# 3D 打印中的几何计算研究进展

刘利刚<sup>1)</sup> 徐文鹏<sup>1),2)</sup> 王伟明<sup>3)</sup> 杨周旺<sup>1)</sup> 刘秀平<sup>3)</sup> <sup>1)(中国科学技术大学数学科学学院 合肥 230026) <sup>2)</sup>(河南理工大学计算机科学与技术学院 河南 焦作 454100) <sup>3)</sup>(大连理工大学数学科学学院 辽宁 大连 116023)</sup>

**摘 要** 3D 打印技术改变了传统的减式材料制造模式,带来了制造工艺和生产模式的变革,有力地推动了 3D 数 字化相关技术与研究的发展.文中从 3D 打印的社会背景与理论背景出发,介绍了 3D 打印技术的分类、原理与过 程.以此为基础,对近几年的 3D 打印中的几何计算问题给出了全面的综述,根据问题特点将其分为几何优化、结构 分析、材料表面效果定制、机构设计、自支撑结构设计、内部结构设计等六大类,并对每一类作了详细的分类介绍, 最后对其发展方向作了初步展望.

关键词 3D 打印;几何计算;结构优化;激光固化;光固化;熔融成型 中图法分类号 TP391 **DOI**号 10.11897/SP.J.1016.2015.01243

# Survey on Geometric Computing in 3D Printing

LIU Li-Gang<sup>1)</sup> XU Wen-Peng<sup>1),2)</sup> WANG Wei-Ming<sup>3)</sup> YANG Zhou-Wang<sup>1)</sup> LIU Xiu-Ping<sup>3)</sup> <sup>1)</sup> (School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026) <sup>2)</sup> (School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454100) <sup>3)</sup> (School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning 116023)

**Abstract** 3D printing technology has changed the traditional subtractive manufacturing model, brought about changes in manufacturing processes and production patterns. It has been a strong impetus to the development of 3D digital technologies and research. From the social and theoretical background of 3D printing, this paper introduces a classification of 3D printing technology, principles and processes. Based on this, we have surveyed the geometric computing researches in 3D printing. The researches are classified into six categories according to the characteristics of the problems: geometry optimization, structural analysis, surface material effect customization, mechanism design, self-supporting structural design, and interior structural design. Each category is introduced in detail. Finally a few future directions of geometric computing problems in 3D printing are presented.

Keywords 3D printing; geometric computing; structure optimization; SLS; SLA; FDM

# 1 引 言

3D 打印是增材制造技术(Additive Manufac-

turing,AM)的俗称,是一种依据三维 CAD 设计数据,采用离散材料(液体、粉末、丝、片、板、块等)逐层 累加制造物体的技术<sup>[1]</sup>.相对于传统的材料去除方 式、材料成型方式,3D 打印是一种自下而上材料累

收稿日期:2013-12-23;最终修改稿收到日期:2015-03-26.本课题得到国家"九七三"重点基础研究发展规划项目基金(2011CB302400)、 国家自然科学优秀青年基金(61222206)、国家自然科学基金(11031007,11171322,61173102,61005033)、国家自然科学基金重点项目 (U0935004)、中国科学院"百人计划"、高等学校学科创新引智计划(简称"111 计划")(b07033)、教育部新世纪创新人才(NCET-11-0881) 资助.刘利刚,男,1975年生,博士,教授,国家自然科学基金优秀青年基金获得者,主要研究领域为计算机图形学与图像处理.E-mail: lgliu@ustc.edu.cn.徐文鹏(通信作者),男,1976年生,博士研究生,副教授,主要研究方向为计算机图形学.E-mail: wpxu08@gmail.com. **王伟明**.男,1986年生,博士研究生,主要研究方向为计算机图形学.杨周旺,男,1974年生,博士,副教授,主要研究方向为计算几何、最优 化理论与算法.刘秀平,女,1964年生,博士,教授,主要研究领域为数字几何处理.

加的制造工艺,自 20 世纪 80 年代开始逐步发展,也 被称为快速成型(Rapid Prototyping)、分层制造 (Layered Manufacturing)等.

《经济学人》杂志在其 2012 年的一期专题报导 中称,3D 打印技术的发展与逐渐成熟,是第三次工 业革命<sup>①</sup>的重要标志之一.

1.1 3D 打印与第三次工业革命相互促进

所谓第三次工业革命<sup>[2]</sup>,实质就是以数字制造 技术、互联网技术和再生能源技术的重大创新与融 合为代表,从而导致工业、产业乃至社会发生重大变 革,这一过程不仅将推动一批新兴产业诞生与发展 以替代已有产业,还将导致社会生产方式、制造模式 甚至生产组织方式等方面的重要变革,最终使人类 进入生态和谐、绿色低碳、可持续发展的社会.

第三次工业革命的一个重要特征是生产方式变 革,即由大规模生产向大规模定制、个性化定制转 变.现在的生产方式是大规模标准化、用机器生产机 器的方式;新的生产方式,是以互联网为支撑的智能 化大规模定制的方式,标志着个性化定制、生产社会 化时代的到来.

回顾过去的两次工业革命,不难看到许多分布 各地的小作坊,这也许是生产社会化的雏形.但是这 些小作坊大多作为大工厂的补充,它们的任务是辅 助大工厂的集约化大生产.在第三次工业革命的到 来中,分散式的社会化协作将会成为主体,不同的是 新的小作坊不是进行附加值很低的商品化生产,而 是高附加值的商品设计与创作.

在这一形势下,3D 打印技术的出现恰逢其时. 它作为一种高效、分散式生产工具,带我们进入个性 化与社会化创造的时代,并且将会把商品生产推向 多元化、个性化生产模式.

#### 1.2 3D 打印将使长尾市场无限延伸

长尾理论(The Long Tail)<sup>[3]</sup>是由美国《连线》 杂志主编克里斯·安德森在 2004 年提出的,用来描 述诸如亚马逊<sup>②</sup>之类网站的商业和经济模式.它是 指当商品储存、流通的渠道足够宽广,商品的生产销 售成本急剧下降时,那些原来不受到重视的销量小、 但种类多的产品或服务由于总量巨大,累积起来的 总收益超过主流产品的现象.即涓涓细流,汇聚成 河,众多小市场汇聚成可与主流大市场相匹敌的市 场能量.

长尾理论直到 2004 年才被提出是有原因的.虽 然这种现象过去一直就有,但是直到现在才成为一 种显著的趋势,是因为长尾背后需要有两股力量:其 一是充足的供给,其二是网络的流行.充足的供给解 决了商品的生产问题,网络的流行解决了商品的流 通问题.

3D 打印恰恰暗合了长尾背后的两股力量,那就 是富裕的供给和便捷的网络.3D 打印赋予普通人以 制造的能力,促进了个性化定制与生产社会化,使得 人人都能生产制造,同时 3D 打印的产品都可通过 数字形式存储,完全打破物理货架限制,产品存储几 乎无限,这些必定使得 3D 打印产品具有富裕的供 给;数字形式的产品使得人们可以更加方便地搜索 到自己所需的商品,加上便捷的网络,这样用户购买 你的产品的渠道就仅仅需要宽带下载的方式就够 了,完全是一种打破原子的方式.

根据长尾理论,产品越偏向于数字形式,长尾就 越往右延伸.因此,基于以上分析,3D打印技术将会 给大规模工业经济带来的一次巨大冲击,将会使市 场向长尾方向无限延伸.

#### 1.3 3D 打印的优势<sup>[4]</sup>

(1)产品复杂度、多样化与成本无关.传统制造 方式下,产品的形状越复杂,其制造成本就越高.同 时,传统制造设备功能较少或单一,可加工的产品形 状有限.而对一台 3D 打印机来说,它可以打印各种 各样形状的产品,无论复杂还是简单形状的物体,并 不对其制造成本产生太大影响.它无需机械加工或 预制任何模具,这样极大地减小了复杂产品的制造 难度,缩短了研制周期.

(2)零技能制造.传统工匠需要当几年学徒才 能掌握所需要的技能.批量生产和计算机控制的制 造机器降低了对技能的要求,然而传统的制造机器 仍然需要熟练的专业人员进行机器调整和校准.利 用 3D 打印技术制造同样复杂的产品,个人只需在 电脑中进行智能化设计,然后将复杂作业流程转化 为数字化文件,发送到 3D 打印机即可实现制造.整 个过程中,用户根本无需掌握各种复杂的制造工艺 和加工技能,这样大幅降低了制造业的技术门槛.

(3)个性化定制的优势.3D打印可以实现按需 生产,减少了企业的实物库存,避免了大规模生产中 大量未成交商品的资源浪费,更加环保.甚至,产品可 按需就近就地打印,从而减少产品的物流运输成本.

上述优势使得 3D 打印非常适合以下几类产品

① A third industrial revolution [EB/OL]. http://www.economist.com/node/21552901. 2013.2.16

② Amazon Company [EB/OL]. http://www.amazon.com/. 2013.12.16

1245

的快速制造:(1)复杂结构.如传统方法难以加工的 自由曲面叶片、复杂内流道等,甚至是无法加工的如 内部镂空结构等;(2)个性化定制产品.如珠宝、人 体器官、文化创意等个性化定制生产、小批量生产以 及产品大规模生产前的研发与验证性制造;(3)高 附加值产品.如航空航天、生物医疗以及珠宝等高附 加值产品.

需要指出的是,从国内外的研究与应用情况看, 3D打印技术与传统机加工、铸、锻、煤、模具工艺的技术相比,首先它在产品尺寸精度和表面质量与后者相 差较大,后处理比较繁琐,产品性能还达不到许多高 端金属结构件的要求;其次,它在加工速度以及大批 量生产效率方面还比较低,不能完全满足工业领域 的需求;最后,3D打印设备和耗材成本仍然很高,如 基于金属粉末的打印成本远高于传统制造的成本.

因此,3D打印技术虽然是对传统制造技术的一次革命性突破,但它却不可能完全取代切削、铸锻等 传统制造技术,两者之间应是一种相互支持与补充, 共同完善与发展的良性合作关系.

# 2 3D 打印分类

如前所述,3D 打印的专业名称为"增材制造": 增材是指 3D 打印通过将原材料沉积或黏合为材料 层以构成三维实体的制造方式.因此,利普森和库 曼<sup>[4]</sup>按材料结合方式将 3D 打印分为两大类:(1)选 择性沉积方式;(2)选择性黏合方式.

文献[5]则按采用材料形式和工艺实现方法,将 其细分为如下五大类:(1)粉末或丝状材料高能束 烧结、熔化成型,如激光选区烧结(Selective Laser Sintering,SLS)、激光选区熔化(Selective Laser Melting,SLM)、激光近净成型(Laser Engineering Net Shaping,LENS)等;(2)丝材挤出热熔成型,如 熔融沉积成型(Fused Deposition Modeling,FDM) 等;(3)液态树脂光固化成型,如光固化成型(Stereo Lithography Appearance,SLA)、数字光处理成型 (Digital Light Processing,DLP)等;(4)液体喷印成 型,立体喷印(Three Dimensional Printing,3DP) 等;(5)片/板/块材粘接或焊接成型,如分层实体制 造(Laminated Object Manufacturing,LOM)等.

下面以其中代表性工艺方法简单介绍.

#### 2.1 激光选区烧结 SLS

SLS也称为选择性激光烧结,其工艺原理是预先 在工作台上铺一层粉末材料(金属粉末或非金属粉 末),激光在计算机控制下,按照界面轮廓信息,对实 心部分粉末进行烧结,然后不断循环,层层堆积成型.

SLS 工艺最大的优点在于选材较为广泛,如尼 龙、蜡、ABS、聚碳酸脂、金属和陶瓷粉末等都可以作 为烧结对象.粉床上未被烧结部分成为烧结部分的 支撑结构,因而无需考虑支撑系统.

SLS的缺点主要有:原型结构疏松、多孔,且有 内应力,制作易变性;生成陶瓷、金属制件的后处理 较难;需要预热和冷却;成型表面粗糙多孔,并受粉 末颗粒大小及激光光斑的限制;成型过程产生有毒 气体及粉尘,污染环境.

