),(9))
 

8.
 

解码器计算个体Q 值(公式(10))
 

9.
 

混合网络计算全局Q 值(公式(11))
 

10.
 

动作选择与执行:以概率ε 随机选择动作,否则选择
 

argmax;执行联合动作,获取环境奖励

11.
 

奖励计算与存储:
 

12.
 

计算内在奖励(公式(14))
 

13.
 

将经验元组存入经验回放池

14.
 

参数更新:
 

15.
 

从回放池中采样批次数据

16.
 

计算目标Q 值

17.
 

计算总损失(公式(19))
 

18.
 

反向传播更新各网络参数

19.
 

软更新目标网络参数

20.
 

探索率ε衰减

21.
 

训练结束,返回最终策略网络参数
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图1 GREMARL算法结构图

4 
 

实 验

4.1 
 

实验环境

  实验环境使用星际争霸(StarCraft
 

Multi-Agent
 

Challenge,简称SMAC)
 [34]、谷歌足球(Google

 

research
 

football,简称GRFootball)
 [35]等多个任务场景,要求

智能体在环境中进行信息采集与任务协同。

SMAC环境构建了多样化的微观战斗场景,让
多个智能体在局部观测条件下展开合作或对抗。这

些精心设计的场景要求智能体掌握一项或多项微管

理技巧,以便战胜对手。每个场景呈现两支部队之

间的交锋,其初始位置、数量和单位类型均因场景而

异。智能体可执行一系列离散动作,如向北、向南、
向东、向西移动、攻击指定敌人或进行治疗等,而这

些 动 作 的 具 体 范 围 和 约 束 则 取 决 于 场 景 设 置。

SMAC集成了一系列基于星际争霸Ⅱ的游戏,可以

在多种复杂场景下开展多个智能体的实验,专门用

于评估智能体在复杂协作任务中的表现。

GRFootball环境在多智能体强化学习领域独

具特色,其精心设计的多样化足球比赛场景允许多

个智能体在有限的局部视野下实现协作与对抗。这

些场景不仅真实再现了足球比赛的动态过程,还要求

智能体掌握传球、射门、防守和进攻等多种细腻操作
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技巧,以便在比赛中占据优势。每场比赛都代表着两

