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摘 要 给定正整数k和非负整数ℓ以及度量空间中的一组设施和着色用户,
 

着色(k,ℓ)-中值问题旨在选取不超

过k个开设设施、在用户集合中移除最多ℓ个异常点并为剩余的每个用户分配一个开设设施,
 

使得颜色相同的用

户对应不同设施,
 

且用户与对应设施之间的距离之和最小。本文利用新的随机采样方法确定用来选取开设设施的

引导点集合,
 

并围绕引导点为问题实例构造小规模候选解集合。本文基于此为着色 (k,ℓ)-中值问题提出了时间

复杂度为 ((k+ℓ)ε-1)O(k)nO(1)的 (3+ε)-近似算法,
 

其中,
 

n为问题实例中设施与用户数量之和。这是关于着色

(k,ℓ)-中值问题的第一个具有性能保证的求解算法。该算法与此前人们在不考虑着色约束的情况下提出的固定

参数近似算法有相同的时间复杂度和近似比。
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Abstract 
 

Clustering
 

is
 

a
 

fundamental
 

task
 

in
 

data
 

mining
 

and
 

machine
 

learning,
 

where
 

the
 

goal
 

is
 

to
 

partition
 

a
 

set
 

of
 

data
 

points
 

into
 

clusters
 

with
 

high
 

intra-cluster
 

similarity.
 

Among
 

various
 

clustering
 

formulations,
 

the
 

k-median
 

problem
 

has
 

received
 

significant
 

attention
 

due
 

to
 

its
 

con-
ceptual

 

simplicity
 

and
 

wide
 

applicability.
 

Given
 

a
 

set
 

of
 

facilities
 

and
 

clients
 

in
 

a
 

metric
 

space,
 

along
 

with
 

an
 

integer
 

k,
 

the
 

k-median
 

problem
 

aims
 

at
 

opening
 

at
 

most
 

k
 

facilities
 

and
 

assigning
 

each
 

client
 

to
 

an
 

opened
 

facility
 

to
 

minimize
 

the
 

total
 

distance
 

between
 

clients
 

and
 

their
 

assigned
 

facilities.
 

In
 

many
 

real-world
 

applications,
 

additional
 

constraints
 

need
 

to
 

be
 

incorporated
 

into
 

the
 

k-median
 

problem
 

to
 

account
 

for
 

domain-specific
 

structures.
 

One
 

such
 

example
 

is
 

in
 

the
 

study
 

of
 

the
 

spatial
 

organization
 

of
 

chromosomes
 

in
 

cell
 

nuclei,
 

where
 

it
 

is
 

common
 

to
 

analyze
 

spatial
 

pat-
terns

 

of
 

probe
 

points
 

extracted
 

from
 

homologous
 

chromosomes
 

within
 

multiple
 

cells.
 

These
 



probe
 

points
 

can
 

be
 

modeled
 

as
 

clients
 

in
 

an
 

instance
 

of
 

the
 

k-median
 

problem,
 

but
 

it
 

is
 

necessary
 

to
 

enforce
 

that
 

probe
 

points
 

from
 

the
 

same
 

cell
 

be
 

assigned
 

to
 

different
 

representative
 

points.
 

Mo-
tivated

 

by
 

this,
 

the
 

chromatic
 

k-median
 

problem
 

has
 

been
 

introduced,
 

where
 

each
 

client
 

is
 

associ-
ated

 

with
 

a
 

color
 

(e.g.,
 

representing
 

the
 

cell
 

it
 

comes
 

from),
 

and
 

clients
 

with
 

the
 

same
 

color
 

must
 

be
 

assigned
 

to
 

different
 

facilities.
 

This
 

chromatic
 

constraint
 

has
 

been
 

used
 

to
 

support
 

more
 

accurate
 

clustering
 

in
 

fields
 

such
 

as
 

computational
 

biology,
 

privacy-preserving
 

learning,
 

and
 

lo-
gistics

 

planning.
 

In
 

this
 

paper,
 

we
 

consider
 

a
 

more
 

general
 

and
 

challenging
 

variant
 

of
 

the
 

prob-
lem,

 

known
 

as
 

the
 

chromatic
 

(k,ℓ)-median
 

problem,
 

which
 

additionally
 

allows
 

the
 

removal
 

of
 

up
 

to
 

ℓ
 

outliers
 

from
 

the
 

client
 

set.
 

This
 

extension
 

enhances
 

the
 

robustness
 

of
 

the
 

clustering
 

process,
 

particularly
 

in
 

real-world
 

applications
 

where
 

input
 

data
 

may
 

be
 

affected
 

by
 

noise.
 

However,
 

the
 

simultaneous
 

presence
 

of
 

the
 

chromatic
 

constraint
 

and
 

the
 

requirement
 

of
 

outlier
 

detection
 

intro-
duces

 

substantial
 

algorithmic
 

challenges,
 

and
 

no
 

algorithms
 

with
 

provable
 

approximation
 

guaran-
tees

 

are
 

currently
 

known
 

for
 

this
 

setting.
 

We
 

deal
 

with
 

the
 

chromatic
 

(k,ℓ)-median
 

problem
 

un-
der

 

the
 

leader-based
 

framework
 

for
 

algorithm
 

design,
 

which
 

has
 

been
 

widely
 

applied
 

to
 

various
 

clustering
 

problems.
 

In
 

this
 

framework,
 

the
 

client
 

closest
 

to
 

each
 

facility
 

opened
 

in
 

an
 

optimal
 

solution
 

is
 

referred
 

to
 

as
 

a
 

leader.
 

Candidate
 

facilities
 

are
 

then
 

selected
 

from
 

annular
 

regions
 

cen-
tered

 

at
 

these
 

leaders.
 

Existing
 

algorithms
 

based
 

on
 

this
 

approach
 

typically
 

rely
 

on
 

coreset
 

con-
structions

 

to
 

reduce
 

the
 

size
 

of
 

the
 

client
 

set,
 

so
 

that
 

the
 

enumeration
 

over
 

all
 

possible
 

leaders
 

can
 

be
 

performed
 

within
 

fixed-parameter
 

tractable
 

time.
 

However,
 

this
 

strategy
 

cannot
 

be
 

directly
 

applied
 

to
 

the
 

chromatic
 

(k,ℓ)-median
 

problem,
 

as
 

no
 

effective
 

coreset
 

construction
 

is
 

currently
 

known
 

for
 

this
 

setting.
 

As
 

a
 

remedy,
 

we
 

propose
 

a
 

relaxed
 

notion
 

of
 

leaders,
 

where
 

it
 

suffices
 

to
 

find
 

clients
 

whose
 

distances
 

to
 

the
 

corresponding
 

optimal
 

facilities
 

are
 

bounded
 

by
 

a
 

given
 

thresh-
old.

 

We
 

present
 

a
 

sampling-based
 

approach
 

for
 

identifying
 

such
 

weak
 

leaders.
 

Around
 

each
 

weak
 

leader,
 

we
 

construct
 

a
 

carefully
 

selected
 

set
 

of
 

candidate
 

facilities
 

and
 

derive
 

a
 

limited
 

collection
 

of
 

candidate
 

solutions.
 

This
 

enables
 

us
 

to
 

propose
 

a
 

(3+ε)-approximation
 

algorithm
 

that
 

runs
 

in
 

((k+ℓ)ε-1)O(k)nO(1)
 

time
 

for
 

the
 

chromatic
 

(k,ℓ)-median
 

problem.
 

Notably,
 

our
 

result
 

matches
 

the
 

previously
 

known
 

result
 

obtained
 

in
 

the
 

simpler
 

case
 

without
 

the
 

chromatic
 

constraint,
 

in
 

terms
 

of
 

both
 

running
 

time
 

and
 

approximation
 

ratio.
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algorithms;
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random
 

sampling;
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1 引 言

聚类是数据挖掘领域中的核心问题之一。该问

题要求将一组用户划分为若干子集,
 

以在不同子集

间最大化用户的差异性,
 

同时在同一子集内最大化

用户的相似性。在诸多聚类模型中,
 

k-中值
 

(k-
Median)

 

问题因其简洁的表达形式和广泛的应用而

备受关注。给定度量空间中的一组设施和用户以及

正整数k,k-中值问题旨在开设最多k 个设施并为

每个用户分配一个开设设施,
 

使得用户与对应设施

的距 离 之 和 最 小。k-中 值 问 题 是 一 个 NP-难 问

题[1],
 

因此,
 

人们针对其近似算法开展了广泛研

究。目前,
 

关于k-中值问题的最好近似结果是

Gowda等人[2]基于Li和Svensson[3]提出的亚可行

近似解修正方法得到的 (2.613+ε)-近似比
 

(其
中,

 

ε为 (0,1)内的任意常数)。在相较于一般化的

度量空 间 更 为 特 殊 的 欧 几 里 得 空 间 中,
 

Cohen-
Addad等人[4]通过挖掘空间性质为k-中值问题提

出了 (2.406+ε)-近似算法。

k-中值问题要求确保用户与其对应的开设设

施之间具有较高的相似性。基于这一特性,
 

人们在

k-中值问题的很多应用场景中将开设设施作为用

户集合的代表性数据点。例如,
 

在染色体拓扑结构

的研究中,
 

可将从一组细胞的目标同源染色体中提

取的探针点集作为用户集合,
 

并利用开设设施的位

置表征这些探针点在细胞群中的共同空间分布模

式。然而,
 

由于同一细胞中提取的探针点彼此对应
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不同的同源体,
 

为了更准确地刻画同源体探针点的

空间分布模式,
 

需要在聚类过程中引入以下约束:
 

每个开设设施在同一细胞中至多连接一个探针点。
针对上述需求,

 