#### 2.2 熔融沉积成型 FDM

FDM 是将丝状的热熔性材料加热融化,同时三 维喷头在计算机的控制下,根据截面轮廓信息,将材 料选择性地涂敷在工作台上,快速冷却后形成一层 截面.一层成型完成后,机器工作台下降一个高度 (即分层厚度)再成型下一层,直至形成整个实体造 型.其成型材料种类多,一般是热塑性材料,如蜡、 ABS、PC、尼龙等,以丝状供料.成型件强度高、精度 较高,主要适用于成型小塑料件.

FDM 工艺的每一个层片都是在上一层上堆积 而成,上一层对当前层起到定位和支撑的作用.当形 状发生较大的变化时,上层轮廓就不能给当前层提 供充分的定位和支撑作用,这就需要设计一些辅助 结构-"支撑",对后续层提供定位和支撑,以保证成 形过程的顺利实现.

FDM 工艺不用激光,使用、维护简单,成本较低.用 ABS 制造的原型因具有较高强度而在产品设计、测试与评估等方面得到广泛应用.

FDM 技术最明显的限制就是表面精度.由于是 半熔融状态塑料挤制成型,表面精度比 SLA 要粗 糙,而与 SLS 不相上下.FDM 原型可以进行铣床加 工,钻孔,研磨,车床加工等.为了补偿表面精度不足 并加强特征细节,当有特殊的品质需求时,使用者通 常会进行二次加工来提升原型的细节.

#### 2.3 光固化成型 SLA

SLA 是最早实用化的快速成型工艺,采用液态 光敏树脂为原料,工艺原理是用特定波长与强度的 激光聚焦到光固化材料表面,使之由点到线,由线到 面顺序凝固,完成一个层面的绘图作业,然后升降台 在垂直方向移动一个层片的高度,再固化另一个层 面.这样层层叠加构成一个三维实体.

SLA 工艺的优点是精度较高、表面效果好,因此其主要用于制造多种模具、模型等,零件制作完成 打磨后,可将层层的堆积痕迹去除.SLA 成型的零 件一般层厚在 0.1 mm~0.15 mm. 多年的研究改进 了截面扫描方式和树脂成型性能,使该工艺的最高 精度已能达到 16 μm(0.016 mm).

SLA 的局限性主要有需要支撑、树脂收缩导致 精度下降、光固化树脂有一定毒性等.另外,光固化 工艺运行费用很高,零件强度低、无弹性,无法进行 装配.光固化工艺设备的原材料很贵,种类也不多. 光固化设备的零件制作完成后,还需要在紫外光的 固化箱中二次固化,以保证零件的强度.

#### 2.4 立体喷印 3DP

3DP 工艺是美国麻省理工学院的学生保罗威 廉姆斯和他导师伊莱萨克斯教授发明的.该工艺与 SLS 工艺类似,采用粉末材料成型,如陶瓷粉末、金 属粉末.所不同的是 3DP 工艺中,材料粉末不是通 过烧结连接起来的,而是通过喷头用粘结剂(如硅 胶)将零件的截面"印刷"在材料粉末上面.

3DP 是一种的利用微滴喷射技术的方法,其具体工艺过程如下:喷头在计算机控制下,按照当前分层截面的信息,在事先铺好的一层粉末材料上,有选择地喷射粘结剂,使部分粉末黏结,形成一层截面薄层;上一层成形完毕后,工作台下降层厚,进行下层铺粉,继而选区喷射粘结剂,成形薄层并与已成形零件黏结为一体;如此不断循环,直至零件加工完毕为止.未被喷射黏结的地方为干粉,在成形过程中起支撑作用,且成形结束后,比较容易去除.

3DP 技术的优势在于成型速度快、无需支撑结构,而且能够输出彩色打印产品,最大可以输出 39 万色,色彩方面非常丰富,也是在色彩外观方面,打 印产品最接近于成品的 3D 打印技术.3DP 技术也 有不足,首先粉末粘接的直接成品强度并不高,只能 作为测试原型,其次由于粉末粘接的工作原理,成品 表面不如 SLA 光洁,精细度也有劣势,所以一般为 了产生拥有足够强度的产品,还需要一系列的后续 处理工序.此外,由于制造相关材料粉末的技术比较 复杂,成本较高.

#### 2.5 数字光处理成型 DLP

DLP 工艺是利用光固化和投影仪 DLP 技术通 过可见光将光敏树脂逐层固化成的 3D 对象,3D 对 象从上到下逐层创建堆积而成. 它和前面的 SLA 光固化很相似,唯一的区别在 于 SLA 的光线是聚成一点在面上移动,而 DLP 是 将光打在一个面上,有点像投影仪,逐层进行光固 化,因此速度比同类型的 SLA 立体平版印刷技术 更快.

同时,它使用高分辨率的数字光处理(DLP)投影仪来固化液态光敏树脂,每层固化时通过幻灯片似的片状固化.基于这种技术,可实现超薄的 3D 打印层,成型精度高,在材料属性、细节和表面光洁度方面可匹敌注塑成型的耐用塑料部件.

#### 2.6 分层实体制造 LOM

LOM 工艺是根据三维 CAD 模型每个截面的 轮廓线,在计算机控制下,发出控制激光切割系统的 指令,使切割头作 X 和 Y 方向的移动.供料机构将 地面涂有热溶胶的箔材(如涂覆纸、涂覆陶瓷箔、金 属箔、塑料箔材)一段段地送至工作台的上方.激光 切割系统按照计算机提取的横截面轮廓用二氧化碳 激光束对箔材沿轮廓线将工作台上的纸割出轮廓 线,并将纸的无轮廓区切割成小碎片.然后,由热压 机构将一层层纸压紧并粘合在一起.可升降工作台 支撑正在成型的工件,并在每层成型之后,降低一个 纸厚,以便送进、粘合和切割新的一层纸.最后形成 由许多小废料块包围的三维原型零件.然后取出,将 多余的废料小块剔除,最终获得三维产品.

LOM 适合制作大中型原型件,翘曲变形较小, 成型时间较短,激光器使用寿命长,制成件有良好的 机械性能,无需设计和制作支撑结构,适合于产品设 计的概念建模和功能性测试零件.其优点有:成型速 度较快.由于只需要使用激光束沿物体的轮廓进行 切割,无须扫描整个断面,所以成型速度很快,因而 常用于加工内部结构简单的大型零件.

LOM 最大的不足是材料种类少,制件性能不高,其性能接近木模.

# 3 3D 打印流程

从广义上说,3D 打印完整流程主要包括五个步骤,如图1所示.



图 1 3D 打印流程

(1) 3D 模型生成.利用三维计算机辅助设计 (CAD)或建模软件建模或通过三维扫描设备,如激 光扫描仪、结构光扫描仪等来获取生成 3D 模型数 据.这时所得到的 3D 模型数据格式可能会因不同 方法而有所不同,有些可能是扫描所获得的点云数 据,有些可能是建模生成的 NURBS 曲面信息等;

(2)数据格式转换.将上述所得到的 3D 模型转 化为 3D 打印的 STL 格式文件. STL 是 3D 打印业 内所应用的标准文件类型,它是以小三角面片为基 本单位即三角网格离散地近似描述三维实体模型的 表面;

(3)切片计算.通过计算机辅助设计技术(CAD) 对三角网格格式的 3D 模型进行数字"切片"(Slice), 将其切为一片片的薄层,每一层对应着将来 3D 打 印的物理薄层;

(4)打印路径规划.切片所得到的每个虚拟薄 层都反映着最终打印物体的一个横截面,在将来 3D 打印中打印机需要进行类似光栅扫描式填满内部轮 廓,因此,需要规划出具体的打印路径,并对其进行 合理的优化,以得到更快更好的切片打印效果;

(5) 3D 打印. 3D 打印机根据上述切片及切片路 径信息来控制打印过程,打印出每一个薄层并层层 叠加,直到最终打印物体成型.

从上述 3D 打印过程可知,要实现 3D 打印,3D 模型是前提和基础,否则"巧妇难为无米之炊";而 3D 打印使 3D 模型"落到实处".但是,大多情况下, 现有方法直接得到的 3D 模型并不能直接输出给 3D 打印机.因为大部分设计模型都是由建筑师、工 程师或设计人员所提供,他们都倾向于使用专业设 计软件,如 Maya<sup>①</sup>、3ds Max<sup>②</sup>和 SketchUp<sup>③</sup>等.还 有一些三维模型数据来自于三维扫描设备,如激光 扫描仪、结构光扫描仪等.这些模型数据信息并未考 虑到 3D 打印的具体需求与约束,如果直接输出到 3D 打印机,通常会导致各种各样的问题,如:模型尺 寸过大,超过打印机能打印的尺寸限制或没有考虑 稳定性导致打印出物体无法正常放置等.

正如利普森和库曼<sup>[4]</sup>所说:3D打印中,不是输入糟糕的设计文件就能打印出糟糕的物体,而是你输入糟糕的设计文件,什么都打印不出来,或是比什么也得不到更糟糕的情况就是浪费了昂贵的原材料.

因此,大多数设计模型,尤其是那些复杂物体的 三维模型,都需要经过一些几何方法进行修正、调整 和优化,使其能更好地满足 3D 打印的需求,避免打 印出的物体无法正常发挥功能.这一过程,就是图 1 所示(a)~(d)的几何计算问题:将 3D 模型经过一些几何方法处理为 3D 打印机可接受、可打印,甚至 要求打印出的模型可正常使用或具有指定效果的处 理过程.

下面本文就对图1所示的几何计算问题根据问 题特点进行分类详细介绍.

### 4 3D 打印中的几何计算问题

3D 打印的本质在于分层制造,其中切片计算非 常重要.起初,切片计算采用分层厚度相等,由此会 产生模型精度与打印时间之间的矛盾:分层厚度小, 模型精度有保证,但打印时间长;反之,打印时间缩 短,但易导致模型阶梯误差大.这使得自适应厚度方 法逐渐流行.在机械快速成型领域中,许多学者对切 片计算已做过深入研究<sup>[6]</sup>.从这些研究成果来看,切 片计算方法若按研究对象来分,可分为:(1)网格切 片计算:由于 STL 格式的网格模型是 3D 打印业内 所用的标准文件类型,因此很多切片计算对象主要 以 STL 格式的网格类型模型为主<sup>[7-13]</sup>;(2)直接切 片计算:由于原始 3D 模型在转化为 STL 格式模型 数据时,会产生转换误差,因此还有不少研究考虑直 接在原始的 3D 模型数据上执行切片计算<sup>[13-21]</sup>.

切片计算的下一步是打印路径规划,也称为扫 描路径生成.它是 3D 打印中的最基本工作,在由线 到面、由二维到三维的逐层累积过程中,3D 打印机 要做大量的扫描工作,因此合理的打印路径非常重 要.打印路径的规划应着眼于减少空行程,减少扫描 路径在不同区域的跳转次数,缩小每一层截面之间 的扫描间隔等要求.

目前,按照打印路径类型的不同,打印路径生成 方法主要可分为5种:(1)平行扫描<sup>[22-23]</sup>.每一段路 径均相互平行,在边界线内往复扫描,也称为乙字 路径(Zigzagging);(2)轮廓平行扫描<sup>[24-25]</sup>.填充路 径由轮廓的一系列等距(偏置,Offsetting)线组成; (3)分形扫描<sup>[26-27]</sup>.扫描路径由一些短小的分形折 线组成;(4)星形发散扫描<sup>[28]</sup>.将切片从中心分为两 部分,先后从中心向外填充两个部分,填充线为平行 X或Y轴扫描线或45°斜线;(5)基于 Voronoi 图的

① Maya [EB/OL]. http://www. autodesk. com/products/ autodesk-maya/overview. 2013. 12. 16

② 3ds Max[EB/OL]. http://www.autodesk.com.cn/products/autodesk-3ds-max/overview. 2013.12.16

③ SketchUp[EB/OL]. http://www.sketchup.com/zh-CN. 2013.12.16

扫描路径<sup>[29-30]</sup>.根据切片轮廓的 Voronoi 图,按一定的偏置量在各边界元素的 Voronoi 区内生成该元素的偏置线,连接不同元素的偏置线,得到一条完整的扫描路径,逐步改变偏置量即可得到整个扫描区域的路径规划.

欲深入了解上述有关切片计算、打印路径规划 研究的学者,可参考上述快速成型领域相关文献,这 里不再赘述.接下来,本文针对 2014 年以前相关研 究成果为对象,侧重于从计算机图形学领域来介绍 3D 打印中的几何计算问题.

