基于多重门限机制的异步深度强化学习

徐进 1) 刘全 1),2),3)+ 章宗长 1),2) 梁斌 1) 周倩 1)

¹⁾(苏州大学计算机科学与技术学院 江苏 苏州 215006)
 ²⁾(软件新技术与产业化协同创新中心 南京 210000)
 ³⁾(吉林大学符号计算与知识工程教育部重点实验室 长春 130012)

摘 要 近年来,深度强化学习已经成为人工智能领域一个新的研究热点。深度强化学习在如 Atari 2600 游戏等高维度大状态空间任务中取得了令人瞩目的成功,但仍存在训练时间太长等问题。虽然异步深度强化学习填过利用多线程技术大幅度减少了深度强化学习模型所需的训练时间,但是,基于循环神经网络的异步深度强化学习算法依然需要大量训练时间,原因在于具有记忆能力的循环神经网络无法利用并行化计算加速模型训练过程。为了加速异步深度强化学习模型的训练过程,并且使得网络模型具有记忆能力,本文提出了一种基于多重门限机制的异步优势行动者-评论家算法。该模型主要有三个特点: 一是通过使用多重门限机制使前馈神经网络具有记忆能力,使 Agent 能够通过记忆不同时间步的状态信息做出更优的决策; 二是通过利用并行计算进一步加速 Agent 的训练过程,减少模型所需的训练时间;三是通过采用一种新的跳跃连接方式实现 数据向更深的网络层传递,增强模型识别状态特征的能力,从而提升深度强化学习算法的稳定性和学习效果。本文通过 Atari 2600 游戏平台上的部分战略型游戏以及稀疏奖赏环境型游戏来评估新模型的性能。实验结果表明,与传统的异步深度强化 学习算法相比,新模型能够以较少的时间代价来获得更优的学习效果。

关键词 深度学习;强化学习;异步深度强化学习;循环神经网络;多重门限机制;跳跃连接 中图法分类号 TP18

Asynchronous Deep Reinforcement Learning with Multiple Gating Mechanisms

XU Jin¹⁾ LIU Quan^{1),2),3)} ZHANG Zong-Zhang^{1),2)} LIANG Bin¹⁾ ZHOU Qian¹⁾

¹⁾(School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu, 215006)

²⁾(Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, 210000)

³⁾(Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012)

Abstract In recent years, deep reinforcement learning (RL), a combination of reinforcement learning and deep learning, has become a new research hotspot in the artificial intelligence community. Deep RL algorithms have achieved unprecedented success in high-dimensional and large-scale space tasks such as Atari 2600, but there are still issues such as the duration of training model parameters too long. Even in the case of the graphics processing unit (GPU) acceleration, deep Q-network, double deep Q-network, deep recurrent Q-network and other deep RL algorithms based on experience replay still need to train ten days or even more. DeepMind's researchers use

本课题得到国家自然科学基金项目(61272055, 61303108, 61373094, 61472262, 61502323, 61502329, 61772355)、江苏省自然科学基金(BK2012616)、 江苏省高校自然科学研究项目(13KJB520020, 16KJB520041)、吉林大学符号计算与知识工程教育部重点实验室基金项目(93K172014K04, 93K172017K18)、苏州市应用基础研究计划工业部分(SYG201422, SYG201308)资助. 徐进, 男, 1992 年生, 硕士研究生, 主要研究方向为深度强 化学习. E-mail: 20154227016@stu.suda.edu.cn. 刘全(通讯作者), 男, 1969 年生, 博士, 教授, 博士生导师, 中国计算机学会高级会员, 主要研究 领域为智能信息助理、自动推理和机器学习. E-mail: quanliu@suda.edu.cn. 章宗长, 男, 1985 年生, 博士, 副教授, 中国计算机学会会员, 主要研究领域 为部分可观测的马尔科夫决策过程、强化学习和多智能体系统. E-mail: zzzhang@suda.edu.cn. 梁斌, 男, 1993 年生, 硕士研究生, 主要研究方向为情 感分析、自然语言处理和深度学习. E-mail: bliang@stu.suda.edu.cn. 周倩, 女, 1992 年生, 硕士研究生, 主要研究方向为强化学习. E-mail: 20154227029@stu.suda.edu.cn.