Ding和Xu[5]在k-中值问题的基础

上引入着色约束、提出了着色k-中值
 

(Chromatic
 

k-
Median)

 

问题。在该问题中,
 

每个用户被赋予一个

颜色
 

(例如,
 

在分析染色体拓扑结构时,
 

同一细胞

内的探针点具有相同颜色),
 

且颜色相同的用户必

须与不同设施相连。通过引入着色约束,
 

人们在生

物信息学[5-6]、隐私计算[7]、交通规划[8]等领域实现

了更具针对性的聚类分析。
着色k-中值问题的求解算法基于用户与开设

设施之间的距离划分用户集合。在划分过程中,
 

与

开设设施距离较远的少量异常点
 

(Outliers)
 

能明

显影响解的结构。在需要处理噪声数据的问题实例

中,
 

移除这些异常点往往能产生更合理的聚类结

果,
 

如图1所示
 

(其中,
 

用户和设施分别为圆形和

方形)。鉴于此,
 

本文研究着色 (k,ℓ)-中值
 

(Chro-
matic

 

(k,ℓ)-Median)
 

问题。给定非负整数ℓ,
 

该

问题允许实例的解在用户集合中移除不超过ℓ个异

常点以降低其对应的目标函数值。第3节中给出了

着色 (k,ℓ)-中值问题的形式化定义。

图1 异常点对聚类结果的影响

在实 际 应 用 中 处 理 带 异 常 点 的 聚 类 问 题
 

(Clustering
 

with
 

Outliers)
 

时,
 

开设设施的数量k
和异常点的数量ℓ通常远小于点集规模。因此,

 

在

k和ℓ取值较小的假设下设计相关问题的求解算法

一直是一个热门研究领域[9-13]。本文基于相同假设

求解着色 (k,ℓ)-中值问题。不难发现,
 

通过枚举

设施集合的子集以及用户的连接方式,
 

我们可以在

nO(k)时间内得到着色 (k,ℓ)-中值问题实例的最优

解,
 

其中,
 

n 为设施与用户数量之和。然而,
 

本文

旨在避免对解空间的全面搜索,
 

在固定参数时间
 

(即g(k,ℓ)nO(1)时间,
 

其中,
 

g()为任意正值函数)
 

内求解着色 (k,ℓ)-中值问题。

Cohen-Addad等 人[14]基 于 最 大 覆 盖
 

(Max-
Coverage)

 

问题的归约结果表明,
 

存在一个正值函

数g(),
 

使得任何能为k-中值问题实现优于1+

2e-1 的近似比的算法都有不低于ng(k)的时间复杂

度。鉴于k-中值问题是着色 (k,ℓ)-中值问题的特

殊情况
 

(其中,
 

ℓ=0且用户颜色各不相同),
 

这一结

果说明我们无法在k和ℓ为固定参数的情况下为着

色 (k,ℓ)-中值问题设计固定参数时间的精确算法。
然而,

 

该归约结果并未否定在固定参数时间内优化

k-中值相关问题近似结果的可能性。例如:
 

Chen
等人[9]以k 和ℓ作为固定参数,

 

为考虑异常点的

(k,ℓ)-中值
 

((k,ℓ)-Median)
 

问题提出了时间复

杂度为 ((k+ℓ)ε-1)O(k)nO(1)的 (3+ε)-近似算法;
 

该结果明显优于此前Gupta等人[15]在多项式时间

内得到的 (6.994+ε)-近似结果。本文根据着色

约束对现有固定参数时间算法设计框架进行调

整,
 

为着色 (k,ℓ)-中值问题提出的算法与Chen
等人[9]在不考虑着色约束的情况下提出的固定参

数近似算法具有相同的时间复杂度和近似比
 

(如
第7节定理1所述)。这是关于着色 (k,ℓ)-中值

问题的第一个具有近似保证的固定参数时间求解

算法。
本文主要贡献概括如下。
(1)本文结合着色约束为着色 (k,ℓ)-中值问题

设计了用于挖掘最优开设设施邻近用户的随机采样

算法。本文利用这一算法估计最优解中开设设施的

位置,
 

并构造了有效的小规模解搜索空间。
(2)在上述技术的基础上,

 

本文以k 和ℓ作为

固定参数,
 

为着色 (k,ℓ)-中值问题提出了第一个

具有近似保证的求解算法。这对于更准确地刻画着

色 (k,ℓ)-中值问题的求解难度、完善其求解理论具

有重要意义。

2 相关工作

本文所研究的着色 (k,ℓ)-中值问题是 (k,ℓ)-
中值

 

((k,ℓ)-Median)
 

问题的推广形式,
 

其中,
 

前

者在用户颜色各不相同时等价于 (k,ℓ)-中值问题。
鉴于鲁棒聚类分析领域的实际需求,

 

人们广泛研究

了 (k,ℓ)-中值问题的求解算法。关于该问题的第

一个具有近似保证的算法是Charikar等人[16]利用

原始-对偶和拉格朗日松弛方法提出的(4(1+ε-1),

1+ε)-双标准近似算法。该算法在允许适当违反

异常点数量上限、移除至多ℓ(1+ε)个异常点的情

况下,
 

能保证所得解的费用至多为目标函数最小值

的4(1+ε-1)倍。Chen[17]基于拉格朗日松弛方法

提出了第一个能严格满足实例约束条件的常数近似
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算法。此后,
 

Krishnaswamy等人[18]和 Gupta等

人[15]利用迭代舍入技术分别将 (k,ℓ)-中值问题的

近似结果改进为7.081+ε和6.994+ε。当k和ℓ
为固定参数时,

 

Feldman和Schulman[10]基于加权

连接费用刻画 (k,ℓ)-中值问题,
 

提出了时间复杂

度为nlogn(k+ℓ)O(k+ℓ) 的常数近似算法。此后,
 

Chen等人[9]基于最优解中开设设施的邻近用户构

造 (k,ℓ)-中值问题的近似解,
 

提出了时间复杂度

为((k+ℓ)ε-1)O(k)nO(1)的(3+ε)-近似算法。类似

地,
 

在欧几里得空间中,
 

人们以k 和ℓ作为固定参

数求解 (k,ℓ)-中值问题的连续型实例
 

(其中,
 

设施

可被开设在空间中的任意位置)、基于空间性质提出

了近似比为1+ε的固定参数时间算法[10-11]。
在实际应用需求的推动下,

 

人们通过为用户赋

加颜色提出了着色聚类问题、公平聚类
 

(Fair
 

Clus-
tering)[19-21]问题等带有额外约束的聚类问题。在

为用户的连接方式引入着色约束后,
 

(k,ℓ)-中值问

题的求解难度显著提升。例如,
 

在给定开设设施的

情况下,
 

我们可以通过将每个用户连接到与其距离

最近的开设设施上并将与对应设施距离最远的一部

分用户作为异常点来最小化聚类代价,
 

而在着色

(k,ℓ)-中值问题中,
 

用相同方式构造的解无法保证

能满足实例的着色约束。这使得着色 (k,ℓ)-中值

问题实例最优解的组合结构更加难以利用。目前,
 

还不存在关于着色 (k,ℓ)-中值问题的带有近似保

证的求解算法。即使在ℓ=0的情况下
 

(此时着色

(k,ℓ)-中值问题等价于着色k-中值问题),
 

是否能

为该问题设计多项式时间的常数近似算法也仍然是

未知的。
近年来,

 

人们开始基于参数计算理论处理聚类

问题中的着色约束。Feng等人[22]和Goyal等人[23]

利用D-采样方法[24]为着色k-中值问题实例构造

候选开设设施集合,
 

并基于此提出了以k 为固定参

数的 (3+ε)-近似算法。当点集位于欧几里得空间

且k为固定参数时,
 

人们采用枚举方法为最优解中

的每个簇构造代表性子集,
 

并将这些子集的中位点

作为开设设施,
 

进而为着色k-中值问题的连续型

实例 提 出 了 固 定 参 数 时 间 的 (1+ε)-近 似 算

法[5,25-26]。由于着色k-中值问题要求在目标函数中

计算所有用户的连接费用,
 

现有算法在着色约束下

无法有效处理用户集合中的异常点。本文利用新的

随机采样算法在考虑异常点的情况下构造满足着色

约束的小规模解搜索空间,
 

并基于此为着色 (k,

ℓ)-中值问题提出了固定参数时间的近似算法。

3 基本定义及引理

本节给出文中将使用的一些定义和引理。以下

是着色 (k,ℓ)-中值问题的定义。
定义1.

 

(着色 (k,ℓ)-中值问题)
输入:

 

着 色 (k,ℓ)-中 值 问 题 的 一 个 实 例

,d  ,,,k,ℓ,η  。该实 例 包 含 定 义 在 集 合

上且以d 为距离函数的度量空间 ,d  、用户

集合 ⊆ 、设施集合 ⊆ 、正整数k以及非负

整数ℓ,
 

其 中,
 

每 个 用 户c∈ 都 有 一 个 颜 色

η(c)。
输出:

 

实例 ,d  ,,,k,ℓ,η  的最小费用

可行解。该实例的一个可行解 ,,τ  由满足

≤k的开设设施集合 ⊆ 、满足 ≤m 的

异常点集合 ⊆ 以及对于满足|τ-1(f)|≥2的每

个开设设施f∈ 和每对用户c1,c2∈τ-1(f)都有

η(c1)≠η(c2)的映射τ:\ → 组成。可行解

,,τ  的费用为∑c∈ \ d(c,τ(c))。

给定正整数i,
 

定义 [i]={1,2,…,i}。令

表示 (0,1)内的一个常数。令 =((,d),,,k,

ℓ,η)表示着色 (k,ℓ)-中值问题的一个实例,
 

其中,
 

∪ =n。令 *,*,τ*  表示 的一个最优

解,
 

其中,
 

* = f*
1 ,f*

2 ,…,f*
k  。给定整数i∈

[k],
 

令 *
i = c∈ \ *:τ*(c)=f*

i  表示f*
i 对应

的簇,
 

并令opti =∑c∈ *
i
dc,f*

i  表示该簇的聚

类代价。令opt=∑
k

i=1opti 表示实例 最优解的

费用。不失一般性,
 

可以假设 *
1 ≥ *

2 ≥…≥
*
k 。给 定 点 u ∈ 和 集 合 ⊆ ,

 

令

dsum ,u  =∑v∈ d(v,u)表示 中的点与u 的

距离之和,
 

并令dminu,  =minv∈ d(u,v)表示

中的点与u 之间的最小距离。
以下引理为分析 * 中每个设施的邻近用户在

对应簇中所占的比重提供了途径。
引理1.给定实数γ>1、点u∈ 和集合 ⊆ ,

 

不等式 v∈ :d(v,u)≤γdsum ,u  -1  >
(1-γ-1) 成立。

证明.
 