#### 4.1 几何优化问题

4.1.1 物体分割问题

随着 3D 打印技术的成熟、打印成本的降低,越 来越多的物体都可以被 3D 打印输出.然而,一台 3D 打印机可打印对象的最大尺寸却仍因为 3D 打 印机本身空间有限而受限,因此,打印一些大体积的 物体,对现有的 3D 打印技术而言,仍困难重重.对 一个超过可打印尺寸的大物体对象,如果要将其 3D 打印,一个可行的解决方案就是将其分割为一块块 可打印的小对象,然后再将其组装成一个整体大物 体,如图 2 所示.



图 2 椅子模型分割[31]

上述问题可称为分割问题,其本质是化整为零, 再积零为整.然而,一个大物体对象如何分割为许多 小物体,其分割的数量与方式可以有许多种不同的 方案,因此文献[31]给出了如下一些约束目标:

(1)尺寸可打印.分割后每个小物体的尺寸都 在可打印尺寸范围之内;

(2)可组装性.各个部分之间可无障碍地组装成一个整体;

(3)有效性.分割结果避免过多过细,换言之, 分割数量尽可能地少;

(4)可连接性.每一部件都应能保证留有连接的接口,以便于组装;

(5)结构合理性.分割结果应避免形成薄弱的

长条、细杆类的结构形式,同时接缝应远离高应力 区域;

(6)美观.接缝应尽量避免过大与显眼,并尽可 能保证整齐对称.

针对以上的约束,文中给出了明确的目标定义 与具体的目标函数,同时给出了一个名为 Chopper 的分割处理方案.该方案采用平面分割,自上而下, 每次分割均将处理对象一分为二,逐步细化,最终整 个模型可形成一个 BSP 树的层次分割结果,如图 3 所示. Chopper 还能根据不同的目标函数与用户引 导产生不同的分割结果,以满足不同的用户分割 需求.



图 3 一个模型通过 BSP 树分割为 6 个部分<sup>[31]</sup>

针对大体积复杂模型,文献[32]给出了一个基 于曲率的模型分割方法,如图 4 所示.该方法首先对 模型表面进行曲率分析,提取出模型的特征边,并据 其构建特征环.以此为基础,在其中选择合适的特征 环来将原模型分解为小而简单的子模型组合.这种 分割方法的前提是模型表面具有明确的特征信息, 因此该方法适用范围有限.



(a) 特征环

(b)第1层次分割图 4 基于曲率的分割<sup>[32]</sup>

(c) 第2层次分割

针对上述分割问题, Chen 等人<sup>[33]</sup>则给出了一 个近似表示的方案:将一个 3D 模型转化为分片多 边形面片近似表示,再通过 3D 打印每一个多边形 面片,最后将这些面片拼装成一个与原 3D 模型相 近似的实物对象,如图 5 所示.具体操作可分为两 步:(1)将所给 3D 模型通过表面分割、变形方法转 化为一个由少量多边形组成的网格;(2)将所得到 的网格分解为平面片的组合,并生成平面片之间的 连接头用来拼装各个平面片.



图 5 多边形面片分割拼合方法[33]

#### 4.1.2 重心优化问题

生活中,物体平衡是指一种稳定的状态,当一个 物体受到两个或两个以上的力作用时,各个力互相 抵消,使物体成相对的静止状态.在 3D 虚拟环境 下,3D 模型可以任意摆放位置与姿势,包括可摆出 违反重力原则的造型,因为在虚拟世界中,3D 模型 无需遵循真实世界中的物理规律.但是,如果把 3D 模型打印输出为实物时,这时物理规律就要发挥作 用了,如果它在各种受力情况下,不能保持稳定状态,那它就不能很好地摆放到所需的状态.

这种情况下,你可能就需要把物体粘在很重的 基座上,或对它进行反复修改,以便使模型能够很好 地放置到所需姿势.这两种方法都比较麻烦,更好地 方法是 Prévost 等人<sup>[34]</sup>给出的重心优化方法,即通 过几何方法来优化模型的重心位置使其在给定姿势 下达到平衡状态,如图 6 所示.





(a) 马模型
 (b) 处理后模型
 需靠尾巴
 可单腿站立
 支撑站立

(c) T-Rex模型头部放大与掏空

图 6 站立模式[34]

首先,文中给出两种平衡模式:稳定立在一个平 面上的站立模式和悬挂在一根细绳上保持平衡的悬 挂模式.对站立模式,模型与地面接触的所有接触点 可构成一个支撑多边形,要使模型保持平衡必须使 其重心投影落在支撑多边形内;对悬挂模式,保持平 衡的关键在于使其重心通过细绳与物体相连的吊接 点方可,如图 7 所示.



图 7 站立与悬挂两种平衡模式[34]

在此基础上,作者将 3D 输入模型视为一个实体模型,上述问题就可转化为通过一定方式改变这 个体模型的重心使其达到合适的平衡状态.文中给 出两种调整重心位置的方式:(1) 掏空模型内部区 域,使其产生内部空洞;(2) 在尽可能保持模型外部 形状特征的条件下使模型外表面变形.

经过以上重心优化处理后模型,3D打印为实物后,无需额外的支架或底座,模型也能很好地保持站 立模型,如图 6(b)、(c)所示.

4.1.3 打印成本优化问题

随着 3D 打印技术的发展,3D 打印成本在不断 地在下降,即便如此,与传统制造所生产的产品相 比,3D 打印产品的成本仍相对较高,目前通常用单 位体积所需材料的费用来表示(元/cm<sup>3</sup>).显然,3D 打印成本直接与材料成正比.因此,如何能在不牺牲 打印物体质量的前提下,通过优化模型来减少打印 材料消耗,对于降低打印成本来说,至关重要.

为节省打印材料,受建筑工程中的桁架结构的 启发,Wang等人<sup>[35]</sup>提出的一种基于"蒙皮-刚架" (Skin-Frame)的轻质结构来解决材料优化问题.如 图 8 所示,这里的刚架(Frame)能有效地降低打印 材料成本,并使打印物体满足所要求的物理强度、受 力稳定性、自平衡性及可打印性.这些刚架结构是由 一些细杆通过一些节点相连而成,形成空间的一个 图结构.需说明的是,这种结构与建筑中常见的桁架 (Truss)有所不同,因为前者的杆件之间并不是铰接 的,而是固定连接的.这种结构的优点主要有两个: (1)力学特性好,当某节点受到外力时,此处的受力 能通过相邻的细杆迅速传播分散开来;(2)质量轻 便,这种结构是由稀疏的细杆组成,因此总体质量不 大,很好地减少了结构本身的重量及所使用的材料.



图 8 桁架结构与"蒙皮-刚架"轻质结构[35]

基于以上考虑,作者的想法是:对于给定的一个 三维模型,我们将模型表达成一个很薄的蒙皮以及 内部的刚架结构,使得表达后的物体的体积(即所使 用的打印材料)最小,而且使得打印物体能够满足所 要求的物理强度、受力稳定性、自平衡性及可打印性 等要求.

文献[35]的目标函数包括两个:第1个目标为 使得物体的体积最小,即蒙皮体积及刚架结构的体 积之和最小.由于蒙皮的厚度的增加会很快增加体 积,因此我们将蒙皮的厚度固定为最小可打印精度, 不作为优化变量.因此,需要优化的变量只包括刚架 结构中的细杆的半径、节点的个数及位置.第2个目 标为使得刚架结构中的细杆数量及节点数量尽量 少,该目标是为了使得不要出现冗余的细杆及节点.

为此,作者通过优化建模,提出一种迭代优化的 方法来优化两个目标函数.只要从任意的一个刚架 结构出发(可随机产生),该算法可以智能地优化出 细杆的半径,去除多余的细杆及节点,以及优化节点 的位置,使得总体积最小.

对于一些需要支撑结构的 3D 打印类型,文中 算法同样适用,它能够智能地设计支撑结构,如图 9 所示,这种支撑结构也是由一些细杆组成,能够在打 印过程中起到支撑的作用.很容易看出,该算法设计 的支撑结构极大地减少了支撑材料的浪费,并且非 常容易剥除.





#### 4.2 结构分析

3D 打印技术促进了产品个性化定制的普及与 推广,使得每个人都可以设计 3D 几何模型,成为自 己产品的设计师.他们由于缺乏一些设计经验与力 学知识,会导致其设计结果直接 3D 打印后会存在 一些结构问题,如强度问题、稳定性问题等.强度不 足可能会使 3D 模型在打印、运输或日常使用过程 中受到破坏,而稳定性问题则会导致 3D 模型无法 正常地放置或悬挂,影响其日常使用功能.

这种问题我们称其为结构分析问题,它的主要 任务是识别 3D 模型中存在的强度或稳定性缺陷, 并给出适当合理的弥补方案. 文献[36-39]讨论了 3D 打印结果的强度分析问题,文献[34]则讨论了结 构稳定性问题.

4.2.1 强度加固

针对强度问题,文献[36]给出了一个自动检测

并修正结构强度问题的系统方案,来创建一个新的 3D模型,使其与原有模型保持尽可能相近的外形, 同时提高其结构强度与整体性.该方案中,模型的结 构强度问题通过一个轻量级的结构分析解算器来计 算识别出.随后,根据所检测出的强度问题,文中给 出三种方法对原模型进行修正:内部挖洞、局部加厚 与加支撑,如图 10 所示.



文献[36]中的方案有效地提高了模型的结构性 能,避免了高强度应力区域的出现.但是该方案的最 大局限在于:在结构强度检测时,系统需要先预设模 型可能承受的外部荷载情况,并据此对模型显式地 指定一种或几种捏握式外部荷载来进行结构强度计 算.当然,同时还需考虑模型的重力荷载.显然,对很 多模型来说,这种预设的荷载并不能很好地反映模 型的真实荷载分布,因此其结构分析结果的真实性 与可靠性也就不能很好地保证了.

4.2.2 最不利荷载

针对上面的问题,文献[37]给出了一个更好的 方案.该方案在预测或检测模型结构强度问题时,与 上述明确指定或设定模型的荷载情况方法不同的 是,它去寻找一种最不利荷载情况(Worst-Case),并 据此识别出模型上最易破坏之处或最大变形区域, 如图 11 所示.



图 11 Worst-Case 计算实例<sup>[37]</sup>

该方案的核心方法是模态分析(Modal Analysis). 在结构分析研究领域,当一个物体以不同频率振动时,这种振动会导致物体的一些脆弱部位产生高应 力或大变形.模态分析就是用来预测结构在振动状 态下可能发生的破坏或变形的一种经典方法.

该方案的主要步骤如下:

(1) 计算输入模型的各阶模态;

(2) 对模型的每一阶模态,计算提取出相应的 薄弱区域;

(3) 对每一个薄弱区域,通过求解一系列的优化问题,计算出其相应的最不利荷载分布;

(4)用有限元方法计算在上述荷载分布作用下 模型的应力,从而得到该薄弱区域的最大应力分布 情况.

综合以上每一阶模态下模型的最不利荷载分布 与最大应力分布情况,确定最终结果.

#### 4.3 材料表面效果定制

随着可供 3D 打印材料类型的增多,人们希望能 打印出更复杂外观、表面光学特征及力学特性的物体.这一需求催生了 3D 打印中一类重要但尚未很好 解决的问题:如何确定出一个物体对象的材料组成, 使其能满足一个给定的表面外观效果或变形功能要 求.这一问题可称为材料表面效果定制问题(Specification to Fabrication Translation, Spec2Fab)<sup>[40]</sup>.

其他近年来,很多学者对此问题做了一些深入研 究,其工作大致主要可分为3类:(1)次表面散射效果 定制(Subsurface Scattering),如 Hasan等人<sup>[41]</sup>、 Dong等人<sup>[42]</sup>和Papas等人<sup>[43]</sup>等研究了通过双向表面 散射反射分布函数(Bidirectional Surface Scattering Reflectance Distribution Function,BSSRDF)来实现 打印材料次表面散射效果;(2)空间变化反射效果 (Spatially varying reflectance),如文献[44-49]等 通过双向反射分布函数(Bidirectional Reflectance Distribution Function,BRDF)来实现;(3)变形及 其他效果定制,如Bickel等人<sup>[50]</sup>研究了给定打印材 料变形效果的实现方案.针对多材料打印问题, Vidimce等人<sup>[51]</sup>则给出了一个 OpenFab 可编程流 水线来解决多材料打印的合成问题,如图 12 所示.