asynchronous methods to replace deep RL's experience replay, accelerating deep RL models training greatly. Asynchronous deep reinforcement learning (ADRL) algorithms can take a few hours or a few days to achieve better learning effect on a single machine with a standard multi-core central processing unit by using multi-threading techniques and are not necessary for the GPU. Although ADRL significantly reduces the training time required for deep RL models by using multi-threading techniques, the ADRL algorithms based on recurrent neural network (RNN) require lots of training time vet. It is due to RNN is unable to accelerate model training process with parallel computation. The calculation of the current time step of RNN depends on the output of the previous time step, so given a set of sequentially generated input sequences, the RNN can only compute each input sequentially, and is incapable to be calculated by parallel computation. In order to accelerate the training process of ADRL models and make deep neural networks with the ability of memory, we propose the asynchronous advantage actor-critic algorithm with multiple gating mechanisms (A3C-MGM). There are three main characteristics in the algorithm: First, similar to long short-term memory, the gates of the multiple gating mechanisms control the information passed in the hierarchy; feedforward neural networks have the ability of memory by using multiple gating mechanisms, which allows the agent to make better decision by memorizing the state information of different time steps. Second, the calculation of the current time step of A3C-MGM does not depend on the output of the previous time step, and A3C-MGM is able to accelerate the training process of the agent via parallel computation, further reducing the training time required for the model. Third, a new skip connection is utilized in our work in order to improve the stability and performance of the deep RL algorithm by passing data to deeper network layers. We evaluate the performance of the new algorithm through five challenging strategic games with sparse reward from the set of classic Atari 2600 games, i.e., Battle Zone, Tutankhum, Time Pilot, Space Invaders, and Pong. In order to further verify the performance of the deep RL algorithm, we also compare the other four Atari 2600 games. Experimental results show that the new algorithm can learn faster than traditional asynchronous deep reinforcement learning algorithms, and achieve better performance in terms of the average reward per episode especially on the Battle Zone, Tutankhum, Asterix, Chopper Command, Solaris, and Time Pilot games.

Keywords deep learning; reinforcement learning; asynchronous deep reinforcement learning; recurrent neural network; multiple gating mechanisms; skip connection

1 引言

深度强化学习(Deep Reinforcement Learning, DRL)结合了深度学习^[1](Deep Learning)和强化 学习^[2](Reinforcement Learning, RL),是人工智能 领域的一个新的研究热点。通过利用深度神经网络 对于高维状态空间的有效识别能力,能使得强化学 习算法在复杂状态任务中更加有效。目前强化学习 在仿真模拟、游戏博弈和工业控制等领域^[3-5]取得了 显著的成果,但是在复杂的高维状态空间任务中, 传统的强化学习算法的表现并不好且数据需要经 过复杂的人工预处理。为了解决强化学习在高维度 状态空间任务中需要复杂的人工预处理问题,Mnih 等人^[6-7]首次把深度神经网络中的卷积神经网络 (Convolutional Neural Network, CNN)与强化学习 中的Q学习算法^[8]相结合,提出了一种深度Q网络 模型(Deep Q-Network, DQN)。DQN 模型在Atari 2600 平台的大部分游戏中均表现出超越了人类玩 家的水平,然而其在学习过程中容易出现过度乐观 估计动作值的问题。针对此问题,Van Hasselt等人 ^[9]结合了双重Q学习(Double Q-Learning)算法, 提出了一种双重深度Q网络模型(Double Deep Q-Network, DDQN)。DDQN 模型在计算回报值时, 其动作值计算和动作选择使用的网络模型参数是 两套不同的网络参数。通过这种方式计算损失, DDQN 成功地缓解了DQN 容易出现过度乐观估计 动作值的问题。DQN 和 DDQN 模型都引入了经验 重放机制,通过把历史样本存放到经验重放缓冲 池,在模型训练过程中以等概率采样方式从经验重 放缓冲池中选择一组小批量(mini-batch)的样本来 计算损失并利用梯度下降方法更新模型参数。由于 不同训练样本的重要程度是不一样的,而 DQN 和 DDQN 采用的是等概率方式采样,所以 DQN 和 DDQN 无法有效利用对于模型训练更有用的样本。 针对此问题,Schaul等人^[10]提出了一种基于优先级 重放采样的深度强化学习(Deep Reinforcement Learning with Prioritized Experience Replay)算法。 其思想是利用立即奖赏、时间差分(Temporal Difference,TD)等信息作为经验重放缓冲池中的样 本优先级评判标准,为不同的样本赋予相应的优先 级,优先级高的样本对应高的采样概率,以非等概 率方式随机采样经验重放缓冲池中的样本。DQN、 DDQN 等 DRL 算法均可通过优先级采样方式提升 模型训练效果。