 令 (γ)={v∈ :d(v,u)≤γdsum

,u)| |-1}表 示 以 点 u 为 中 心、半 径 为

γdsum ,u  -1 的球形区域所覆盖的点集。这

一定义说明每个点v∈ \ (γ)都满足d(v,u)>
γdsum ,u  -1。由此可知,

4 计  算  机  学  报 2026年



d( \ (γ),u)>
1γdsum( ,u) \ (γ) (1)

此外,
 

由 \ (γ)⊆ 这一事实可知dsum( \
(γ),u)≤dsum ,u  。结合该不等式与不等式

 

(1)
 

可以得出 >γ| \ (γ)|。因此,

| (γ)|=| |-| \ (γ)|> 1-
1
γ  。

该不等式说明引理1成立。 证毕。

4 算法概述

本文算法基于Cohen-Addad等人[14]提出的固定

参数近似算法设计框架。该框架将与最优解中的每

个开设设施距离最近的用户作为
 

“引导点”
 

(Lead-
er)、在以引导点为中心的环形区域中选取候选开设

设施。该思路已被应用于一系列聚类问题求解算法

的设计中[27-29],
 

其中包括Chen等人[9]以k和ℓ作为

固定参数、针对(k,ℓ)-中值问题提出的(3+ε)-近似

算法。Chen等人[9]基于Agrawal等人[11]提出的核心

集构造方法压缩用户集合规模,
 

使得枚举用户集合

以寻找引导点所需时间可以被限制在固定参数时间。
本文所处理的情况更加复杂:

 

是否存在关于着色 (k,

ℓ)-中值问题的有效核心集构造方法尚未明确。为

此,
 

本文基于Cohen-Addad等人[14]给出的框架提出

了新的算法设计思路。与现有方法不同的是,
 

本文

弱化了对引导点的定义,
 

所提出的算法仅需找到与

目标设施之间的距离不超过给定上限的用户
 

(如第

5.2节中的不变式φ(i)所述),
 

而非与其距离最近的

用户。这一弱化的要求为本文在不构造核心集的情

况下于有限时间内寻找引导点提供了可能性。下面

概述本文的求解思路。

4.1 引导点选取方法

  本文在第5节中基于采样方法为开设设施选取

引导点。由引理1可知,
 

在实例最优解的每个簇

中,
 

与对应开设设施的距离小于给定阈值的用户所

占比例具有与该阈值正相关的下界。本文通过引理

1分析每个簇中可以作为开设设施引导点的用户所

占的比例,
 

并采用随机采样方法从用户集合中选取

第一个引导点。图2中给出了本文基于已选取的引

导点为其他开设设施寻找引导点的基本思路。给定

设施f1 的引导点l1,
 

本文证明了存在一个以l1 为

中心的球形区域,
 

使得与l1距离较远的某个开设设

施所对应的引导点在该区域外的比重较高
 

(不等式
 

(13))。根据这一结论,
 

本文以l1为中心、通过遍历

所覆盖用户数量的方式寻找满足上述要求的球形区

域,
 

并在该区域外选取剩余开设设施的引导点。在

上述采样过程中所面临的一个挑战是,
 

实例的着色

约束使得我们无法直接根据用户与开设设施之间的

距离估计最优解中的异常点集合与簇的分布,
 

这明

显提高了为每个簇确定合理采样范围的难度。出

现这一问题的原因在于实例的最优解中存在为了

满足着色约束而与对应开设设施距离较远的用

户,
 

如图3所示。本文利用已经选取的、与这些用

户距离较近的引导点估计这些用户的位置,
 

在已

有的引导点集合与采样结果的并集中选择目标设

施的引导点。

图2 算法思路

图3 着色约束对用户连接方式的影响

4.2 基于引导点集合的求解算法

  在基于引导点集合为 (k,ℓ)-中值问题构造近

似解时,
 

Chen等人[9]开设与每个引导点距离最近

的设施、将每个用户连接到与其距离最近的开设设

施并将与对应设施距离最远的ℓ个用户作为异常

点。然而,
 

在着色约束下,
 

我们无法保证能利用相
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同方式构造实例的可行解。首先,
 

在选取与每个

引导点距离最近的设施作为开设设施时,
 

可能会

出现同一个设施被多次选取的情况,
 

如图4-(a)所
示。此时,

 

我们需要合并对应相同设施的簇,
 

这

可能导致解违反实例的着色约束。其次,
 

在着色

约束下,
 

不能仅根据用户与设施之间的距离来确

定用户的连接方式,
 

还需要保证所选连接方式的

可行性。
针对第一个问题,

 

本文在第6.1节中利用彩色

编码
 

(Color-Coding)
 

技术选取开设设施。具体来

说,
 

本文为每个设施分配一个标签,
 

并通过选取标

签互不相同的设施避免开设设施集合中出现重复元

素,
 

如图4-(b)所示
 

(其中:
 

颜色相同的设施具有相

同的标签;
 

与每个引导点距离最近且带有指定标签

的设施被选作开设设施)。针对第二个问题,
 

本文

在第6.2节中利用最小费用循环
 

(Minimum-Cost
 

Circulation)
 

问题刻画异常点集合的选取以及用户

连接映射的构造。在给定开设设施集合的情况下,
 

本文基于最小费用循环问题的多项式时间求解算

法[30]构造满足实例着色约束的近似解。结合上述

引导点选取方法以及基于引导点集合的求解算法,
 

本文为着色 (k,ℓ)-中值问题提出了固定参数时间

的 (3+ε)-近似算法。

图4 基于彩色编码的设施选取方法

5 引导点挖掘

本节通过随机采样寻找与 * 中的设施较为接

近的引导点。在5.1节中,
 

我们给出针对引导点的

具体采样过程。在5.2节中,
 

我们分析基于该采样

过程获取满足要求的引导点集合的概率。

5.1 随机采样算法

  本节为寻找引导点提出的采样过程在算法

Sampling
 

(算法1)
 

中给出。该算法旨在递归地更

新一个候选引导点集合族。给定正整数k
 

(引导点

集合规模上限)、多重集合
 

(一个候选引导点集

合)、集合 †
 

(算法采样范围)
 

以及变量参数LL
 

(待

更新的候选引导点集合族),
 

Sampling(k, , †,

LL ,d)按照以下方式递归地在LL 中添加候选引导

点集合:
 

(1)
 

从 † 中随机选取一个用户c,
 

并以

∪+{c}作为输入集合调用其本身;
 

(2)
 

移除
†中与 的成员距离较近的一部分用户,

 

并以消

减后的用户集合 ≠⊂ † 作为采样范围再次调用

其本身。

算法1.
 

Sampling(k,,†,LL ,d)
输入:正整数k,

 

集合 、† 和LL 以及距离函数d;

1.
 

IF
 

| |=k
 

THEN

2.
  

 
 

LL ←LL ∪ { };

3.
 

ELSE
4.

  

 
 

均匀随机地在 † 中选取一个用户c;

5.
  

 
 

Sampling k, ∪+{c},†,LL ,d  ;

6.
  

 
 

IF
 

≠Ø
 

且
 

| †|>1
 

THEN

7.   ︳=← argmax
'⊆ †∧ ' = † /2

∑c∈ 'd
min(c, );

8.   Sampling k, ,︳=,LL ,d  .

以下引理给出了算法Sampling的时间复杂度

及其构造的候选引导点集合规模。
引理2.给定集合LL 和着色 (k,ℓ)-中值问题的

实例((,d),,,k,ℓ,η),
 

Sampling(k,Ø,,LL ,

d)的时间复杂度为kO(k) ,
 

且其向LL 中添加的

集合数量不超过2k 。
证明.给定正整数s 和非负整数t 以及满足

† =s和| |=k-t的集合 †和 ,
 

令T(s,t)
表示Sampling k,,†,LL ,d  的运行时间,

 

并令

S(s,t)表示其向LL 中添加的集合数量。Sampling
k,,†,LL ,d  在 第 5 步 递 归 调 用 Sampling
k, ∪+{c},†,LL ,d  ,

 

在第7步 花 费 O(s(k -
t))时间从 † 中移除一半的用户以构造集合 ︳= ,

 

并在第8步递归调用Sampling k,,︳=,LL ,d  。
由此可知,

 

给定整数s≥2和t≥1,
 

等式

S(s,t)=S(s,t-1)+S s
2
,t  (2)

成立,
 

且存在满足

T(s,t)=T(s,t-1)+T s
2
,t  +γs(k-t) (3)