图 12 OpenFab 打印 3 只不同效果犀牛实例<sup>[51]</sup>

Chen 等人<sup>[40]</sup>则对上述研究结果归纳总结,提 出一个可简化设计流程的抽象机制 Spec2Fab.下面 对其中具代表性的工作做一些概略介绍.

4.3.1 次表面散射效果定制(Subsurface Scattering)

为了使 3D 打印结果具有指定的次表面散射效 果,Hasan 等人<sup>[41]</sup>给出了一个完整的流程,并给出 了一些相应的打印实例效果,如图 13 所示.其流程 简单介绍如下:



(a) 大理石



(b) Bunny 图 13 次表面散射效果<sup>[41]</sup>

(1)测量一组给定基本材料的次表面散射特性,采用双向表面散射反射分布函数(Bidirectional Surface Scattering Reflectance Distribution Function, BSSRDF)来描述它们的散射特性曲线,如图 14(a)、(b)所示;



图 14 次表面散射效果定制流程[41]

(2) 表面外观效果预估. 根据上述基本材料的 散射特性曲线,可计算出不同材料、不同厚度组合后 的次表面散射特性曲线,如图 14(c)、(d)所示. 我们 将其称为正向问题(Forward problem);

(3)与目标材料外观效果的匹配计算.给定一 个材料的期望散射曲线,我们通过非线性离散优化 算法来确定出各层材料及其厚度,使它们组合出尽 可能接近所要达到的目标效果,如图 14(e)所示.这 个可称其为反向问题(Inverse problem).其中,优化 算法通过物理约束剔除大量不合适的结果,实现高 效地搜索基本材料的可能组合空间;

(4)将上述计算结果优化扩展到 3D 模型表面 各点,通过调整包裹在模型表面不同厚度的各层材 料,来实现目标效果,如图 14(f)所示;

(5)利用 3D 打印机输出物体的最终真实效果, 如图 14(g)所示.

针对上述同样的次表面散射问题,Dong 等人<sup>[42]</sup> 也同时给出了一套类似的方案.该方案在给定的材 料次表面散射特性要求下,可以有效地计算出所打 印物体的每层材料分布及其厚度.其中,所给定的材 料次表面散射要求也是由 BSSRDF 函数来描述.

同时,还需要考虑一些材料分布约束条件(Layout Constraints):打印硬件需要使用一定的打印材料种类,因此材料种类是一个固定的集合;为避免模型材料分布太细太繁,同时也为节约打印时间与成本,模型材料层数也不能过多.

Dong 等人<sup>[42]</sup> 将上述问题称为材料映射问题 (Material Mapping),即给定一组基本材料及分布 约束条件,计算出物体材料组合使其 BSSRDF 符合 所给曲线要求,其核心流程如图 15 所示.虽然 Dong 等人<sup>[42]</sup>与 Hasan 等人<sup>[41]</sup>都是采用 BSSRDF 函数来 确定材料的次表面散射特性,但是两者方案上还是 有一些不同之处:首先,对均匀层厚情况,Hasan 等 人<sup>[41]</sup>采用启发搜索式方法来剔除一些不合适的分 层布局结果,而 Dong 等人<sup>[42]</sup>采用基于分簇的方法 来计算有效布局;其次,对不均匀层厚情况,Hasan 等人<sup>[41]</sup>对每一个模型表面点先将所给的 BSSRDF



分解为局部散射曲线,再据此来确定材料分层布局, 而 Dong 等人<sup>[42]</sup>则仅用局部散射曲线来初始化分层 布局,其后给出了一个优化算法用以更好地计算布 局结果,来近似所给 BSSRDF 特性.

Papas 等人<sup>[43]</sup>研究了通过不同的颜料与基本原料相混合来实现给定材料次表面散射效果,这里不再详述.

4.3.2 空间变化反射效果定制(Spatially varying reflectance)

真实世界物体表面因其材料不同,展现了各种 各样的表面效果,如光滑的、塑料感的、金属质感的 等.同时,多数情况下,同一种表面反射效果还会随 视角空间方向变化而变化.在计算机图形学中,常用 BRDF函数来表示这种空间变化反射效果.自然,在 3D打印中也会考虑如何打印出具有指定空间变化 反射效果.

为了定制出期望的表面外观反射效果,Weyrich 等人<sup>[45]</sup>给出了一个基于微平面(Microfacet)理论的 系统方案.该方案根据一个给定的物体表面 BRDF 分布,寻求得到物体微表面倾斜分布的一个可能结 果,再对此分布采用点状方法采样,并以微平面为 单元来构建物体表面,然后运用模拟退火方法优 化微平面间倾斜连续性及其凹陷深度,最后得到 表面高度分布场,实现所要达到的表面反射效果.

Microfacet 理论基本假设是,表面是由很多微 平面(microfacet)组成,这些微平面都很小,无法单 独看到;并假设每个 microfacet 都是光学平滑的.每 个 microfacet 把一个入射方向的光反射到单独的一 个出射方向,这取决于 microfacet 的法向 m.当计算 BRDF 的时候,光源方向 l 和视线方向 v 都得给定. 这意味着在表面上的所有 microfacet 中,只有刚好 把 l反射到 v 的那部分对 BRDF 有贡献.在图 16 中,我们可以看到这些有效 microfacet 的表面法向 m 正好在 l 和 v 的中间,也就是半角矢量 h.



图 16 Microfacet 与光源方向 l,视线方向 v,半角矢量 h

在上述假设下,Weyrich 等人的方案是假定一 个物体表面的最终反射效果由构成物体材料的基本 BRDF 特性与物体表面的高度场分布所决定.其中, 物体由单一材料构成,且不考虑透明情况;对表面高 度场分布,限制微平面的倾斜角在 65°内,这样可以忽 略微平面间的互相遮挡与反射情况.同时,微平面间 的边界连接应尽可能连续,减少边界处的错位高度.

在上述假定下,物体表面总体的 BRDF 可看作 是由一些基本的微平面 BRDF 单元混合叠加,其中 每一个微平面 BRDF 随着微平面的法向不同而变化. 最终的表面总体 BRDF 效果可看作是由基本 BRDF 的半角分量与每一个微平面法向的球面卷积<sup>[52]</sup>.具 体实现流程如下:

(1)由所给的高亮形状到微平面分布.首先,受 Colbert<sup>[53]</sup>方法的启示,通过直观自然的设计界面来 绘制想要的高光效果,生成材料的基本 BRDF 特 性.当然,也可以直接测量各种材料如金属、颜料、布 料等获得相应的基本 BRDF 特性.其次,如前所述, 基本 BRDF 的混合叠加可看作是卷积运算,因此, 可以把基本 BRDF 视为卷积核,对所给高亮形状进 行反卷积运算,得到反卷积后的微平面分布,如图 17 所示;





(2)由微平面分布到高度场分布.理论上说,一 种微平面分布可以对应有无数种高度场分布.为了 实现转换,文中对此问题附加上了一些弱约束.首 先,对微平面分布采样,将其转换为不同朝向的微平 面离散集合.这里,低偏差采样(Low-discrepancy sampling)方法比随机采样方法具有更好的保真度 与更低的噪声,如图 18 所示.



其次,在得到想要的微平面离散集合后,此时微 平面的高度值还未确定,可先对其倾斜角调整优化, 使其分布能形成一个相对连续光滑的平面.文中这 个过程通过模拟退火优化算法来计算三个能量函数 使其最小化来完成. 最后,利用上述优化结果,沿着高度方向移动每 一个微平面使其分布尽可能连续,得到最终的高度 场分布.这一过程可以表示为一个离散的泊松方程 来求解.最终的结果可以得到一个近似于 C°连续的 微平面分布,如图 19 所示.



图 19 漩涡形状(图 18)的微平面阵列<sup>[45]</sup>

对于弥合数字世界与物理世界之间的差距,其 中一个重要挑战就是将原材料变成设计者想要的结 果.无数个点、边、面及相应的材质信息构成了数字 世界中的原材料,而在真实世界中却不是如此简单 和容易掌控的.

解决上述问题的一个常见办法是组合多种材料.事实上,不同材料组合的联合打印可以消除传统单一材料打印的不足与局限,使我们能够制造更加复杂的物体,甚至能使这些多元材料转化为复杂的、新的功能材料,如同时兼具轻质和高强度性能的材料,或同时具备良好柔韧性和透明效果的材料等.组合材料的性能给人直观感觉可能会介于组成的基础材料之间,如将相等的硬质材料和软质材料组合在一起,可能你会得到一个半硬半软的材料.事实证明并不是完全如此,最终组合材料的性能取决于组合材料的方式.

Bickel 等人<sup>[50]</sup> 就研究了上述这一很有实用价 值的材料混合问题:如何在微尺寸的尺度(即 3D 打 印的尺度)上,根据基础材料的力学性能,打印出指 定力学性能的基础材料组合体.如图 20 所示.问题 的实质是:给定的一组基本材料及其力学性能曲线, 如何将基本材料混合,以便得到指定力学性能的多 元混合材料.系统流程如图 21 所示.



图 20 多元材料组合打印实例<sup>[50]</sup>



图 21 模型变形效果定制流程<sup>[50]</sup>

为了解决上述问题,Bickel等人<sup>[50]</sup>采用按层方 式来混合不同材料,并引入一个优化过程来得到最 接近指定材料性能的混合结果.最后,文中的方法通过一台 Object Connex 500 多材料打印机打印了一些模型进行验证.

综合以上的定制处理方法,Chen 等人<sup>[40]</sup>发现 上述处理过程存在一些类似的流程与相同的处理单 元,如它们都依赖于在给定几何与材料要求下精确 模拟所给对象物理特征的能力.因此,文中提出一个 更具普适性的定制框架来处理上述问题,该框架具 有模块化、可扩展性、打印设备无关性与模型几何无 关性的特点,并给出了一些定制效果,如图 22 所示. 该框架具有 4 个模块,如图 23 所示.



图 22 不同定制要求的效果[40]



图 23 Spec2Fab 总结的定制流程框架<sup>[40]</sup>

当前,多材料 3D 打印机在打印对象时需要指 定对象内部的每一个体素,如果还需要一定的功能 或其他要求时,确定体素的工作极其复杂,很难求解. 因此,这一工作就需要采用一定的简化来表示,也即 图 23 中第1个模块"Reducer Node"的任务.为了实 现这一目标,Chen 等人采用简化树(Reducer tree) 方式.这一方式在概念上有些类似 Maya 中的材质 网络(Shader Network),只不过这里用一些预定义 的形状与材料节点给对象所在空间进行合理赋值, 实现材料赋值空间的参数化.因此,文中给出一个简 化树的树型结构,它有两种类型的子节点:几何节点 与材料节点,如图 24 所示.



几何节点有平面、柱状、体素、B样条和薄层节 点等,通过它们的组合来完成对象所在空间的分区. 材料节点主要用来给分区后对象空间指定预定义的 材料,因此它一般作为几何节点的子节点.材料节点 具体实现上可分为层节点(Layered Node)与空节点 (Void Node)两类.层节点可用来指定对象分区空 间中每一层的材料值;空节点则用于指定对象空间 某块区域没有材料填充.

图 23 的 4 个模块实际上表示一个抽象的优化 流程:对前述简化树表示的模型模拟效果,如次表面 散射效果或变形等;将模拟结果与系统目标相比较; 根据比较结果再对简化树结构进行优化.这一流程 文中将其称为调谐器(Tuners),它主要负责优化简 化树的各种参数,以达到系统预定的目标.调谐器也 可分解为一些调谐节点(Tuner node),每一个调谐 节点包含一个具体的优化管线,并与一些简化节点 (Reducer node)相链接.同时,这些调谐节点会共享 一些信息,从而形成一个调谐网络(Tuner Network), 如图 25 所示.于是,调谐节点就利用它的优化管线 与调谐网络来优化其相关联的简化节点参数,实现 系统的优化目标.