队之间的较量,队伍构成、球员位置和初始状态均因

场景不同而变化。智能体需要执行包括带球移动、传
球、射门和抢断等一系列动作,而这些动作的具体范

围和效果则依据比赛规则及场景设定而有所差异。
如图2所示,SMAC提供了多个挑战性任务,

如“2c
 

vs
 

64zg”代表了极端的不对称战争场景,考察

通信效率;表1则展现了GRFootball环境所提供的

多个高度动态环境,如“counterattack
 

easy”任务中

智能体需在瞬间协作决策,这与探索能力的验证目

标较为契合
 [36]。这两个环境综合测试了本文提出

方法在通信与探索两方面的改进能力。
评价指标主要考察任务完成率、收敛速度、信息

传递效率及系统鲁棒性。具体而言则是包括胜率、
奖励回报以及收敛速度等指标,从而全面评估多智

能体强化学习方法的性能。

图2 SMAC场景示意图

表1 GRFootball场景细节

名称 描述

空门射门 我方球员站在禁区内并持球,需要攻入空门

空门 我方球员站在球场中场并持球,需要攻入空门

3对1与守门员
三名我方球员从禁区边缘尝试进球,一个在两侧,另一个在中间。起初,中间的球员持球并面对防守球员。场
上有对方守门员

角球 标准角球情况,但角球球员可以从角旗区带球。失去控球时不会结束本回合

简单反击 4对1反击,带守门员;双方其他球员都朝球跑回

困难反击 4对2反击,带守门员;双方其他球员都朝球跑回

11对11懒惰对手
全场11对11比赛,对方球员无法移动,但如果球靠近他们,他们可以拦截。我方中卫起初持球。本回合的最
大时长为3000帧,而不是400帧

4.2 实验设置

  任务设置:本文选取 QMIX、CW-QMIX[37]、

QTRAN[38]、RIIT、UPDET等作为基准算法,基准

算法都是通过不同的方式分解和组合智能体的局部

Q值函数,以实现全局最优策略的学习,从而便于在

多个方面展现本文所提算法的优越性。为保证实验

的公平性,本文所使用算法的环境都基于关键参数

值如表2所示。

表2 实验所使用的主要参数

参数名称 参数值 参数名称 参数值

批次大小 128 优化器 Adam
经验回放池容量 5000 折扣因子 0.99

隐藏层维度 64 学习率 5e-4

  在相同实验环境下,每次实验对这6种算法进

行5次随机种子的实验,并取平均值来比较算法的

性能。本文所有 实 验 均 采 用 配 置 为i7-14700KF
 

CPU、NVIDIA
 

GeForce
 

RTX
 

4070
 

Ti
 

GPU 和

16GB内存的服务器作为硬件环境。软件环境方

面,实验基于
 

Ubuntu
 

20.04
 

操作系统搭建,并采用
 

PyTorch深度学习框架以保障模型训练的稳定性与

高效性。所有算法参数设置均参考对应原始文献或

官方代码,并在多个环境中保持一致,确保公平

对比。
所有基准算法均基于公开实现。如 UPDET、

QMIX以及QTRAN等算法,均使用其官方GitHub
仓库版本,并复现实验以确保一致性。
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4.3 对比实验

  本节在SMAC与GRFootball多智能体环境上

展开对比实验,旨在证明 GREMARL相对于5个

基准方法的有效性。对比曲线图中的实线代表五次

随机种子运行结果的均值,阴影表示标准差。

4.3.1 在SMAC上的表现

本文选用SMAC中的一个简单(3m)、两个困

难(8m、2c
 

vs
 

64zg)以及三个超难地图(5m
 

vs
 

6m、

8m
 

vs
 

9m、10m
 

vs
 

11m)进行实验,间隔1e4个时间

步测试一次平均胜率,绘制出对比实验的训练曲线

如图3所示。根据图3中的结果,GREMARL在六

个任务上均取得了最佳胜率。
根据图3可以看出,在多个场景中,GREMARL

表现出较为显著的提升潜力,尤其是在训练进程的

图3 SMAC场景结果图

后期。在某些情况下,GREMARL的胜率随着步数

的增加,逐渐超越了其他模型。这表明,尽管GRE-
MARL的早期表现较为波动,但它具有较强的适应

性,能够在长期训练后实现较大的提升。特别是在

8m和10m
 

vs
 

11m 场景中,GREMARL表现出逐

步上升的趋势,并在后期逐渐接近甚至超越其他算

法,表明它能够从早期的波动中恢复过来,具备较强

的长期学习能力。而从竞争力来看,尽管在大部分

图表中,QMIX和CW-QMIX持续占据领先地位,
但GREMARL在一些特定场景下(如5m

 

vs
 

6m和

8m
 

vs
 

9m)展现了较强的竞争力。在这些场景中,

GREMARL在后期的训练过程中逐渐追赶并超越

了其他模型,表明其具备较高的学习潜力和弹性。
从算法稳定性来看,GREMARL与其他算法(如

RIIT和UPDET)相比,表现出更大的波动性。尽

管其初期的表现并不稳定,但这种波动反映出它在

面对复杂训练环境时的高度适应性。与此相对,RI-
IT和UPDET虽然表现出更稳定的增长,但其增长较

为平缓,缺乏GFMARL那样的后期爆发性提升。
如表3所示,本文统计了各个算法在六种地图

上最后4e5步的平均胜率,在多个困难任务上的胜

率都高于其他基准算法,说明GREMARL
 

具备较强

的泛化能力,可以适应各类地图。而QMIX与
 

RIIT
在非极端对抗场景下表现稳健。UPDET次之。

表3 算法在SMAC地图上最后4e5步的平均胜率

算法

Map

3m 8m
2c

 

vs
 

64zg
5m

 

vs
 

6m
8m

 

vs
 

9m
10m

 

vs
 

11m
QMIX 0.91 0.90 0.68 0.55 0.94 0.00

CW-QMIX 0.86 0.88 0.88 0.20 0.12 0.20
QTRAN 0.75 0.72 0.00 0.00 0.02 0.00
RIIT 0.89 0.88 0.65 0.72 0.16 0.33
UPDET 0.87 0.88 0.52 0.75 0.62 0.68
GREMARL 0.94 0.93 0.94 0.80 0.97 0.75

CW-QMIX在特定地图(低干扰)上有竞争力。

QTRAN在高复杂度或对抗性地图上难以收敛。
总的来说,在SMAC任务上的一个简单、两个
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困难任务以及三个超难任务上,GREMARL算法与