的常数γ。
我们声明每个整数s≥1和t≥0都满足不等

式T(s,t)≤2tγ(t+1)tks和S(s,t)≤2ts。由于

T(s,0)、T(1,t)、S(s,0)和S(1,t)都是常数,
 

这

一声明在s=1或t=0的情况下成立。给定整数

s≥2和t≥1,
 

本节假设上述声明对于任意整数

s'∈ [1,s)和t'∈[0,t)都成立。结合这一假设与
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不等式(2)和不等式(3)可知

T(s,t)≤2t-1γtt-1ks+2tγ(t+1)tk
s
2

 +γs(k-t)

≤γks(2t-1tt-1+2t-1(t+1)t+1)

≤γks(2t-1(tt-1+1)+2t-1(t+1)t)

≤γks(2t-1(t+1)t+2t-1(t+1)t)

=2tγ(t+1)tks,
且

S(s,t)≤2t
 

-1s+2t
s
2=2ts。

由此可知,
 

我们以归纳假设的方式证明了每个整数

s≥1和t≥0都满足T(s,t)≤2tγ(t+1)tks和

S(s,t)≤2ts。令s= 、t=k,
 

则上述论证表明

Samplingk,Ø,,LL ,d  的时间复杂度为O(2k(k
+1)kk| |)≤kO(k) ,

 

且其向LL 中添加的集合

数量不超过2k 。
 

证毕。
本节用一个树 表示Samplingk,Ø,,Ø,d  的

运行过程。 中的每个节点 ,†  对应算法以集合

和 † 作为输入的一次执行过程。一个节点的子

节点对应其执行过程中的递归调用操作,
 

如图5所

示
 

(其中:
 

白色用户表示算法选取的引导点;
 

节点

({c2},{c1,c2,…,c6})对应的算法执行过程在第4
步选取用户c4,

 

在第7步将用户集合消减为 {c4,

c5,c6})。 的叶子节点以规模为k、被添加到LL 中

的候选引导点集合作为输入。

图5 节点 ({c2},{c1,c2,…,c6})的子节点

5.2 算法分析

  令LL表示Sampling k,Ø,,Ø,d  构造的集

合。给定实数γ >1和整数i∈ [k],
 

令 γ
i =

c∈ *
i :dc,f*

i  ≤opti
*
i

-1γ  表 示 位 于 以

f*
i 为球心、以opti

*
i

-1γ为半径的球体内的用户

子集。引理1说明在 *
i 中随机选取的用户有较高

的概率属于 1+
i 。由此可知,

 

如果 *
i 是采样范围

的子集且在其中占有较大比重,
 

则算法Sampling
可以通过随机采样找到 1+

i 中的一个用户并将其

作为f*
i 的引导点。为了构造满足要求的引导点集

合,
 

算法Sampling递归地调整采样范围以确保这

一前提条件的成立。
本节通过考虑以下不变式证明LL 有较高的概

率包含与 * 较为接近的集合。

φ(i):
 

给定整数i∈[k], 中存在满足以下性

质的节点 i,†  的概率不低于 (20(k+ℓ) -2)-i :
 

(1)|i|=i;
 

(2)
 

{c∈ :dmin(c,i)> (k| *
i|)-1opt}

⊆ †;
 

(3)
 

∑
i

j=1|
*
j |dmin(f*

j ,i)≤(1+ )∑
i

j=1optj

+ ik-1opt。
本节基于归纳假设方法证明不变式φ(i)在

i∈[k]时的正确性。可以得出,
1+
1

| |≥
| 1+

1 |
k| *

1 |+ℓ

> (1+ )(k+ℓ)

>
2

20(k+ℓ)
(4)

其中,
 

第1步基于 *
1 ≥ *

2 ≥ … ≥ *
k 这一

假设以及不等式 * ≤ℓ得出,
 

第2步基于 1+
1 的

定义和引理1得出。结合不等式
 

(4)
 

和 1 中的用户

是算法Sampling在 中通过均匀随机采样的方式选

取这一事实可知,
 

1 ⊆ 1+
1 成立的概率不低于

(20(k+ℓ) -2)-1。如果 1⊆ 1+
1 成立,

 

则 1+
1 的

定义说明 *
1 dmin f*

1 ,1  ≤ (1+ )opt1。因此,
 

节点 1,  满足φ(1)中声明的性质。
下面考虑i>1的情况。本节在φ(i-1)成立

的假设下证明φ(i)。由φ(i-1)可知,
 

满足

  ∑
i-1

j=1

*
j dmin(f*

j ,i-1)

≤ (1+ )∑
i-1

j=1
optj +

1
k
(i-1)opt (5)

和

{c∈ :dmin(c,i-1)> (k| *
i-1|)-1opt}⊆ † (6)

的节 点 i-1,†  存 在 的 概 率 不 低 于 (20(k+ℓ)
-2)-(i-1)。本节以存在这一节点 i-1,†  为前提条

件分析φ(i)的正确性。令 i-1= {c∈ :dmin(c,i-1)

≤ (k| *
i |)-1opt}。本节分别分析 1+

i ∩ i-1≠Ø
和 1+

i ∩ i-1= Ø两种情况。
在 1+

i ∩ i-1 ≠Ø的情况下,
 

本节结合三角

不等式以及 1+
i 和 i-1的定义分析f*

i 与 i-1中用

户之间的距离
 

(如图6所示),
 

并基于此证明φ(i)
的正确性。

引理3.如果 1+
i ∩ i-1≠Ø,

 

则(i-1,†)的
子节点 i-1 ∪+{ci},†  满足
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图6 1+
i ∩ i-1 ≠Ø的情况下f*

i 与

i-1 中的某个用户c之间的距离

 ∑
i

j=1
| *

j |dmin(f*
j ,i-1 ∪+{ci})

≤ (1+ )∑
i

j=1
optj + ik-1opt

和

{c∈ :dmin(c,i-1∪+{ci}> (k| *
i |)-1opt}⊆ †

证明.
 

我们首先基于 1+
i 和 i-1 的定义证明

f*
i 与 i-1中的一个用户较为接近。令c†表示 1+

i

∩ i-1 中的一个用户,
 

并令l(c†)表示 i-1 中与c†

距离最近的用户。可以得出,

     dmin(f*
i ,i-1)

≤d(f*
i ,l(c†))

≤d(f*
i ,(c†)+d(c†,l(c†)))

≤max
c∈ 1+

i

d(f*
i ,c)+dmin(c†,i-1)

≤ (1+ )opti

| *
i |

+dmin(c†,i-1)

≤ (1+ )opti

| *
i |

+
opti

k| *
i |

(7)

其中,
 

第2步由三角不等式得出,
 

第3步利用式c†

∈ 1+
i 以及l(c†)的定义得出,

 

第4步基于 1+
i 的

定义得出,
 

第5步基于c†∈ i-1 这一事实以及 i-1

的定义得出。不等式
 

(7)
 

和不等式
 

(5)
 

说明,

 ∑
i

j=1
| *

j
  |dmin(f*

j ,i-1 ∪+{ci})

≤∑
i

j=1
| *

j
  |dmin(f*

j ,i-1)

=∑
i-1

j=1
| *

j
  |dmin(f*

j ,i-1)+| *
i

  |dmin(f*
j ,i-1)

≤1+ ∑
i-1

j=1
optj+

1
k
(i-1)opt+| *

j |dmin(f*
j ,i-1)

≤ (1+ )∑
i

j=1
optj +

i

kopt (8)

  由 *
1 ≥ *

2 ≥ … ≥ *
k 这一假设以及

每对用户c,ci ∈ 都满足dminc,i-1 ∪+{ci}  ≤
dmin(c,i-1)这一事实可知,

 {c∈ :dmin(c,i-1 ∪+{ci})> (k| *
i |)-1opt}

⊆ {c∈ :dmin(c,i-1)> (k| *
i-1|)-1opt}

⊆ † (9)
其中,第2步基于式(6)得出。结合不等式(8)和式

(9)可知,引理3成立。
 

证毕。
针对 1+

i ∩ i-1=Ø的情况,
 

本节一方面分析

| 1+
i | 与 \ i-1 的 比 值,

 

另 一 方 面 分 析

i-1,†  的后代节点所对应的采样范围与集合 \

i-1 之间的关系,
 

其目标是证明 1+
i 中的用户在

Samplingk,Ø,,Ø,d  构造的采样范围中占有较

大比重,
 

并基于此分析与f*
i 距离较近的引导点被

选取的概率。
引理4.如果 1+

i ∩ i-1=Ø,
 

则 i-1,†  的

一个后代节点
 

(包含其本身)
 

i-1,
︳=  满足 \

i-1 ⊆
︳= 和| 1+

i |≥ 2(20(k+ℓ))-1 ︳= 。
证明.