为了评估系统的打印效果定制能力,文中最后 给出了一些现有转换过程的实现,如 Hasan 等人<sup>[41]</sup> 的表面散射效果(图 26),Papas 等人<sup>[43]</sup>的焦散效 果,Bickel 等人<sup>[50]</sup>的变形效果等.





图 26 表面散射效果定制对比<sup>[40]</sup>

#### 4.4 机构设计

3D 打印不仅可以输出复杂模型,同时,还为以 往能设计但很难制作实现的机构提供了实现的机 会.因此,最近两年各种机构设计的研究越来越多. 这方面的研究主要可分为两大类:一类是静态机构 设计,如积块式机构设计,这类机构的构件按一定方 式组装起来,形成一个稳定的形状;另一类是动态机 构设计,如动态玩具机构、关节机构和免组装机构 等.这类机构可以活动或运动起来.

4.4.1 积块式机构

积块式机构指由一些块状、片状或板状构件按 一定要求组装在一起,构件间互相咬合锁定,最终形 成一个稳定的结构,如鲁班锁<sup>[54]</sup>、联锁积木<sup>[55]</sup>、交错 式片块机构<sup>[56]</sup>.

鲁班锁,也称为"六子联芳"、"六道木"和"孔明 锁".通常是由6根插在一起的条棍组成一个立体十 字结构,如图27所示.鲁班锁的条棍相互穿插在一 起,成为一个稳定的结构,不会散开.鲁班锁的一些 条棍中有凹下的空间,因此当它们穿插在一起时,它 们的整体结构的中间是实心的.通常会有一根完整 的条棍,最后一个插进结构,使其稳定,因而"锁"住 结构,这个条棍也叫"锁棍".将一个鲁班锁打开比较 容易,但是要将它们组装起来则需要一定的空间思 维能力和足够的耐心.



如上所述,传统的鲁班锁构件或为条棍状,或为 半圆状,总体形状较为单一.如果能生成形状各异的 鲁班锁,这将会大大提高游戏的吸引力与趣味程度, 但这一问题具有一定的复杂性与挑战性.因为鲁班 锁结构虽然只有6个部件,但需要考虑部件之间的 耦合关系来保证部件间能互相锁定. Xin 等人[54] 就 研究了这样一个有趣的问题:如何根据一个给定的 3D 模型来自动设计生成相应的鲁班锁结构.

为了便于阐述,作者将一个具有6个部件的鲁 班锁基本结构,称为节点(knot),如图 27(b)所示. 在此基础上,作者从给定的 3D 模型内生成一个单 节点的鲁班锁结构,再拓展到多节点的鲁班锁结构, 从而完美解决所给问题.

首先,考虑单节点问题.为了设计生成一个单节 点鲁班锁结构,文中先将一个标准的鲁班锁结构 (图 28(a) 所示) 内置于所给的 3D 模型内部, 如 图 28(b)所示;接下来,将其6个部件沿着各自所在 平面的轴向延伸至 3D 模型边界,将 3D 模型所在空 间划分为8个区域,如图28(c)所示;最后考虑剩下 的 8 个区域贴片问题, 如图 28(d)所示.





(d) 分片结果 图 28 单节点鲁班锁结构生成过程[54]

其中,8个区域贴片生成方法有多种,其基本原 则是满足在拆装鲁班锁过程中不要有碰撞干扰,文 中给出了3种建议方法:双面、多面及对称方法.双 面方法是将8个区域贴片合并为2个大贴片,附在 6个部件中相对的2个部件上面,如A1和A6,A2 和 A3 或 A4 和 A5, 如图 29 中第 1 行所示; 如果 8个区域贴片不合并,每一个贴片可任意附在相邻 的3个基本部件上,这种方法即为多面方法;对称方 法,如图 29 中第 2 行所示,可使表面贴片分布更均 匀对称.



图 29 鲁班锁表面贴片生成方法[54]

多节点情况可以在单节点解决方法基础上,通 过构建一个节点网络来处理,如图 30 所示.



图 30 多节点鲁班锁结构牛成过程[54]

联锁积木(Interlocking Puzzles)游戏是另一种 类型的益智游戏,类似于拼图游戏,它给定一组形状 各异的积木块,要求玩家能按一定顺序将其组装成 一个有意义的 3D 形状. 它能有效锻炼人们的空间 想象力、创造力和提高人们的逻辑思维能力.这类游 戏的解决一般都具有一定的难度,而如何能设计出 很好这类游戏就更好具有挑战性,Song 等人<sup>[55]</sup>就 研究了这样一个有趣的问题:如何将一个给定的 3D 模型分解为一组合适的分块,使其能变成一个联锁 积木游戏.

文中首先给出一个联锁积木的定义:一个联锁 积木指的是多个积木块互锁在一起,其中只有一个 积木块可以移动,而剩下的其他块都不能互相分离 拆开.图 31 所示即为一个经典的 Coffin 联锁积木.



图 31 4 块 Coffin 联锁积木<sup>[55]</sup>

该方法的处理过程简单示意如图 32 所示.类似 于通常的联锁积木结构,该方法以体素形状的积木 模型为处理对象,记为 S. 依次从 S 身上递归抽取部 分积木块,将其分解为一个积木块序列 P<sub>1</sub>,P<sub>2</sub>,…, P<sub>n</sub>和 S 中剩下的最后积木块 R<sub>n</sub>:

 $S \rightarrow [P_1, R_1] \rightarrow [P_1, P_2, R_2] \rightarrow \cdots \rightarrow [P_1, P_2, \cdots, P_n, R_n].$ 



于是问题的求解就变为一个递归的分解过程:  $R_i \rightarrow [P_{i+1}, R_{i+1}].$ 

如果每一次分解中,都能保证只有一个积木块 组件能取走解锁,而剩下的部分都不能互相解锁,则 问题就可递归解决.其中,P<sub>i+1</sub>称为解锁块.

按照这一策略,文中构造性方法主要可分为两步:(1)提取初始解锁积木块;(2)递归依次提取其他解锁积木块.具体提取方法可参见原文.

交错式片块机构主要是指一些平面片状构件互 相交错咬合在一起的机构对象,如图 33 所示.平面 片状构件可由木材、金属、塑料、玻璃等多种材料方 便简单地制作出来,因此,由这些构件形成的对象也 能非常容易地制作与组装起来.另外,平面片状构件 也容易制作出较大尺寸,因此,用它来构建较大的对 象也很方便容易.所以,这种由平面片状构件组装而 成的物体在日常生活中也很受人欢迎,被广泛地用 在拼装式玩具、家具或建筑内部结构等上面.

如何便捷地设计生成这种由平面片状构件交错 形成的机构对象,是一个有趣也有一定难度的问题.



图 33 交错式片块机构[56]

Schwartzburg 和 Pauly 在文献[56]中对此问题作了 一些研究,给出了一种方便实时的交互式设计方法. 文中为方便设计,它提供了一种抽象模型,用来表示 平面片状构件间约束,在此基础上,给出了构件设计 的设计目标与优化目标,如机构的稳固性、可组装性 等.并对平面片状构件的位置、朝向、碰撞等问题进 行优化.

4.4.2 动态玩具机构

目前的 3D 打印技术,打印静态的模型已是十 分简单了.如果打印的模型可以动起来,就非常有意 思了.这方面的研究主要有机械玩具设计<sup>[57]</sup>、机械 角色设计<sup>[58]</sup>和机械人设计<sup>[59]</sup>等.

这3篇文章都研究了玩具机构设计,其中 Zhu 等人研究了玩具机构的设计,如图 34(a)所示;Coros 等人研究了机械角色机构运动,如图 34(b)所示;而 Ceylan 等人则研究了基于视频输入的机械机器人 设计,如图 34(c)所示.



(a) 玩具机构 (b) 机械角色 (c) 机械人 图 34 玩具结构设计<sup>[57-59]</sup>

其主要方法和流程基本相似,可以总结如下:给 定一个运动的输入,可以是一组动画曲线,也可以是 一段动画视频,系统会从预定义的部件库中选取合 适的部件将其组合,然后再优化这些部件的参数,使 整个机构的运动输出与所给运动输入保持一致,如 图 35 所示.

下面从输入、部件库、优化处理等几方面来对上 述 3 篇文章进行简单对比介绍.

(1)用户输入. 文献[57]的输入以玩具角色的 指定运动为主,同时加上玩具角色的几何信息,与玩 具下方的方盒尺寸,如图 36(a)所示;文献[58]以一 个带有关节的机械角色,并给定其若干部位的一组 动画曲线为输入,如图 36(b)所示;文献[59]的输入 则为一个关节链式角色的动画视频序列,如图 36(c) 所示.



图 35 玩具机构设计示意[57]



(2) 部件库.图 37(a) 所示即为文献[57] 的部件 库,通过这些部件的组合产生机构所需要的直线、摇 摆与螺旋运动; 文献[58] 的部件主要以齿轮与连杆 为主,其组合方式有多种,如图 37(b) 所示; 文献[59] 部件库中有4种部件,分别为四连杆机构、皮带轮、 摇摆部件和锥齿轮部件,如图 37(c) 所示.



图 37 部件库对比[57-59]

(3)优化处理.为了达到理想的玩具机构运动 效果,文献[57]给出了如下的优化函数:

 $C(x) = C_a(x) + C_l(x) + C_l(x),$ 

其中: $C_a(x)$ 表示运动相似度,用以衡量结果与输入 的匹配程度; $C_l(x)$ 表示机构布局质量,衡量布局是 否齐整有序; $C_l(x)$ 表示机构拓扑复杂性,保证机构 应尽可能简单.

文献[58]给出如下目标函数:

$$F = \frac{1}{2} \int_{t=0}^{1} (x(p,s_t) - \hat{x}_t)^{\mathrm{T}} (x(p,s_t) - \hat{x}_t) \mathrm{d}t.$$

该目标函数用来优化机构运动实际曲线与所给运动曲线之间的相似程度.其中,x(p,s<sub>t</sub>)和  $\hat{x}_t$ 表示 t

时刻同一标记点在实际曲线与目标曲线的位置.

文献[59]的优化目标是机构运动尽可能地与所 给关节链运动相近,在此基础上,转化为每一根骨骼 对所在关节角度的近似优化,由此针对每一个关节 链,定义如下能量函数:

$$E_{\Phi_i} = \sum_i \sum_j \left( \sin \frac{\Delta_{\Phi_i}(j) - \Delta_{\phi_i}(j)}{2} \right)^2,$$

其中:i表示骨骼编号,j表示动画序列帧编号, $\Delta_{\phi_i}(j)$ 表示动画序列输入中骨骼的角度差; $\Delta_{\phi_i}(j)$ 表示实际机构中相应的角度差.

上述 3 篇文章均是运动机构设计应用在不同的 场景上,方法上并没有体现太多新颖的地方.所以, 它们均强调有趣的应用场景.它们都采用了很多齿 轮,这些齿轮从外观上破坏了模型本身几何结构的 整体性;而连杆结构本身就是一种四边形和三角形 构成的几何单元.所以在 3D 打印时都要分别打印 这些部件,然后重新组合安装,十分麻烦,并未能体 现 3D 打印一体成型的特点.

4.4.3 关节机构

角色对象无论是在电影还是在游戏中都无一例 外是故事的主要对象.对一个角色来说,关节是其身 上的重要元素.角色动画中,关节的重要性不言而 喻.如何利用 3D 打印技术来制作出有活动关节的 角色,将是一件有挑战性与吸引人的工作.因为它能 使打印出的模型变化不同姿势,具有生命力;但同 时,它需要考虑关节位置设定、关节与其他部位拼 接、关节运动等问题,具有一定的难度.

Calì 等人<sup>[60]</sup>和 Bächer 等人<sup>[61]</sup>就此问题分别作 了一些探讨研究,如图 38(a)、(b)所示. 从总体过程 来看,两人的方法大体相似,可简要总结如下:首先, 将所给模型按一些要求分割为不同组成部分;然后, 将分割后的模型用合适的关节拼接起来,如图 39 所示.