QMIX、CW-QMIX、UPDET等基准方法相比,都展

现了更好的收敛性能以及更高的胜率。

4.3.2 在GRFootball上的表现

如图4所示,在三个复杂程度不同的任务(如带

守门 员 的 攻 防 对 抗、快 速 反 击、传 射 配 合)中,

GREMARL的步数表现均显著优于其他算法。这

表明其对多样化场景具有更强的适应能力,尤其

在需要协调多智能体合作的动态环境中(如任务

c),其优势更为突出。同时 GREMARL能以更少

的训练步数达到目标性能,学习效率更高。这种

特性对计算资源受限的实际应用场景尤为重要。
这也说明GREMARL通过引入自激励探索以及

图神 经 网 络 通 信 方 法,解 决 了 传 统 算 法 (如

QMIX的单调性约束、QTRAN的优化复杂性)的
局限性,从而在多智能体协作中实现更高效的策

略学习。
如表4所示,其为算法在GRFootball地图上的

平均回报,GREMARL在三个不同的任务中始终表

现出较高的回报值,特别是在需要较高协调性和策

略的任务中,如counterattack
 

easy和3
 

vs
 

1
 

with
 

keeper。与其他算法相比,GREMARL显示了更强

的可扩展性和适应能力,能够在多个任务中持续提

升表现,尤其是在复杂的多智能体环境中。这表明,

GREMARL在训练2×106 步之后,能够在各个任

务中获得更高的平均回报。

图4 GRFootball场景结果图

表4 算法在GRFootball地图上的平均回报

算法

Map
3

 

vs
 

1
 

with
 

keeper
Counterattack

 

easy
pass

 

and
 

shoot
 

with
 

keeper
QMIX 2.20 2.20 0.45

CW-QMIX 0.90 0.60 0.80
QTRAN 0.05 0.02 0.01
RIIT 0.80 0.90 0.05
UPDET 0.45 0.05 0.02
GREMARL 3.10 3.80 1.80

4.4 消融实验

  为了展现模型各个组成部分对GREMARL结

构与性能的必要性,在SMAC与GRFootball上的

地图上展开消融实验。在SMAC的5m
 

vs
 

6m地图

上,分别关闭算法的自激励探索模块与图神经网络

通信模块,采用同样的实验设置,最终得到如图5所

示的消融实验结果图。其中实线代表五次运行结果

的均值,阴影表示标准差。

如图5所示,完整的 GREMARL模型(蓝线)
在两个模块协同作用下展现出最优性能。其增量胜

率在训练初期快速上升,最终稳定收敛于0.65,评
估环境中的胜率超过0.8,平均Episode回报接近

19,显示出较强的策略收敛性与环境适应性。相比

之下,关闭通信模块(橙线)后,尽管保留了自激励探

索机制,智能体仍可学到一定的协作策略,但因缺乏

高效的信息共享与状态协调,整体收敛速度显著下

降,最终胜率与回报也出现明显下滑。进一步,关闭

自激励探索模块(绿线)后,智能体策略熵长期维持

在较高水平,表现出探索行为无效、目标不集中、死
亡率上升等问题,最终导致训练停滞在较低胜率与

回报区间,难以实现策略优化。
从行为层面观察,自激励模块的移除导致智能

体缺乏明确驱动,在面对复杂对抗环境时易出现无

序行动或被动等待,严重影响了整体生存率和探索

效率。而通信模块的缺失则使得各智能体间缺乏
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图5 SMAC消融实验结果图

信息协同,虽然在一定程度上仍可通过环境奖励驱

动学习局部策略,但整体团队协作能力受限,表现为

回报上限降低与策略更新缓慢。
此图说明,GREMARL中的通信模块与自激励

模块在功能上形成互补。通信机制主要促进智能体

间的任务分工与协作协调,加速策略形成与收敛过

程。而自激励机制则为智能体提供持续的探索动机

和生存驱动,有效避免陷入局部最优。两者结合不

仅提升了协作策略的整体水平,也显著改善了训练

效率与最终性能,验证了其在多智能体强化学习中

的结构必要性与实际有效性。
图6为GREMARL模型在GRFootball中3

 