  

我们首先分析 1+
i 在 \ i-1中的比重。

给定整数j∈[i-1],
 

令lj 表示 i-1中与f*
j 距离

最近的用户。由 i-1 的定义可以得出,
 

每个用户

c∈ \ i-1 都满足

d(c,lj)≥dmin(c,i-1)>
opt

k| *
i |

(10)

由此可知,
 

每个整数j∈ [i-1]都满足

 | *
j\ i-1|

<
k| *

i |dsum(*
j\ i-1,lj)

·opt

≤
k| *

i |dsum(*
j ,lj)

·opt

≤
k| *

i |
·opt

(optj +| *
j |d(f*

j ,lj))

=
k| *

i |
·opt

(optj +| *
j |dmin(f*

j ,i-1)) (11)

其中,
 

第1步由不等式
 

(10)
 

得出,
 

第3步由三角不

等式得出,
 

第4步由lj 的定义得出。将不等式
 

(11)
 

的两端在j∈[i-1]的范围内求和可以得出,

 
 

∑
i-1

j=1
| *

j\ i-1
  |

 

<∑
i-1

j=1

k| *
i |

·opt
(optj +| *

j |dmin(f*
j ,i-1))  

≤
k| *

i |
·opt

(2+ )∑
i-1

j=1
optj +

1
k
(i-1)opt  

<
k| *

i |
·opt

(2+2 )opt
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<4k| *
i | -1 (12)

其中,
 

第2步基于不等式
 

(5)
 

得出。因此,

| \ i-1|=| *|+∑
i-1

j=1

*
j\ i-1+∑

k

j=i
| *

j\ i-1|

< +4k| *
i | -1+∑

k

j=i
| *

i\ i-1|

< +(4 -1+1)k| *
i | (13)

其中,
 

第2步根据不等式
 

(12)
 

得出,
 

第3步根据
*
1 ≥ *

2 ≥…≥ *
k 这一假设得出。由此可

知,

| \ i-1|
| 1+

i |
=

| *
i |

| 1+
i |

·| \ i-1|
| *

i |

<
1+
| *

i |
(+(4 -1+1)k| *

i |)

<10 -2(k+ ) (14)
其中,

 

第2步根据 1+
i 的定义和引理1以及不等式

(13)
 

得出。
下面分析 i-1,†  的后代对应的采样范围。

结合 *
1 ≥ *

2 ≥ … ≥ *
k 这一假设和不等

式
 

(6)
 

可知,

  \ i-1

={c∈ :dmin(c,i-1)> (k| *
i |)-1opt}

⊆ {c∈ :dmin(c,i-1)> (k| *
i-1|)-1opt}

⊆ † (15)
给定整数s∈ 0,[log † ]  ,

 

令 †
s 表示 † 中

d(c,i-1)取值最高的 [2-s † ]个用户c组成的

集合。等式
 

(15)
 

说明 0,[log † ]  中存在一个

满足2 \ i-1 ≥ †
􀭴s 和 \ i-1 ⊆ †

􀭴s 的整数􀭴s。
由不等式

 

(14)
 

可知该整数还满足20 -2(k+ℓ)|
1+
i |≥ †

􀭴s
。此外,

 

†
􀭴s 的定义和算法Sampling

在第 7 步 和 第 8 步 进 行 的 递 归 操 作 说 明

i-1,†􀭴s  是 i-1,†  的一个后代。结合这一事

实与集合 †
􀭴s 的性质可知,

 

引理4成立。 证毕。
在 1+

i ∩ i-1=Ø的情况下,
 

引理4说明本节

用递归的方式为f*
i 引导点的选取构造了较为理想

的采样范围。本节基于此证明了φ(i)在 1+
i ∩

i-1=Ø时的正确性。
引理5.如果 1+

i ∩ i-1=Ø,
 

则以下事件成立

的概率不低于 2(20(k+ℓ))-1: i-1,†  的一个后

代节点 i-1 ∪+{ci},
︳=  满足

∑
i

j=1
| *

j |dmin(f*
j ,i-1 ∪+{ci})

  ≤(1+ )∑
i

j=1
optj + ik-1opt

和

{c∈ :dminc,i-1 ∪+{ci}> (k| *
i |)-1opt}

⊆ ︳=。

  证明.
  

令 i-1,
︳=  表示引理4中声明的后代

节点。该节点有一个子节点 i-1 ∪+{ci},
︳=  ,

 

其

中,
 

ci 是在 ︳= 中均匀随机选取的用户。引理4和
1+
i ∩ i-1= Ø这一假设说明 1+

i ⊆ \ i-1⊆
︳= ,

 

且| 1+
i |≥ 2(20(k+ℓ))-1 ︳= 。由此可知,

 

ci

∈ 1+
i 成立的概率不低于 2(20(k+ℓ))-1。如果

ci ∈ 1+
i 成立,

 

则 1+
i 的定义说明d f*

i ,ci  ≤
(1+ ) *

i
-1opti 。结合该不等式与不等式

 

(5)
 

可知,

  ∑
i

j=1
| *

j |dmin(f*
j ,i-1 ∪+{ci})

≤| *
i |d(f*

i ,ci)+∑
i-1

j=1
| *

j |dmin(f*
j ,i-1)

≤1+ ∑
i

j=1
optj +

1
k
(i-1)opt

<1+ ∑
i

j=1
optj +

1
k i·opt (16)

  下面分析集合 {c∈ :dminc,i-1∪+{ci}  >
k *

i  -1opt}和 ︳= 之间的包含关系。可以得出,

 {c∈ :dmin(c,i-1∪+{ci})> (k| *
i |)-1opt}

⊆ {c∈ :dmin(c,i-1)> (k| *
i |)-1opt}

= \ i-1

⊆ ︳= (17)
其中,

 

第 1 步 根 据 每 对 用 户c,ci ∈ 都 满 足

dminc,i-1 ∪+{ci}  ≤dmin(c,i-1)这一事实得到,
 

第2步基于 i-1 的定义得出,
 

第3步基于引理4得

出。由不等式
 

(16)
 

和不等式
 

(17)
 

可知,
 

引理5正

确。 证毕。
给定整数i∈{2,3,…,k},

 

引理3和引理5说

明φ(i)在φ(i-1)正确的情况下成立。结合这一

结论与φ(1)成立这一事实可知,
 

本节归纳地证明

了每个整数i∈ [k]都满足φ(i)。

6 基于引导点的候选解构造算法

令 表示φ(k)中声明的引导点集合。给定整

数i∈ [k],
 

令li=argminc∈ dc,f*
i  表示f*

i

在 中的引导点。本节基于引导点集合求解实例

。 具体来说,
 

我们在6.1节中围绕 中的引导点

选取候选开设设施、在6.2节中选取用户集合中的异

常点并构造从剩余用户到开设设施集合的连接映射。
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6.1 开设设施选取

  结合 * 中每个设施都与其在 中的引导点距

离较近这一事实和三角不等式可知,
 

我们可以开设

与每个引导点距离最近的设施以得到同 * 较为接

近的开设设施集合。通过移除 * 中的用户并将
* 中每个设施对应的簇连接到与其引导点距离最

近的开设设施上,
 

我们可以为实例 构造费用较低

的近似解。然而,
 

利用这一方式构造的解不一定能

满足 的着色约束:
 

在根据与引导点之间的距离选

取开设设施时,
 

可能存在被多次选取的设施;
 

这些

设施对应的簇会因为合并了最优解中的多个簇而包

含颜色相同的用户。针对上述问题,
 

本节基于彩色

编码技术避免重复开设设施,
 

如算法Selection
 

(算
法2)

 

所述。该算法在第5步为每个设施随机分配

[k]中的一个标签,
 

并在第8步选取标签互不相同

的候选开设设施。具体来说,
 

给定整数i∈ [k]以

及设施f*
i 的引导点li ,

 

算法2将标签为i且与li

距离最近的设施作为候选开设设施。令DD 表示Se-
lectionk,,,d  构造的集合。以下引理给出了

集合DD 包含满足要求的候选开设设施集合的概率。

算法2.Selectionk,,,d  
输入:正整数k、设施集合 、引导点集合 = {l1,l2,…,

lk}和距离函数d;

输出:一组候选开设设施集合DD ;

1.
 

DD ←Ø;

2.
 

FOR
 

each
 

j∈ [kk]
 

DO

3.
  

 
 

←Ø;

4.
  

 
 

FOR
 

each
 

f∈
 

DO

5.   均匀随机地选取一个整数σ(f)∈ [k];

6.
  

 
 

FOR
 

each
 

i∈ [k]
 

DO

7.   i ← f∈ :σ(f)=i  ;

8.   ← ∪ argminf∈ i
d(f,li)  ;

9.
  

 
 

IF
 

=k
 

THEN

10.  DD ←DD ∪  ;

11.
 

RETURN
 

DD .

  引理6.以下事件成立的概率不低于1-e-1:DD
中存在满足d(fi,li)≤d f*

i ,li  ∀i∈[k]且不

包含重复元素的集合 {f1,f2,…,fk}。
证明.

  

Selection k,,,d  在第5步为每个

设施f∈ 随机生成一个标签σ(f)∈ [k]。每个

设施f*
i ∈ * 都满足σf*

i  =i的概率为k-k 。鉴

于Selectionk,,,d  将第3-10步的操作循环

执行kk 次,
 

等式σf*
i  =i∀i∈[k]在至少一次

循环中成立的概率为1-(1-k-k)kk >1-e-1。对

于每个整数i∈[k],
 

Selectionk,,,d  在第7
步将标签为i的设施划分到集合 i 中,

 

并在第8步

将 i 中与li 距离最近的设施fi 作为候选开设设

施;
 

在σf*
i  =i 的情况下,

 

由等式d(fi,li)=
minf∈ id(f,li)可知d(fi,li)≤d f*

i ,li  。此

外,
 

每个整数i∈ [k]和每个设施f ∈ i 都满足

σ(f)=i这一事实说明,
 

集合 1,2,…,k 之间不

存在交集。由此可知,
 

集合 {f1,f2,…,fk}不包

含重复元素。因此,
 

引理6成立。 证毕。

6.2 候选解构造

  给定实例 的开设设施集合,
 

本节基于最小费

用循环问题的求解算法确定异常点集合与用户连接

映射。该问题的定义如下。
定义2.(最小费用循环问题)
输入:

 

最小费用循环问题的一个实例 ( , ,

μ1,μ2,g)包含以 为点集、 为边集的有向图

,  ,
 

其中,
 

每条边e(u,v)∈ 都有一个取值

为非负整数的需求μ1(u,v)、一个不小于μ1(u,v)
的整数容量μ2(u,v)和一个非负费用g(u,v)。

输出:
 

实例 ,,μ1,μ2,g  的最小费用可行

解。该实例的一个可行解h 为每条边e(u,v)∈
分配一个取值为非负整数的流量h(u,v)∈[μ1(u,
v),μ2(u,v)],

 