在有关方法细节上,两篇文章略有不同,试简单 对比如下:

(1)分割方法. Calì 等人<sup>[60]</sup>这块是将模型导入



Maya中,通过给模型交互式添加骨骼和关节点来 完成模型分割点设置,如图 40(a)所示;而 Bächer 等 人<sup>[61]</sup>则通过所给输入蒙皮权重和连接关系,将原始 模型面片分割成不同部位,如图 40(b)所示,后面还 根据碰撞检测、截面大小等因素,结合中轴变换,优 化确定关节中心位置与分割结果;



图 40 分割方法对比[60-61]

(2)关节处理. Calì 等人<sup>[60]</sup>给出了一些通用关 节模板,如图 41 所示. 这些模板在考虑关节缝隙公 差、摩擦力、关节大小、厚度等因素之后,形成系列 化. 在此基础上,在连接部位插入通用关节模板,对 其变换使其与周边匹配,得到最终关节模型;Bächer 等人<sup>[61]</sup>文献中的关节主要有两种类型:铰链式关节 (Hinge)和球状关节(Ball-and-Socket),如图 42 所 示. 根据关节的约束与几何信息,利用 CSG 方法得到 关节造型,并与周围面片拼接,最终得到完整模型.



图 41 通用关节模板[60]



文献[60]和文献[61]这两篇文章均是针对有关 节的角色模型对象,虽然实现细节略有差异,但都实 现了角色关节机构的免组合安装(Non-Assembly), 很好地体现了 3D 打印一体成型的特点和优势,因 此,具有很好的应用前景.

4.4.4 免组装机构

传统机械设计时,对机械机构来说,一般都需要 两步完成模型构建.首先,创建机构的每一个组成构 件,其次,再将所有的组成构件装配起来.3D打印情 况下,这一过程可以省去第2步,得到免组装机构.

免组装机构是指在零件设计阶段将组成机构的 各个零件组装好,然后一次性直接制造出,免去后续 组装工序的机构<sup>[5]</sup>.这种机构不仅仅是机构设计概 念的创新,在更深的意义上,这种理念的存在极大地 解放了机构设计的自由度,因为这样设计者无需考 虑装配方式与装配空间,同时也能提升三维机构模 型创新能力,为现代机械及一体化设备设计、创新和 发明提供系统的基础理论和有效方法.

在快速成型领域中,很早就有这方面的研究论 文,如文献[62]和文献[63].文献[62]就基于选择性 激光融化工艺研究了免组装机构设计有关问题.在 文中,作者讨论了免组装机构中数字模型的外形、连 接节点的重新设计(图 43)及构件打印的支撑问题 (图 44)等.同时,给出了一些打印实验结果,如图 45 所示.





万向节模型[62] 图 43



(a) α=180°,水平显示



(c) α=120°,改进的倾斜显示



图 44 打印支撑结构比较[62]





(a) d = 0.2 mm





(b) d = 0.15 mm

图 45 不同最小间隙 d 下的万向节打印实物<sup>[62]</sup>

### 4.5 自支撑结构设计

随着我国城市化水平不断提高,建筑模型的设 计造型也越来越受人们的重视.过去,建筑师为了更 好地表达设计意图与展示建筑结构,大多都通过手 工制作建筑沙盘模型的方式来实现这一目的.

随着 3D 打印技术的逐渐成熟,3D 打印制作出 的模型更加精美,展示效果更好,同时全程数字化制 作其效率也很高,因此,它必将会逐渐取代过去的手 工制作方式.近年来,用 3D 打印来设计验证建筑或 结构设计的研究也越来越多,自支撑结构设计便是 其中的代表.

4.5.1 自支撑结构曲面设计

大量的世界建筑遗产都是拱石结构(Masonry

Structures),这种拱石结构建筑大多是由砖块、石块 等材料堆砌而成,具有结构简单、外形优美的特点. 它属于只受压力不受拉力的结构体系,同时无需要 外部支撑,就可保持平衡.这种结构可称之为自支撑 结构,正因为这些特点,这种自支撑式的砖拱结构无 论是在古典建筑还是在现代建筑中都有着大量的应 用,尤其是在哥特式教堂建筑中,如图 46 所示.



图 46 拱石自支撑结构建筑[64]

如何在数字世界与真实世界中设计出指定外形 的砖拱结构,仍是一个既具有重要价值又具有一定 难度的任务.现有方法大多是基于推力网络分析方 法(Thrust Network Analysis, TNA)<sup>[65]</sup>来处理的. 这种方法需要有深厚的结构设计知识基础,与大量 的人工设计计算工作,在这样的背景下,近年来有一 些研究者开始探讨如何利用计算机来处理上述问 题,如Panozzo等人<sup>[64]</sup>、De Goes等人<sup>[66]</sup>、Liu等人<sup>[67]</sup> 及 Vouga 等人<sup>[68]</sup>.

上述问题可具体表示为:给定一个曲面,如何能自 动快捷地生成一个与其相同或相近的自支撑结构曲 面,其结构基本元素为三角形或四边形,如图 47 所示.



曲面自支撑结构设计问题<sup>[64]</sup> 图 47

上述问题解决方案的基础与核心仍是 TNA 方 法,主要区别在于问题解决过程与优化处理的不同. Panozzo 等人<sup>[64]</sup>在 TNA 方法的基础上分析了如何 布置与分割使得曲面分块间的滑动摩擦力最小,考 虑了分块的错缝情况;Liu 等人<sup>[67]</sup>在 TNA 的基础 上引入 Regular 三角化(Triangulation)方法,给出 了两者之间的联系,最后利用 Regular 三角化方法 来参数化生成所需要的自支撑曲面,这种方法可提 供一种便捷的参数化方式来交互创建或编辑自支撑 曲面,如图 48 所示; Vouga 等人<sup>[68]</sup> 根据 TNA 给出

了一个迭代优化算法,其基本过程包含计算曲面自 重荷载、生成逼近曲面、根据几何与平衡条件调整顶 点位置,文中还特别考虑了 PQ Mesh 类型,如图 49 所示;De Goes 等人<sup>[66]</sup>的方法与 Vouga 等人<sup>[68]</sup>类 似,只不过在其基础上更多地考虑了应力、孔洞及形 状等问题的优化处理,如图 50 所示.



图 48 Regular 三角化的自支撑曲面结构<sup>[67]</sup>



图 49 带孔洞与 PQ Mesh 构成的自支撑曲面结构<sup>[68]</sup>



图 50 带孔洞的自支撑曲面结构[66]

4.5.2 RF 结构设计

自支撑结构中,还有一类 RF(Reciprocal Frame Structures)结构也很有价值.这种结构由一些 RF 单

元互相搭接而成,每一个 RF 单元与其相邻单元相 互支撑,最终整个结构在外围受到外墙、环梁或锚点 的支撑而稳定成形,如图 51 所示.



图 51 RF 结构<sup>[69]</sup>

RF 结构令人着迷之处在于,它以最简单的杆 棒与 RF 单元为基本单元,却能搭接出一个复杂的 网格结构.这种结构空间中部无需支撑,可以形成一 个较大空间.同时,它还可以拆散与重新搭接,以便 于在不同地点间的转换使用.因此,具有这些特点的 RF 结构非常适合用于快速搭建临时建筑的一些场 合,且成本很低.正因为如此,早在文艺复兴时期, RF 结构就已出现并发挥作用.

单元数量不多的 RF 结构设计虽不是一件易 事,但还是可以手工设计完成.如果 RF 结构尺度太 大,单元数量过多,这时其空间结构错综零乱,力学 关系复杂,设计难度大大提高,手工设计就很难应付 了.如何利用计算机的方法来完成复杂 RF 结构设 计,就变得很有必要了,Song 等人<sup>[69]</sup>就对此问题作 了一些探讨.

针对大尺度复杂的 RF 结构设计问题, Song 等 将其分解为两步, 即先在 2D 上构建基本 RF 单元的 组合分布, 再通过一个 3D 导轨面将其提升到 3D 空 间, 并在保持几何外形条件下, 对杆件的位置优化以 提高结构的整体性与稳定性, 如图 52 所示.



图 52 RF 结构设计流程<sup>[69]</sup>

#### 4.6 内部结构设计

4.6.1 编解码嵌入技术

编解码嵌入技术可以在产品生产过程中把多种 格式的各种信息插入到一个物体内部,使这些产品 包含身份信息标记.

类似的技术如无线射频识别技术 RFID(Radio Frequency Identification)和条形码(一维或二维), 这些技术都广泛地用于百货公司货架商品上,或者让 办公室职员能够通过安防设备进入办公场所.然而, 这些技术需要增加一个外部设备.例如,RFID 技术 需要额外的安全卡片或钥匙;同样,条形码需要通过 贴纸标签来使用.另外,它们需要把设备放置在特定 的角度并且接近物体,才能进行相应的信息识别.

Willis 和 Wilson<sup>[70]</sup> 在他们的论文中提出了一项在 3D 打印中把信息嵌入到物体中的技术.这项技术称为 InfraStructs,它是将太赫兹(THz)扫描嵌入到 3D 打印中,在 3D 加工的过程中可将编码信息隐藏,随后解码成为有效标签信息.

InfraStructs 引入了太赫兹波与太赫兹扫描成 像.太赫兹波介于微波与红外之间,是指频率在 0.1THz 到 10 THz 范围的电磁波,波长大概在 30 µm 到 3000 µm 范围.它是从 20 世纪 70 年代中后 期,被正式命名的.太赫兹波与 X 射线性质相似,可 穿透许多常见的材料,如塑料、纸张和布料等.同时, 它又较 X 射线更为低耗、安全.

太赫兹扫描成像系统基本组成如图 53 所示,系 统发射太赫兹波,它在物体不同材料表面产生反射, 最终再被系统接收.





在此基础上, InfraStructs 利用 3D 打印技术来 将编码信息嵌入到物体内部, 然后可再通过太赫兹 扫描成像技术解码恢复, 其系统流程如图 54 所示, 可简述如下: (a) 编码. 将标记信息通过创建物体结 构材料变化编码到 3D 模型中; (b) 打印制造. 将带 有标记信息的 3D 模型输出打印; (c) 太赫兹扫描成 像. 利用一个太赫兹扫描成像系统对带标记信息的 打印模型扫描成像;(d) 解码. 对所得到太赫兹扫描 成像进行处理,得到其中所蕴含的标记信息.



图 54 InfraStructs 系统流程<sup>[70]</sup>

系统流程的关键是如何编码,文献[70]中给出 了一个一维标记信息编码为8位二进制信息的实 例,如图55(a)所示.这个标签结构由两种材料组 成,并被一个外壳所包围.其中,一种材料具有高折 射率,表示二进制中的"1"信息;另一种低折射率的 材料表示"0"信息.太赫兹扫描成像系统垂直扫描这 一结构,得到相应的反射信号,如图55(b)所示:扫 描信号首先通过外壳材料,由于它遇到一个高折射 率材料,因此它返回一个负值波峰信号;然后,它遇 到一个低折射率材料,它返回一个正值波峰信号;接 下来,随着扫描信号穿透后面各层材料,类似的正负 值波峰信号交替出现.因此,完整信号通过这些波峰 信息即可转译为二进制形式.通过这种材料及其结 构变化方式,二进制标签信息就能简单编码到物体 内部.



InfraStructs 技术开创实现了嵌入与读取 3D 打印物体内可识别标签的技术.如此一来,3D 打印 产品不再需要进行电子芯片等信息植入、再加工,直 接即可投入生产使用.当然,需要指出的是,这里由 于用于读取标签的内部成像技术是采用太赫兹技 术,这种技术尚未普及,因此可能会对 InfraStructs 技术的推广应用略有影响.

#### 4.6.2 多层模型结构

水晶内雕是一种颇为引人注目的工艺品,它是

在水晶、玻璃等透明材料内雕刻平面或三维立体图 案,如可雕刻 2D/3D 人像、人名手脚印、奖杯等个性 化标志信息,如图 56 所示.其中,内雕部分对光线具 有较强的反射、折射作用,而空白部分对光线具有较 好的通透性能,这些因素使得内雕图像呈现出立体 逼真、光彩夺目的效果,加上个性化定制信息后,很 适合作为礼品或纪念品来赠送、保存和纪念.



图 56 水晶内雕(图片来源:百度百科)

能否用 3D 打印来生成上述水晶内雕的效果 呢? Holroyd 等人<sup>[71]</sup>受图 57 所示艺术品的启发,对 这一问题作了一些研究,研究结果如图 58 所示.