vs
 

1
 

with
 

keeper上的消融曲线,完整的
 

GREMARL
 

算法(蓝色曲线)在奖励获取、收益稳定性、损失收敛

性等方面,显著优于
 

“移除通信模块”(橙色曲线)和
 

“移除自激励模块”(绿色曲线)的对比方案
 

。具体

而言,在奖励与回报维度,GREMARL的平均奖励、
平均Episode回报及最大回报均更高,且收敛后波

动更小,体现出更强的收益增长能力与稳定性。在

损失维度,其策略损失收敛更快、波动更平缓,值损

失也更快降至更低水平,反映出算法对策略优化和

状态价值估计的精准性。这一结果验证了通信模块

与自激励模块的协同作用。二者缺失会明显削弱算

法性能,而完整集成则让 GREMARL在复杂决策

场景中表现更卓越。
4.5 可视化分析

  如图7所示,本文收集了 GREMARL算法在

5m
 

vs
 

6m以及10m
 

vs
 

11m地图中梯度范数、值损

失以及策略损失的变化情况,使用t-SNE方法[39]进

行了可视化。结果表明,大部分点的策略损失和值

损失都比较集中,说明算法在大部分样本上的表现

比较稳定。而随着地图难度的增加,在10m
 

vs
 

11m
地图中,梯度范数分布较为分散,有更多黄色点(表
示较大的梯度范数)和紫色点(表示较小的梯度范

数),说明损失函数对参数变化较为敏感。

5 总 结

综上所述,在协作多智能体强化学习中,探索不

足与通信低效始终制约着整体协同性能。针对这一

瓶颈,本文提出的 GREMARL方法通过融合自激

励探索(SME)与图神经网络通信模块,从内而外提

升探索与信息传播效率。首先通过图神经网络通信

模块将智能体群视作动态图结构,节点间的连边
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图6 GRFootball消融实验结果图

图7 t-SNE可视化

刻画距离、任务关联及历史交互信息,借助时序图神经

网络端到端地学习最优通信拓扑,使关键信息快速聚

合与分发、冗余通道自适应衰减。其次通过自激励探

索方法将状态-动作对熵增量作为内在奖励,并引入

历史行为与多样性指标,驱动智能体在早期广度探索、
后期平滑向深度利用过渡,避免陷入局部最优。

在SMAC与GRFootball等复杂场景任务中的

实验结果证明,GREMARL在SMAC中的平均胜

率达88.8%,较目前最优算法提升16.8%。消融研

究进一步验证了SME模块与GNN通信的必要性。
在未来的研究中,我们将关注不同架构下的多

智能体通信低效与探索不足等问题。此外,本文实

验受限于硬件水平,主要考虑智能体数量较少的场

景,而大规模多智能体强化学习任务下的建模通信

与探索平衡同样值得关注,未来我们将继续关注该

问题。
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Background
  In

 

real-world
 

application
 

scenarios,
 

multi-agent
 

systems
 

often
 

face
 

issues
 

of
 

limited
 

communication
 

and
 

insufficient
 

exploration.
 

To
 

address
 

these
 

challenges,
 

this
 

paper
 

propo-
ses

 

a
 

novel
 

collaborative
 

multi-agent
 

reinforcement
 

learning
 

framework
 

that
 

combines
 

self-motivated
 

multi-agent
 

explora-
tion

 

(Self-Motivated
 

Exploration,
 

SME)
 

with
 

graph
 

neural
 

network-based
 

(Graph
 

Neural
 

Network,
 

GNN)
 

multi-agent
 

communication
 

methods.
 

Specifically,
 

the
 

paper
 

designs
 

an
 

internal
 

incentive
 

mechanism
 

to
 

encourage
 

agents
 

to
 

proac-
tively

 

explore
 

unknown
 

areas
 

and
 

uses
 

graph
 

neural
 

networks
 

to
 

model
 

the
 

communication
 

structure
 

between
 

agents,
 

thereby
 

capturing
 

dynamic
 

interaction
 

relationships
 

and
 

pro-
moting

 

efficient
 

information
 

transmission.
 

Experimental
 

re-
sults

 

show
 

that
 

GREMARL
 

achieves
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average
 

win
 

rate
 

of
 

88.8%
 

in
 

complex
 

SMAC
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showcasing
 

a
 

sig-
nificant

 

16.8%
 

improvement
 

over
 

the
 

suboptimal
 

algorithm
 

UPDET.
 

Through
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designed
 

ablation
 

studies,
 

this
 

paper
 

has
 

validated
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multiple
 

perspectives
 

the
 

necessity
 

of
 

self-motivated
 

exploration
 

and
 

graph
 

neural
 

network
 

mod-
eling

 

for
 

GREMARL.
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