使 得 每 个 点 u ∈ 都 满 足

∑u:e(u,v)∈ h(u,v)=∑u:e(v,u)∈ h(v,u)。可行

解h 的费用为∑e(u,v)∈ g(u,v)h(u,v)。

给定实例 的一个开设设施集合 ={f1,f2,
…,fk},

 

本节将确定异常点集合 ⊆ 与用户连接

映射τ:\ → 的任务归约为最小费用循环问题

的以下实例。
(1)

 

令m 表示 中用户颜色的数量。令 1,2,
…,m 表示根据颜色的不同划分 得到的m 个用户

子集。令 1= f1
1,f1

2,…,f1
k  ,…, m = {fm

1,fm
2,

…,fm
k}为复制集合 = {f1,f2,…,fk}得到的m

个设施集合。点集 由 中的用户、∪+
 m
i=1

i 中的设

施以及额外的三个点u1、u2 和u3 组成。
(2)

 

边集 包含边e(u3,u1),
 

其中,
 

μ1(u3,

u1)=μ2(u3,u1)= ,
 

且g(u3,u1)=0。
(3)

 

给定用户c∈ ,
 

边集 包含边e(c,u2),
 

其中,
 

μ1(c,u2)=0,μ2(c,u2)=1,
 

且g(c,u2)=0。
h(c,u2)=1说明我们将c作为异常点

 

(即c∈ )。
(4)

 

为了保证异常点数量不超过ℓ
 

(即 =

∑c∈ h(c,u2)≤ℓ),
 

边集 包含满足μ1(u2,u3)

=0、μ2(u2,u3)=ℓ和g(u2,u3)=0的边e(u2,u3)。
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(5)
 

给定整数i∈ [m]和j∈ [k]以及用户c
∈ i ,

 

边 集 包 含 边 ec,fi
j  ,

 

其 中,
 

μ1c,fi
j  =0,

 

μ2c,fi
j  =1,

 

且gc,fi
j  =d(c,

fj)。h(c,fi
j)=1说明我们将c连接到fj 上

 

(即

τ(c)=fj )。
(6)

 

为了保证每个用户c∈ 都被连接到一个

设施上或被标记为异常点
 

(即∑f∈∪+m
i=1

i∪{u2}
h(c,

f)=1),
 

边集 包含满足μ1(u1,c)=μ2(u1,c)=1
和g(u1,c)=0的边e(u1,c)。

(7)
 

给定整数i∈ [m]和j∈ [k],
 

为了保证

fj 对 应 的 簇 不 包 含 颜 色 相 同 的 用 户
 

(即

∑c∈ ihc,fi
j  ≤1),

 

边 集 包 含 满 足μ1(fi
j,

u3)=0、μ2 fi
j,u3  = 1和g fi

j,u3  = 0的边

efi
j,u3  。

图7 实例 ,,μ1,μ2,g  的点集和边集

图7中给出了实例 , ,μ1,μ2,g  的点集和

边集,
 

其中:
 

1,2,…,m 为根据用户颜色的不同划

分 得到的m 个子集,
 

1, 2,…, m 为复制 {f1,

f2,…,fk}得到的m 个设施集合,
 

与节点u2 之间

的边流量为1的用户被标记为异常点;
 

红色边与绿

色边的流量分别被固定为1和 ,
 

蓝色边的容量

和需求分别为ℓ和0,
 

剩余边的容量和需求分别为1
和0。本节基于点集 ∪+

 m
i=1

i ∪ i  ∪ {u2}所对

应的二部图中边的流量刻画异常点的选取和用户的

连接方式。我们可以利用Orlin[30]提出的多项式时

间算法在  O(1)=(nk)O(1)时间内得到该实

例的最优解,
 

并基于此构造令实例 的费用达到最

小值的异常点集合与用户连接映射,
 

如引理7所

述。对于算法2输出的每个候选设施集合,
 

本节都

基于引理7构造对应的异常点集合与用户连接映射

以得到实例 的候选解。这一过程在算法3中给出。
引理 7.给 定 满 足 ∪ =n 的 实 例 =
,d  ,,,k,ℓ,η  以及规模为k 的 设 施 集 合

⊆ ,
 

我们可以在 (nk)O(1)时间内构造满足

∑
c∈ \

d(c,τ(c))= min
(D,O',τ')∈Fea(,D)∑c∈ \'

d(c,τ'(c))

的异常点集合 ⊆ 和映射τ:\ → ,
 

其中,
 

Fea ,  表示以 为开设设施集合的实例 可

行解集合。

算法3.Construction( ,DD )
输入:着色 (k,ℓ)-中值问题的实例 = (( ,d),, ,k,ℓ,

η)和一组候选开设设施集合DD ;

输出:实例 的候选解集合SS;

1.
 

SS←Ø;

2.
 

FOR
 

each
 

∈DD
 

DO
3.

  

 
 

令 和τ:\ → 分别表示利用引理7为实例 和

集合 构造的异常点集合和用户连接映射;

4.
  

 
 

SS←SS ,,τ    ;

5.
 

RETURN
 

SS .

7 着色 (k,ℓ)-中值问题的求解算法

本节结合第5节中的引导点挖掘算法和第6节

中基于引导点的候选解构造算法提出着色 (k,ℓ)-
中值问题的近似算法,

 

如算法4所述。该算法首先

循环调用算法Sampling以构造一组候选引导点集

合LL 。对于LL 中的每个集合,
 

算法4都基于算法

Selection和Construction为实例 构造对应的候

选解。最后,
 

算法4返回候选解集合中费用最低的

解。引理8中给出了该算法的性能保证。

算法4.着色 (k,ℓ)-中值问题的求解算法

输入:着色(k,ℓ)-中值问题的实例 = ,d  ,,,k,ℓ,η  
和常数 ∈ (0,1);

输出:实例 的近似解 †,†,τ†  ;

1.
 

LL ←Ø,SS†←Ø;

2.
 

FOR
 

each
 

i∈ [(20(k+ℓ) -2)k]
 

DO
3.

  

 
 

Sampling k,Ø,,LL ,d  ;

4.
 

FOR
 

each
 

∈LL
 

DO

5.
 

 
 

令DD 为Selection k,,,d  构造的集合;

6.
  

 
 

令SS 为Construction ,DD  构造的候选解集合;

7.
  

 
 

SS†←SS†∪SS;

8.
 

RETURN
 

†,†,τ†  ← argmin
,,τ  ∈SS†

∑c∈ \ d(c,τ(c)).

引理 8.给 定 满 足 ∪ =n 的 实 例 =
,d  ,,,k,ℓ,η  和常数 ∈ (0,1),

 

算法4
的时间复杂度为 ((k+ℓ) -1)O(k)nO(1),

 

其构造的

解 †,†,τ†  满足∑c∈ \†d(c,τ
†(c))≤ (3+4

)opt的概率不低于 (1-e-1)2,
 

其中,
 

opt为实例

最优解的费用。
证明.

  

给定实例 = ,d  ,,,k,ℓ,η  和

常数 ∈(0,1),
 

令SS†表示算法4构造的候选解集
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合,
 

并令 †,†,τ†  表示算法4返回的解。我们

首先分析算法4的近似比。由φ(k)可知,
 

Sam-
plingk,Ø,,Ø,d  构造的集合LL 中包含满足

∑
k

i=1
| *

i |dmin(f*
i ,)≤ (1+2 )opt (18)

的引导点集合 的概率不低于 (20(k+ℓ) -2)-k 。
由于算法4在第3步将Sampling循环调用(20(k+
ℓ) -2)k 次,

 

满足不等式
 

(18)
 

的引导点集合被其成

功构造的概率可以被提升1- (1- (20(k+ℓ)
-2)-k)(20(k+ℓ)-2)k >1-e-1。给定满足该不等式的

引导点集合 和整数i∈ [k],
 

令li 表示 中与

f*
i 距离最近的引导点。算法4在第5步和第6步

调用Selection和Construction为 构造对应的候

选解集合SS。引理6说明,
 

SS有不低于1-e-1的概

率包含对于每个整数i∈ [k]都满足

d(fi,li)≤d(f*
i ,li) (19)

的解 ',',τ'  ,
 

其中,
 

'={f1,f2,…,fk}。
可以得出,

  ∑
c∈ \'

d(c,τ'(c))

≤∑
k

i=1
dsum(*

i ,fi)

≤∑
k

i=1

(dsum(*
i ,f*

i )+| *
i |d(f*

i ,li)

 +| *
i |)d(li,fi)

≤∑
k

i=1

(dsum(*
i ,f*

i )+2| *
i |d(f*

i ,li))

≤ (3+4 )opt (20)
其中,

 

第1步基于引理7得出,
 

第2步根据三角不

等式得出,
 

第3步基于不等式
 

(19)
 

得出,
 

第4步基

于∑
k

i=1d
sum *

i ,f*
i  =opt 这一事实和不等式

 

(18)
 

得出。因此,

 ∑
c∈ \ †

d(c,τ†(c))

= min
(D,,τ)∈SS†

∑
c∈ \

d(c,τ(c))

≤ ∑
c∈ \'

d(c,τ'(c))

≤ (3+4 )opt (21)
其中,

 

第1步根据算法4的第8步操作得出,
 

第3
步基于不等式

 

(20)
 

得出。不等式
 

(21)
 

说明,
 

在满

足不等式
 

(18)
 

的引导点集合和满足不等式
 

(19)
 

的解存在的情况下
 

(其概率不低于 (1-e-1)2),
 

算

法4所得解的近似比为3+4 。
下面分析算法4的时间复杂度。由引理2可

知,
 

算法4在第3步将Sampling循环调用(20(k+

ℓ) -2)k 次所需时间不超过 ((k+ℓ) -1)O(k)n,
 

其

构造的集合LL规模不超过((k+ℓ)-1)O(k)n。对于

LL中的每个候选引导点集合,
 

算法4通过调用Se-
lection在O(nkk+1)时间内构造kk 个候选开设设施

集合,
 

并通过调用Construction在不超过nO(1)kO(k)