(a) Carol Cohen

(b) Dustin Yellin





(a) 真实模型
 (b) 多层模型打印结果<sup>[71]</sup>
 图 58 真实模型与多层模型打印结果<sup>[71]</sup>

在图 57 中, 左图是由一层层高清晰的图像堆叠 在一起. 这启发作者通过多层结构模型来快速打印 生成类似效果的物体. 因此, 问题可具体化为: 给定 一个 3D 模型, 如何计算其对应的分层模型, 以便根 据该分层模型, 打印得到与所给模型相同或相似外 观效果?

相对所给模型来说,如果事先已给定每一层的 大小、位置和分辨率,那么问题的目标就是需要计算 所给模型在每一层上每一点的颜色及透明度.如果 模型是体数据,那么可以通过体绘制方法的重采样 来解决;如果是曲面信息,问题就要复杂些了.文中 分别对这两种情况作了单独介绍.

# 5 总结与展望

目前,全球正在兴起新一轮数字化、智能化制造 浪潮,准备迎接以数字智能化为核心的"第三次工业 革命". 而作为"第三次工业革命"的前沿代表技 术——3D打印,成功地沟通了数字世界与真实世界 之间的联系,将虚拟的数字智能化技术与真实的工 业产品联系在一起.

当前,中国正处于从"中国制造"向"中国创造" 迈进的重要时期,3D打印技术可以让国内的设计师 和工程师从产品制造工艺的束缚中解放出来,更加 专注于产品本身的智力创造,大跨步进入想法到产 品(Mind to Product)的"所想即所得"全新智造时 代.同时,还有无数的创客<sup>[72]</sup>们以极大的热情推动 3D打印应用往前发展,大大拓宽其领域范围,这必 将有力推动 3D打印及数字化相关技术与研究的发 展,当然也包括 3D打印中的几何计算问题.

本文根据 3D 打印中的几何计算问题特点,将 其分为几何优化、结构分析、材料表面效果定制、机 构设计、自支撑结构设计、内部结构设计等六大类, 并对每一类作了分类介绍.目前,3D 打印的几何计 算研究仍处于发展阶段,存在大量有待解决的问题, 也是未来这方面的研究重点和可能的发展方向,下 面试分别略作介绍.

#### 5.1 高效便捷的 3D 建模方法

如前所述,3D 模型是 3D 打印的对象与内容. 它是 3D 打印的信息来源,没有它,3D 打印就成了 无源之水、无本之木.因此,对 3D 打印来说,如何能 让普通用户高效、便捷地获取生成所需要的 3D 模 型,是一个首先需要解决的任务.

目前,3D 模型的生成方法主要可分为两种: (1)通过专业建模软件如 SolidWorks<sup>①</sup>、Maya、3ds Max 和 SketchUp 等;(2)通过三维扫描设备,如激 光扫描仪、结构光扫描仪等扫描后,再后处理生成. 第1种方法对普通用户来说,有相当的难度,需要一 定的专业技能,尤其是结构复杂的物体.而第2种方 法则需要一定的设备支撑,有些设备不是普通用户

③ SolidWorks[EB/OL]. http://www.solidworks.com.cn/. 2013.12.16

所能承受的.

因此,如果能为普通用户提供一个便捷、高效的 建模技术与工具,必将大大推动 3D 打印的普及与应 用.这方面已经有一些基于草图或笔划的建模方法的 相关研究,效果还不错,如清华大学和以色列特拉维 夫大学的研究人员最近开发出一种名为"3-Sweep" 的技术<sup>[73]</sup>,可以实现从单张 2D 照片直接生成 3D 模型,让 3D 建模变得像在 Photoshop<sup>①</sup> 中建立选 区、编辑图像一样简单.美国欧特克公司<sup>②</sup>也正在让 3D 建模技术变得越来越便捷,作为全球二维和三维 设计、工程及娱乐软件的领导者,它正在做的是让更 多不懂设计的人通过软件应用成为"设计师",发起 一场全民建模"设计"的浪潮,来迎接这场 3D 打印 的时代.

#### 5.2 拓扑优化

适用于 3D 打印的材料通常是为专门的设备配 套研发的,这样才能保证材料的物理性质稳定,保证 打印的效果.但也正是这样的原因导致专用材料一 般小批量生产,缺少规模效益又导致了 3D 打印耗 材价格居高不下.

为了节省所使用的材料,大部分的 3D 打印附带的软件都考虑了节省材料的功能.一个最直接的方法就是将物体"掏空",即不是打印一个实体模型, 而是打印一个只具有薄层厚度的物体.为了增加所打印的物体的硬度,有些 3D 打印软件会自动在薄层内部填充一些规整的网状结构,比如蜂窝结构.

但是,现有的 3D 打印软件的这个功能都十分 有限,不能自动计算掏空物体的薄层厚度以及判断 所填充的网状结构的密度,这些都需要用户手工进 行设置.若用户设置不合理,要么打印出来的物体不 能满足物理要求(比如硬度不够而易碎)或几何要求 (比如站立不稳),要么过多使用了打印材料.

如何通过几何计算方法来优化 3D 模型的拓扑 结构,使其既能外形上满足需要同时结构功能上也 有一个很好的性能.这样,既可以减少打印耗材用 量,也能缩短打印时间,同时还减少了设备损耗,达 到一举三得的良好效果.

近来,关于结构拓扑优化已有多篇文章,如 Wang等人<sup>[74-76]</sup>及Allaire等人<sup>[77-78]</sup>.但如何将这些 研究成果运用到 3D 打印中,仍需要结合 3D 打印实 际需求来考虑,其中还存在很多问题尚待解决.

#### 5.3 快速打印

随着社会生产力的加速发展,企业越来越希望 缩短它们从设计到产品交付的时间,这一时间也是 企业效率的关键衡量指标.与传统制造技术相比, 3D打印技术已使制造时间大为减少.

但即使这样,3D打印一个合适大小的物体仍需 要一定的耗时,且一般动辄就是十几小时或几十小 时,如通过 FDM 工艺采用普通精度打印一个 40 cm×30 cm×80 cm 大小的人头模型约需 12 h,如 果采用更高精度,时间还会更长.这无论是对于个人 还是企业,时间成本都有些高,尤其是对企业来说, 会大大削弱企业的产品竞争力.

因此,缩短 3D 打印的时间,实现产品对象的快速打印的问题,亟需解决.当然,要想大幅度地缩短 打印时间,必须要从硬件出发去考虑,改变打印工艺 方法,优化打印流程,才能得到较好效果.但是这种 方式可能需要付出的代价也非常高.

另一种可能的选择是可以从模型出发,通过几 何计算方法来实现快速打印.由于对于 3D 打印来 说,打印时间与打印精度成正比,即打印精度越高, 所需打印时间越长.因此,如果想要缩短打印时间, 一种可行的方法是将模型上一些不重要的部分用低 精度,而重要部位用高精度,这样既可缩短打印时 间,又不致过于影响模型外观视觉效果,这方面尚存 在很多问题值得我们深入探讨研究.

#### 参考文献

- [1] Wu Huai-Yu. 3D Printing: 3D Creation Via Intelligent Digitization. Beijing: Publishing House of Electronics Industry, 2014(in Chinese)
  (吴怀宇. 3D 打印:三维智能数字化创造.北京:电子工业出版社, 2014)
  [2] Jeremy R. Zhang Ti-Wei, Sun Yu-Ning Translator. The
- Third Industrial Revolution. Beijing: China Citic Press, 2012 (in Chinese)

((美)里夫金著.张体伟,孙豫宁译.第三次工业革命.北 京:中信出版社,2012)

- [3] Chris A. Qiao Jiang-Tao Translator. The Long Tail. Beijing: China Citic Press, 2006(in Chinese)
  ((美)安德森著. 乔江涛译. 长尾理论. 北京:中信出版社, 2006)
- [4] Hod Lipson, Melba Kurman. CCID Research Group Translator. Fabricated: The New World of 3D Printing. Beijing: China Citic Press, 2013(in Chinese)
  ((美)胡迪·利普森,梅尔芭·库曼.赛迪研究院专家组译. 3D 打印: 从想象到现实.北京:中信出版社, 2013)

① Adobe Photoshop CS6 [EB/OL]. http://www.adobe. com/cn/products/photoshop.html. 2013.12.16

② Autodesk Company [EB/OL]. http://www. autodesk. com. cn/. 2013. 12. 16

[5] Chinese Society of Mechanical Engineers. 3D Printing, Printing Future. Beijing: China Science and Technology Press, 2013 (in Chinese)

(中国机械工程学会.3D打印:打印未来.北京:中国科学 技术出版社,2013)

- [6] Pandey P M, Reddy N V, Dhande S G. Slicing procedures in layered manufacturing: A review. Rapid Prototyping Journal, 2003, 9(5): 274-288
- [7] Dolenc A, Mäkelä I. Slicing procedures for layered manufacturing techniques. Computer-Aided Design, 1994, 26(2): 119-126
- [8] Sabourin E, Houser S A, Bøhn J H. Adaptive slicing using stepwise uniform refinement. Rapid Prototyping Journal, 1996, 2(4): 20-26
- [9] Tyberg J, Bøhn J H. Local adaptive slicing. Rapid Prototyping Journal, 1998, 4(3): 118-127
- [10] Sabourin E, Houser S A, Bøhn J H. Accurate exterior, fast interior layered manufacturing. Rapid Prototyping Journal, 1997, 3(2): 44-52
- [11] Tata K, Fadel G, Bagchi A, Aziz N. Efficient slicing for layered manufacturing. Rapid Prototyping Journal, 1998, 4(4): 151-167
- [12] Cormier D, Unnanon K, Sanii E. Specifying non-uniform cusp heights as a potential aid for adaptive slicing. Rapid Prototyping Journal, 2000, 6(3): 204-212
- [13] Pandey P M, Reddy N V, Dhande S G. Real time adaptive slicing for fused deposition modelling. International Journal of Machine Tools and Manufacture, 2003, 43(1): 61-71
- [14] Jamieson R, Hacker H. Direct slicing of CAD models for rapid prototyping. Rapid Prototyping Journal, 1995, 1(2): 4-12
- [15] Zhao Zhiwen, Laperrière Luc. Adaptive direct slicing of the solid model for rapid prototyping. International Journal of Production Research, 2000, 38(1): 69-83
- [16] Kulkarni P, Dutta D. An accurate slicing procedure for layered manufacturing. Computer-Aided Design, 1996, 28(9): 683-697
- [17] Hope R L, Jacobs P A, Roth R N. Rapid prototyping with sloping surfaces. Rapid Prototyping Journal, 1997, 3(1): 12-19
- [18] Hope R L, Roth R N, Jacobs P A. Adaptive slicing with sloping layer surfaces. Rapid Prototyping Journal, 1997, 3(3): 89-98
- [19] Mani K, Kulkarni P, Dutta D. Region-based adaptive slicing. Computer-Aided Design, 1999, 31(5): 317-333
- [20] Ma Weiyin, He Peiren. An adaptive slicing and selective hatching strategy for layered manufacturing. Journal of Materials Processing Technology, 1999, 89(3): 191-197
- [21] Lee K H, Choi K. Generating optimal slice data for layered manufacturing. The International Journal of Advanced Manufacturing Technology, 2000, 16(4): 277-284

- [22] Rajan V T, Srinivasan V, Tarabanis K A. The optimal zigzag direction for filling a two-dimensional region. Rapid Prototyping Journal, 2001, 7(5): 231-241
- [23] Asiabanpour B, Khoshnevis B. Machine path generation for the SIS process. Robotics and Computer-Integrated Manufacturing, 2004, 20(3): 167-175
- [24] Tarabanis K A. Path planning in the proteus rapid prototyping system. Rapid Prototyping Journal, 2001, 7(5): 241-252
- [25] Yang Y, Loh H T, Fuh J Y H, Wang Y G. Equidistant path generation for improving scanning efficiency in layered manufacturing. Rapid Prototyping Journal, 2002, 8(1): 30-37
- [26] Yang Jia, Bin H, Zhang X, Liu Z. Fractal scanning path generation and control system for selective laser sintering (SLS). International Journal of Machine Tools and Manufacture, 2003, 43(3): 293-300
- [27] Chiu W K, Yeung Y C, Yu K M. Toolpath generation for layer manufacturing of fractal objects. Rapid Prototyping Journal, 2006, 12(4): 214-221
- [28] Onuh S O, Hon K K B. Application of the Taguchi method and new hatch styles for quality improvement in stereolithography. Journal of Engineering Manufacture, 1998, 212(6): 461-472
- [29] Kim Deok-Soo. Polygon offsetting using a Voronoi diagram and two stacks. Computer-Aided Design, 1998, 30 (14): 1069-1076
- [30] Chen Jian-Hong, Ma Peng-Ju, Tian Jie-Mo, et al. Scanning path algorithm for rapid protyping based on Voronoi diagrams. Mechanical Science and Technology, 2003, 22(5): 728-731(in Chinese)
  (陈剑虹,马鹏举,田杰谟等. 基于 Voronoi 图的快速成型扫 描路径生成算法研究. 机械科学与技术, 2003, 22(5): 728-