时间内
 

(由引理7得出)
 

构造规模为kk 的候选解集

合。因此,
 

算法4构造SS†所需时间为 ((k+ℓ)
-1)O(k)nO(1),

 

且 SS † 的 规 模 不 超 过 ((k +ℓ)
-1)O(k)n。此外,

 

算法4寻找SS†中费用最低的解所

需时间为O |S†|  ≤((k+ℓ)-1)O(k)nO(1)。综

上 所 述,
 

算 法 4 的 时 间 复 杂 度 为 ((k +ℓ)
-1)O(k)nO(1)。由此可知,

 

引理8成立。 证毕。
引理8说明算法4是时间复杂度为 ((k+ℓ)

-1)O(k)nO(1)的(3+4 )-近似算法。令 =ε/4,
 

则

该算 法 的 时 间 复 杂 度 和 近 似 比 分 别 为 ((k +
ℓ)ε-1)O(k)nO(1)和3+ε。

定理1.给定满足 ∪ =n 的着色 (k,ℓ)-
中值问题实例 ,d  ,,,k,ℓ,η  以及常数ε∈
(0,1),

 

存在时间复杂度为 ((k+ℓ)ε-1)O(k)nO(1)且

近似比为3+ε的随机近似算法。

8 总 结

本文以k和ℓ为固定参数,
 

为着色(k,ℓ)-中值

问题提出了时间复杂度为 ((k+ℓ)ε-1)O(k)nO(1)的

(3+ε)-近似算法。这是关于该问题的第一个具有

近似保证的固定参数时间求解算法。目前,
 

人们只

在以k 为唯一固定参数的情况下证明了着色 (k,

ℓ)-中值问题的固定参数时间近似下界[14]。我们还

不能排除在ℓ不作为固定参数时得到相同近似结果

的可能性。因此,
 

一个值得探索的方向是证明着色

c-中值问题相对于k 和ℓ的多元参数复杂性,
 

或在

以k为唯一固定参数的情况下尝试设计着色(k,
ℓ)-中值问题的固定参数近似算法。鉴于本文算法

与人们在不考虑着色约束的情况下为 (k,ℓ)-中值

问题提出的固定参数近似算法[9]有相同的时间复杂

度和近似比,
 

这一方向上的突破还依赖于对 (k,
ℓ)-中值问题的进一步探索。

参 考 文 献

[1] Guha
 

S,
 

Khuller
 

S.
 

Greedy
 

strikes
 

back:
 

Improved
 

facility
 

lo-

cation
 

algorithms.
 

Journal
 

of
 

Algorithms,
 

1999,
 

31(1):
 

228-

248
[2] Gowda

 

K
 

N,
 

Pensyl
 

T
 

W,
 

Srinivasan
 

A,
 

et
 

al.
 

Improved
 

bi-

point
 

rounding
 

algorithms
 

and
 

a
 

golden
 

barrier
 

for
 

k-median//

21 计  算  机  学  报 2026年



Proceedings
 

of
 

the
 

34th
 

ACM-SIAM
 

Symposium
 

on
 

Discrete
 

Algorithms.
 

Florence,
 

Italy,
 

2023:
 

987-1011
[3] Li

 

S,
 

Svensson
 

O.
 

Approximating
 

k-median
 

via
 

pseudo-approxi-

mation.
 

SIAM
 

Journal
 

on
 

Computing,
 

2016,
 

45(2):
 

530-547
[4] Cohen-Addad

 

V,
 

Esfandiari
 

H,
 

Mirrokni
 

V
 

S,
 

et
 

al.
 

Improved
 

approximations
 

for
 

Euclidean
 

k-means
 

and
 

k-median,
 

via
 

nes-

ted
 

quasi-independent
 

sets//Proceedings
 

of
 

the
 

54th
 

Annual
 

ACM
 

SIGACT
 

Symposium
 

on
 

Theory
 

of
 

Computing.
 

Rome,
 

Italy,
 

2022:
 

1621-1628
[5] Ding

 

H,
 

Xu
 

J
 

H.
 

Chromatic
 

k-mean
 

clustering
 

in
 

high
 

dimen-

sional
 

space.
 

CoRR,
 

2012,
 

abs/1204.6699
[6] Ding

 

H,
 

Xu
 

J
 

H.
 

Solving
 

the
 

chromatic
 

cone
 

clustering
 

prob-

lem
 

via
 

minimum
 

spanning
 

sphere//Proceedings
 

of
 

the
 

38th
 

International
 

Colloquium
 

on
 

Automata,
 

Languages
 

and
 

Pro-

gramming.
 

Zurich,
 

Switzerlan,
 

2011:
 

773-784
[7] Li

 

J,
 

Yi
 

K,
 

Zhang
 

Q.
 

Clustering
 

with
 

diversity//Proceedings
 

of
 

the
 

37th
 

International
 

Colloquium
 

on
 

Automata,
 

Languages
 

and
 

Programming.
 

Bordeaux,
 

France,
 

2010:
 

188-200
[8] Arkin

 

E
 

M,
 

Díaz-B􀅡ñez
 

J
 

M,
 

Hurtado
 

F,
 

et
 

al.
 

Bichromatic
 

2-

center
 

of
 

pairs
 

of
 

points.
 

Computational
 

Geometry,
 

2015,
 

48
(2):

 

94-107
[9] Chen

 

X
 

R,
 

Han
 

L,
 

Xu
 

D
 

C,
 

et
 

al.
 

k-median/means
 

with
 

outli-

ers
 

revisited:
 

A
 

simple
 

FPT
 

approximation//Proceedings
 

of
 

the
 

29th
 

International
 

Conference
 

on
 

Computing
 

and
 

Combina-

torics.
 

Hawaii,
 

USA,
 

2023:
 

295-302
[10] Feldman

 

D,
 

Schulman
 

L
 

J.
 

Data
 

reduction
 

for
 

weighted
 

and
 

outlier-resistant
 

clustering//Proceedings
 

of
 

the
 

23rd
 

Annual
 

ACM-SIAM
 

Symposium
 

on
 

Discrete
 

Algorithms.
 

Kyoto,
 

Ja-

pan,
 

2012:
 

1343-1354
[11] Agrawal

 

A,
 

Inamdar
 

T,
 

Saurabh
 

S,
 

et
 

al.
 

Clustering
 

what
 

matters:
 

Optimal
 

approximation
 

for
 

clustering
 

with
 

outliers.
 

Journal
 

of
 

Artificial
 

Intelligence
 

Research,
 

2023,
 

78:
 

143-166
[12] Bhattacharya

 

A,
 

Goyal
 

D,
 

Jaiswal
 

R.
 

On
 

sampling
 

based
 

algorithms
 

for
 

k-means//Proceeding
 

of
 

the
 

40th
 

IARCS
 

Annual
 

Conference
 

on
 

Foundations
 

of
 

Software
 

Technology
 

and
 

Theoretical
 

Computer
 

Science.
 

Virtual,
 

2020:
 

13:1-

13:17
[13] Zhang

 

Z,
 

Huang
 

J
 

Y,
 

Feng
 

Q
 

L.
 

Faster
 

approximation
 

schemes
 

for
 

(constrained)
 

k-means
 

with
 

outliers//Proceed-

ings
 

of
 

the
 

49th
 

International
 

Symposium
 

on
 

Mathematical
 

Foundations
 

of
 

Computer
 

Science.
 

Bratislava,
 

Slovakia,
 

2024:
 

84:1-84:17
[14] Cohen-Addad

 

V,
 

Gupta
 

A,
 

Kumar
 

A,
 

et
 

al.
 

Tight
 

FPT
 

ap-

proximations
 

for
 

k-median
 

and
 

k-means//Proceedings
 

of
 

the
 

46th
 

International
 

Colloquium
 

on
 

Automata,
 

Languages
 

and
 

Programming.
 

Patras,
 

Greece,
 

2019:
 

42:1-42:14
[15] Gupta

 

A,
 

Moseley
 

B,
 

Zhou
 

R.
 

Structural
 

iterative
 

rounding
 

for
 

generalized
 

k-median
 

problems//Proceedings
 

of
 

the
 

48th
 

International
 

Colloquium
 

on
 

Automata,
 

Languages,
 

and
 

Pro-

gramming.
 

Glasgow,
 

Scotland,
 

2021:
 

77:1-77:18
[16] Charikar

 

M,
 

Khuller
 

S,
 

Mount
 

D
 

M,
 

et
 

al.
 

Algorithms
 

for
 

facility
 

location
 

problems
 

with
 

outliers//Proceedings
 

of
 

the
 

12th
 

Annual
 

Symposium
 

on
 

Discrete
 

Algorithms.
 

Washing-

ton,
 

USA,
 

2001:
 

642-651
[17] Chen

 

K.
 

A
 

constant
 

factor
 

approximation
 

algorithm
 

for
 

k-

median
 

clustering
 

with
 

outliers//Proceedings
 

of
 

the
 

19th
 

An-

nual
 

ACM-SIAM
 

Symposium
 

on
 

Discrete
 

Algorithms.
 

San
 

Francisco,
 

USA,
 

2008:
 

826-835
[18] Krishnaswamy

 

R,
 

Li
 

S,
 

Sandeep
 

S.
 

Constant
 

approximation
 

for
 

k-median
 

and
 

k-means
 

with
 

outliers
 

via
 

iterative
 

roun-

ding//Proceedings
 

of
 

the
 

50th
 

Annual
 

ACM
 

SIGACT
 

Sympo-

sium
 

on
 

Theory
 

of
 

Computing.
 

Los
 

Angeles,
 

USA,
 

2018:
 

646-659
[19] Böhm

 

M,
 

Fazzone
 

A,
 

Leonardi
 

S,
 

et
 

al.
 

Fair
 

clustering
 

with
 

multiple
 

colors.
 

CoRR,
 

2020,
 

abs/2002.07892
[20] Wu

 

D,
 

Feng
 

Q
 

L,
 

Wang
 

J
 

X.
 

Approximation
 

algorithms
 

for
 

fair
 

k-median
 

problem
 

without
 

fairness
 

violation.
 

Theoretical
 

Computer
 

Science,
 

2024,
 

985:
 

114332
[21] Dickerson

 

J
 

P,
 

Esmaeili
 

S
 

A,
 

Morgenstern
 

J
 

H,
 

et
 

al.
 

Dou-

bly
 

constrained
 

fair
 

clustering//Proceedings
 

of
 

the
 

37th
 

An-

nual
 

Conference
 

on
 

Neural
 

Information
 

Processing
 

Systems.
 

New
 

Orleans,
 

USA,
 

2023:
 

13267-13293
[22] Feng

 

Q
 

L,
 

Zhang
 

Z,
 

Huang
 

Z
 

Y,
 

et
 

al.
 

A
 

unified
 

framework
 

of
 

FPT
 

approximation
 

algorithms
 

for
 

clustering
 

problems//

Proceedings
 

of
 

the
 

31st
 

International
 

Symposium
 

on
 

Algo-

rithms
 

and
 

Computation.
 

Hong
 

Kong,
 

China,
 

2020:
 

5:1-5:

17
[23] Goyal

 

D,
 

Jaiswal
 

R,
 

Kumar
 

A.
 

FPT
 

approximation
 

for
 

con-

strained
 

metric
 

k-median/means//Proceedings
 

of
 

the
 

15th
 

In-

ternational
 

Symposium
 

on
 

Parameterized
 

and
 

Exact
 

Computa-

tion.
 

Hong
 

Kong,
 

China,
 

2020:
 

14:1-14:19
[24] Arthur

 

D,
 

Vassilvitskii
 

S.
 

k-means++:
 

The
 

advantages
 

of
 

careful
 

seeding//Proceedings
 

of
 

the
 

18th
 

Annual
 

ACM-SIAM
 

Symposium
 

on
 

Discrete
 

Algorithms.
 

New
 

Orleans,
 

USA,
 

2007:
 

1027-1035
[25] Bhattacharya

 

A,
 

Jaiswal
 

R,
 

Kumar
 

A.
 

Faster
 

algorithms
 

for
 

the
 

constrained
 

k-means
 

problem.
 

Theory
 

of
 

Computing
 

Sys-

tems,
 

2018,
 

62(1):
 

93-115
[26] Ding

 

H,
 

Xu
 

J
 

H.
 

A
 

unified
 

framework
 

for
 

clustering
 

con-

strained
 

data
 

without
 

locality
 

property.
 

Algorithmica,
 

2020,
 

82(4):
 

808-852
[27] Cohen-Addad

 

V,
 

Li
 

J.
 

On
 

the
 

fixed-parameter
 

tractability
 

of
 

capacitated
 

clustering//Proceedings
 

of
 

the
 

46th
 

International
 

Colloquium
 

on
 

Automata,
 

Languages,
 

and
 

Programming.
 

Patras,
 

Greece,
 

2019:
 

41:1-41:14
[28] Bandyapadhyay

 

S,
 

Fomin
 

F
 

V,
 

Simonov
 

K.
 

On
 

coresets
 

for
 

fair
 

clustering
 

in
 

metric
 

and
 

Euclidean
 

spaces
 

and
 

their
 

appli-

cations.
 

Journal
 

of
 

Computer
 

and
 

System
 

Sciences,
 

2024,
 

142:
 

103506
[29] Kong

 

X
 

Y,
 

Zhang
 

Z.
 

Fixed-parameter
 

tractability
 

of
 

capaci-

tated
 

k-facility
 

location.
 

Frontiers
 

of
 

Computer
 

Science,
 

2023,
 

17(6):
 

176408
[30] Orlin

 

J
 

B.
 

A
 

faster
 

strongly
 

polynomial
 

minimum
 

cost
 

flow
 

algorithm.
 

Operations
 

Research,
 

1993,
 

41(2):
 

338-350

311
 

期 陈晓红等:着色 (k,ℓ)-中值问题的固定参数近似算法



CHEN
 

Xiao-Hong,
 

Ph.
 

D.,
 

pro-
fessor,

 

Academician
 

of
 

the
 

Chinese
 

Academy
 

of
 

Engineering.
 

Her
 

research
 

interests
 

include
 

data
 

intelligence
 

and
 

de-
cision

 

intelligence.
ZHANG

 

Zhen,
 

Ph.
 

D.,
 

associate
 

professor.
 

His
 

research
 

interests
 

include
 

combinatorial
 

optimization
 

and
 

approximation
 

algorithms.
XU

 

Xue-Song,
 

Ph.
 

D.,
 

professor.
 

His
 

research
 

inter-
ests

 

include
 

complex
 

system
 

optimization
 

and
 

algorithm
 

opti-

mization.
CHEN

 

Jie,
 

Ph.
 

D.,
 

associate
 

professor.
 

His
 

research
 

interests
 

include
 

privacy-preserving
 

computing
 

and
 

computa-
tional

 

intelligence.
YUAN

 

Han-Chun,
 

Ph.
 

D.,
 

lecturer.
 

His
 

research
 

in-
terests

 

include
 

fixed-parameter
 

tractable
 

algorithms
 

and
 

ker-
nelization.

SHI
 

Feng,
 

Ph.
 

D.,
 

associate
 

professor.
 

His
 

research
 

interests
 

include
 

graph
 

theory
 

and
 

fixed-parameter
 

tractable
 

algorithms.

Background
  Clustering

 

with
 

outliers
 

generalizes
 

the
 

standard
 

cluste-
ring

 

formulation
 

in
 

that
 

it
 

allows
 

the
 

removal
 

of
 

a
 

specified
 

number
 

of
 

outliers
 

from
 

the
 

set
 

of
 

points
 

to
 

be
 

clustered,
 

which
 

is
 

crucial
 

in
 

many
 

domains
 

where
 

data
 

is
 

affected
 

by
 

noise
 

or
 

corruption.
 

However,
 

the
 

added
 

task
 

of
 

identifying
 

which
 

points
 

to
 

exclude
 

significantly
 

increases
 

the
 

complexity
 

compared
 

to
 

the
 

outlier-free
 

counterpart.
 

For
 

instance,
 

there
 

remains
 

a
 

considerable
 

gap
 

between
 

the
 

best-known
 

polyno-
mial-time

 

approximation
 

ratios
 

for
 

the
 

k-median
 

problem
 

and
 

its
 

outlier
 

variant.
 

A
 

commonly
 

adopted
 

strategy
 

to
 

simplify
 

such
 

outlier-aware
 

clustering
 

problems
 

is
 

to
 

assume
 

that
 

both
 

the
 

number
 

of
 

cluster
 

centers
 

(also
 

referred
 

to
 

as
 

opened
 

fa-
cilities)

 

and
 

the
 

number
 

of
 

outliers
 

are
 

small
 

relative
 

to
 

the
 

size
 

of
 

the
 

input.
 

More
 

formally,
 

these
 

two
 

quantities
 

are
 

treated
 

as
 

fixed
 

parameters,
 

and
 

the
 

related
 

outlier-aware
 

problems
 

are
 

solved
 

in
 

fixed-parameter
 

tractable
 

(FPT)
 

time.
In

 

this
 

paper,
 

we
 

focus
 

on
 

an
 

extension
 

of
 

the
 

k-median
 

with
 

outliers
 

problem
 

under
 

the
 

chromatic
 

constraint,
 

known
 

as
 

the
 

chromatic
 

(k,ℓ)-median
 

problem.
 

The
 

objective
 

is
 

to
 

open
 

at
 

most
 

k
 

facilities,
 

remove
 

up
 

to
 

ℓ
 

outliers
 

from
 

the
 

cli-
ent

 

set,
 

and
 

assign
 

each
 

remaining
 

client
 

to
 

an
 

opened
 

facili-

ty,
 

such
 

that
 

clients
 

sharing
 

the
 

same
 

color
 

are
 

assigned
 

to
 

distinct
 

facilities,
 

and
 

the
 

total
 

assignment
 

cost
 

is
 

minimized.
 

We
 

give
 

a
 

sampling-based
 

approach
 

to
 

identify
 

a
 

set
 

of
 

clients
 

located
 

near
 

the
 

facilities
 

in
 

an
 

optimal
 

solution.
 

Around
 

these
 

clients,
 

we
 

construct
 

a
 

carefully
 

selected
 

set
 

of
 

candi-
date

 

facilities
 

and
 

derive
 

a
 

bounded
 

collection
 

of
 

candidate
 

so-
lutions.

 

This
 

yields
 

a
 

(3+ε)-approximation
 

algorithm
 

that
 

runs
 

in
 

((k+ℓ)ε-1)O(k)nO(1)
 

time
 

for
 

the
 

chromatic
 

(k,ℓ)-
median

 

problem.
 

To
 

the
 

best
 

of
 

our
 

knowledge,
 

this
 

is
 

the
 

first
 

algorithm
 

with
 

a
 

provable
 

approximation
 

ratio
 

for
 

the
 

problem,
 

which
 

matches
 

the
 

approximation
 

and
 

runtime
 

guarantees
 

previously
 

achieved
 

in
 

the
 

case
 

without
 

the
 

chro-
matic

 

constraint.
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