731)

- [31] Luo Linjie, Baran I, Rusinkiewicz S, Matusik W. Chopper: Partitioning models into 3D-printable parts. ACM Transactions on Graphics, 2012, 31(6): 129:1-129:10
- [32] Hao Jingbin, Fang Liang, Williams R E. An efficient curvaturebased partitioning of large-scale STL models. Rapid Prototyping Journal, 2011, 17(2): 116-127
- [33] Chen D, Sitthi-amorn P, Lan J T, Matusik W. Computing and fabricating multiplanar models. Computer Graphics Forum, 2013, 32(2pt3): 305-315
- [34] Prévost R, Whiting E, Lefebvre S, Sorkine-Hornung O. Make it stand: Balancing shapes for 3D fabrication. ACM Transactions on Graphics, 2013, 32(4): 81:1-81:10
- [35] Wang Weiming, Wang Tuanfeng Y, Yang Zhouwang, et al. Cost-effective printing of 3D objects with skin-frame structures. ACM Transactions on Graphics, 2013, 32(6): 177:1-177:10
- [36] Stava O, Vanek J, Benes B, et al. Stress relief: Improving structural strength of 3D printable objects. ACM Transactions on Graphics, 2012, 31(4): 48:1-48:11

- [37] Zhou Qingnan, Panetta J, Zorin D. Worst-case structural analysis. ACM Transactions on Graphics, 2013, 32(4): 137:1-137:12
- [38] Telea A, Jalba A. Voxel-based assessment of printability of 3D shapes//Proceedings of the 10th International Conference on Mathematical Morphology and Its Applications to Image and Signal Processing. Verbania-Intra, Italy, 2011: 393-404
- [39] Umetani N, Schmidt R. Cross-sectional structural analysis for 3D printing optimization//Proceedings of the SIGGRAPH Asia Technical Briefs. New York, USA, 2013; 5:1-5:4
- [40] Chen D, Levin D I W, Didyk P, et al. Spec2Fab: A reducertuner model for translating specifications to 3D prints. ACM Transactions on Graphics, 2013, 32(4): 135:1-135:10
- [41] Hašan M, Fuchs M, Matusik W, et al. Physical reproduction of materials with specified subsurface scattering. ACM Transactions on Graphics, 2010, 29(4); 61:1-61:10
- [42] Dong Yue, Lin S, Guo Baining. Fabricating spatially-varying subsurface scattering. ACM Transactions on Graphics, 2010, 29(4): 153:1-153:10
- [43] Papas M, Regg C, Jarosz W, et al. Fabricating translucent materials using continuous pigment mixtures. ACM Transactions on Graphics, 2013, 32(4): 146:1-146:12
- [44] Matusik W, Ajdin B, Gu Jinwei, et al. Printing spatiallyvarying reflectance. ACM Transactions on Graphics, 2009, 28(5): 128:1-128:10
- [45] Weyrich T, Peers P, Matusik W, Rusinkiewicz S. Fabricating microgeometry for custom surface reflectance. ACM Transactions on Graphics, 2009, 28(3): 32:1-32:6
- [46] Dong Yue, Tong Xin, Pellacini F, Guo Baining. Printing spatially-varying reflectance for reproducing HDR images. ACM Transactions on Graphics, 2012, 31(4): 40:1-40:8
- [47] Malzbender T, Samadani R, Scher S, et al. Printing reflectance functions. ACM Transactions on Graphics, 2012, 31(3): 20:1-20:11
- [48] Lan Yanxiang, Dong Yue, Pellacini F, Tong Xin. Bi-scale appearance fabrication. ACM Transactions on Graphics, 2013, 32(4): 145:1-145:12
- [49] Levin A, Glasner D, Xiong Ying, et al. Fabricating BRDFs at high spatial resolution using wave optics. ACM Transactions on Graphics, 2013, 32(4): 144:1-144:13
- [50] Bickel B, Bächer M, Otaduy M A, et al. Design and fabrication of materials with desired deformation behavior. ACM Transactions on Graphics, 2010, 29(4); 63:1-63:10
- [51] Vidimče K, Wang Szu-Po, Ragan-Kelley J, Matusik W. OpenFab: A programmable pipeline for multi-material fabrication. ACM Transactions on Graphics, 2013, 32(4): 136:1-136:11
- [52] Han C, Sun Bo, Ramamoorthi R, Grinspun E. Frequency domain normal map filtering. ACM Transactions on Graphics, 2007, 26(3): 28:1-28:12
- [53] Colbert M, Pattanaik S, Krivanek J. BRDF-Shop: Creating physically correct bidirectional reflectance distribution functions. Computer Graphics and Applications, 2006, 26(1): 30-36

- [54] Xin Shiqing, Lai Chifu, Fu Chiwing, et al. Making burr puzzles from 3D models. ACM Transactions on Graphics, 2011, 30(4): 97:1-97:8
- [55] Song Peng, Fu Chiwing, Cohen-Or D. Recursive interlocking puzzles. ACM Transactions on Graphics, 2012, 31(6): 128: 1-128:10
- [56] Schwartzburg Y, Pauly M. Fabrication-aware design with intersecting planar pieces. Computer Graphics Forum, 2013, 32(2pt3): 317-326
- [57] Zhu Lifeng, Xu Weiwei, Snyder J, et al. Motion-guided mechanical toy modeling. ACM Transactions on Graphics, 2012, 31(6): 127:1-127:10
- [58] Coros S, Thomaszewski B, Noris G, et al. Computational design of mechanical characters. ACM Transactions on Graphics, 2013, 32(4): 83:1-83:12
- [59] Ceylan D, Li W, Mitra N J, et al. Designing and fabricating mechanical automata from mocap sequences. ACM Transactions on Graphics, 2013, 32(6): 186:1-186:11
- [60] Calì J, Calian D A, Amati C, et al. 3D-printing of nonassembly, articulated models. ACM Transactions on Graphics, 2012, 31(6): 130:1-130:8
- [61] Bächer M, Bickel B, James D L, Pfister H. Fabricating articulated characters from skinned meshes. ACM Transactions on Graphics, 2012, 31(4): 47:1-47:9
- [62] Su Xubin, Yang Yongqiang, Wang Di, Chen Yonghua. Digital assembly and direct fabrication of mechanism based on selective laser melting. Rapid Prototyping Journal, 2013, 19(3): 166-172
- [63] Chen Yonghua, Chen Zhezheng. Joint analysis in rapid fabrication of non-assembly mechanisms. Rapid Prototyping Journal, 2011, 17(6): 408-417
- [64] Panozzo D, Block P, Sorkine-Hornung O. Designing unreinforced masonry models. ACM Transactions on Graphics, 2013, 32(4): 91:1-91:12
- [65] Block P, Ochsendorf J. Thrust network analysis: A new methodology for three-dimensional equilibrium. Journal of the International Association for Shell and Spatial Structures, 2007, 155(3): 167-174
- [66] De Goes F, Alliez P, Owhadi H, Desbrun M. On the equilibrium of simplicial masonry structures. ACM Transactions on Graphics, 2013, 32(4): 93:1-93:10
- [67] Liu Yang, Pan Hao, Snyder J, et al. Computing selfsupporting surfaces by regular triangulation. ACM Transactions on Graphics, 2013, 32(4): 92:1-92:10
- [68] Vouga E, Höbinger M, Wallner J, Pottmann H. Design of self-supporting surfaces. ACM Transactions on Graphics, 2012, 31(4): 87:1-87:11
- [69] Song Peng, Fu Chiwing, Goswami P, et al. Reciprocal frame structures made easy. ACM Transactions on Graphics, 2013, 32(4): 94:1-94:10
- [70] Willis K D D, Wilson A D. InfraStructs: Fabricating information inside physical objects for imaging in the terahertz region. ACM Transactions on Graphics, 2013, 32(4): 138:1-138:10

1267

- [71] Holroyd M, Baran I, Lawrence J, Matusik W. Computing and fabricating multilayer models. ACM Transactions on Graphics, 2011, 30(6): 187:1-187:8
- [72] Chris A. Xiao Xiao Translator. Makers: The New Industrial Eevolution. Beijing: China Citic Press, 2012(in Chinese)
   ((美)克里斯・安德森. 萧潇泽. 创客: 新工业革命. 北京: 中信出版社, 2012)
- [73] Chen Tao, Zhu Zhe, Shamir A, et al. 3-sweep: Extracting editable objects from a single photo. ACM Transactions on Graphics, 2013, 32(6): 195:1-195:10
- [74] Wang Michael Yu, Wang Xiaoming, Guo Dongming. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227-246



LIU Li-Gang, born in 1975, Ph. D., professor. His main research interests include computer graphics, geometry processing, and image processing, etc.

#### Background

3D printing has been one of the hottest topics in the field of science and technology, which finds many applications in every aspects of our life, including architecture, construction, industrial design, automotive, aerospace, military, engineering, civil engineering, dental and medical industries, biotech (human tissue replacement), fashion, footwear, jewelry, eyewear, education, geographic information systems, food, and etc. 3D printing is a process of making a three-dimensional solid object of virtually any shape from a digital model. It is achieved by an additive process, where successive layers of material are laid down in different shapes. 3D printing is also considered distinct from traditional machining techniques, which mostly rely on the removal of material by methods such as cutting or drilling (subtractive processes).

From the beginning of the 1980s, it has been gradually developed during also known as Rapid Prototyping, Layered Manufacturing and so on. It is expected that the development of 3D printing technology will lead the third industrial revolution which will counter globalization, as end users will do much of their own manufacturing rather than engage in trade

- [75] Xing Xianghua, Wei Peng, Wang Michael Yu. A finite element-based level set method for structural optimization. International Journal for Numerical Methods in Engineering, 2010, 82(7): 805-842
- [76] Luo Junzhao, Luo Zhen, Chen Liping, et al. A semi-implicit level set method for structural shape and topology optimization. Journal of Computational Physics, 2008, 227 (11): 5561-5581
- [77] Allaire G, Jouve F, Toader A-M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363-393
- [78] Allaire G, De G F, Jouve F, Toader A. Structural optimization using topological and shape sensitivity via a level set method. Control and Cybernetics, 2005, 34(1): 59-80

**XU Wen-Peng**, born in 1976, Ph. D. candidate. His main research interest is computer graphics.

WANG Wei-Ming, born in 1986, Ph. D. candidate. His main research interest is computer graphics.

**YANG Zhou-Wang**, born in 1974, Ph. D., associate professor. His main research interests include computational geometry, optimization theory and algorithms.

**LIU Xiu-Ping**, born in 1964, Ph. D., professor. Her main research interests is digital geometry processing.

to buy products from other people and corporations.

There are many efforts which have been devoted to this area and gain a number of achievements in the world. We expect to summarize these research efforts and achievements in order to help researchers understand the key technologies and keep up with the main trends in these research areas.

The work is supported jointly by the National Basic Research Program (973 Program) of China (No. 2011CB302400), the National Science Fund for Excellent Young Scholars (No. 61222206), the National Natural Science Foundation of China (Nos. 11031007, 11171322, 61173102 and 61005033), Key Program of National Natural Science Foundation of China (No. U0935004), One Hundred Talent Project of the Chinese Academy of Sciences, the 111 Project (No. b07033) and Program for New Century Excellent Talents in University (No. NCET-11-0881). These projects aim to provide better methods of geometry processing in 3D printing. Our group has been working on this research and has published a series of papers in various international journals and conferences, including SIGGRAPH and ACM Transactions on Graphics.