虽然上述基于 CNN 的深度强化学习算法在 Atari 2600 平台的大部分游戏中都取得了超越人类 玩家水平的成绩,但是由于任务状态信息在 CNN 中仅仅是简单的前向流通, CNN 无法记忆不同状态 之间的依赖性信息,所以这类算法在战略性任务中 (任务状态在不同的时间尺度存在依赖性)的表现 都比较差。Hochreiter 和 Schmidhuber^[11]提出的长短 期记忆(Long Short-Term Memory, LSTM)网络和 cho 等人^[12]提出的门限循环神经网络(Gated Recurrent Unit, GRU),能成功地解决战略性任务中 任务状态在不同时间尺度的依赖性问题。LSTM 和 GRU 网络都是通过不同的门来控制信息的流通,从 而达到记忆不同时间尺度信息的效果。Narasimhan 等人^[13]基于 LSTM 提出的深度循环 Q 网络(Deep Recurrent Q-Network, DRQN) 在一类文本游戏上表 现良好, Hausknecht 等人^[14]针对部分可观测马尔科 夫决策过程(Partially Observable MDPs, POMDPs) 问题,提出了一种深度循环 Q 学习算法,并且在 Atari 2600 游戏中取得了良好的效果。由于 LSTM 网络的计算与上一个时间步记忆细胞的输出信息 和上一个时间步输出门的输出信息均有关,GRU网 络的计算与上一个时间步输出门的输出信息有关; 因此只有获得这些输出信息,才能通过网络模型计 算当前状态。因此 DRQN 无法通过并行化计算加速 模型训练,这使得 DRQN 模型的训练时间相当长。

虽然 DQN、DDQN、DRQN 等基于经验重放机制的 DRL 算法在一些高维度状态空间任务中取得了巨大的成功,如 Atari 2600 游戏等。但是经验重放机制存在一些固有的局限性:

(1)使用经验重放机制的前提是需要大量的 存储空间来存储训练样本,使得这类 DRL 算法对 于存储空间的需求显著增加。

(2) 经验重放机制要求智能体(Agent)在与 环境的每一次交互后都需要通过重放一定批量的 训练样本来计算损失并且更新网络模型参数,这导 致计算量非常大,对于硬件要求很高,需要利用专 门的硬件加速,如图形处理器(Graphics Processing Unit, GPU)。

(3) 经验重放机制还必须使用异策略 (Off-Policy)的RL算法,如Q学习算法;且不能 使用同策略(On-Policy)的RL算法。因此,同策 略算法无法利用经验重放机制的优势来提升 Agent 的学习效果,如 Sarsa 算法^[15-16]。

由于这些问题是经验重放机制固有的问题,所 以无法通过改进经验重放机制来解决。针对此问 题, Mnih 等人^[17]把异步方法与深度强化学习相结 合,提出了异步深度强化学习(Asynchronous Deep Reinforcement Learning, ADRL)。ADRL 通过使用 异步方法来替代传统的经验重放机制, 使得 DRL 算法不再需要存储大量的训练样本,节省了存储资 源的开销。Agent 并不是在每一次与环境交互后都 更新网络模型的参数,而是在与环境多次交互之后 计算累积损失,并利用梯度下降方法更新参数,降 低了 DRL 算法的计算代价。传统的 DRL 算法由于 其计算量巨大,严重依赖于 GPU 硬件。而 ADRL 算法对于 GPU 不是必须的,可以在一个多核心的 CPU (Central Processing Unit) 设备上利用多线程 技术加速 DRL 模型的训练。与传统的 DRL 算法相 比, ADRL 算法可以在一个较短的时间内获得更好 的训练效果。

基于卷积神经网络的异步深度强化学习 (Asynchronous Deep Reinforcement Learning with Convolutional Neural Network, ADRL-CNN)算法可 以通过利用多线程技术加速模型训练,大幅度减少 模型的训练时间。ADRL-CNN 的相关实验表明,其 在 Atari 2600 的部分游戏中有不错的性能表现,但 是和 DQN、DDQN 等前馈 DRL 算法一样, ADRL-CNN 在战略性任务上的表现并不好。针对此 问题, Mnih 等人^[17]结合 LSTM 网络和 GRU 网络, 提出了一种异步深度循环强化学习(Asynchronous Deep Recurrent Reinforcement Learning, ADRRL)算 法, ADRRL 算法通过利用 LSTM 网络或者 GRU 网 络的各种门单元来记忆战略性任务中不同时间尺 度的状态信息之间的依赖性,成功地解决了 ADRL-CNN 算法在战略性任务中由于无法记忆不同时间尺度的状态信息之间的依赖性而导致的学 习效果差的问题,进一步提高了 Agent 在战略性任 务上的性能表现。虽然利用循环神经网络可以提升 Agent 在战略性任务中的性能表现,但是由于 LSTM 网络和 GRU 网络当前时间步的计算依赖于上一个 时间步所获得的计算结果,ADRRL 算法无法通过 并行化计算来进一步加速模型的训练过程。因此, ADRRL 算法是以更多的时间代价来获得更好的训 练效果。

虽然使用异步方法的 DRL 算法可以利用多线 程技术大大加速模型的训练过程,但是对于像使用 了循环神经网络的 ADRL 算法,依然需要大量的训 练时间。现代计算设备大多支持并行化计算,为了 充分利用这一硬件优势,使用并行化计算进一步加 速模型的训练过程,本文提出了一种基于多重门限 机制的异步优势行动者-评论家算法 (Asynchronous Advantage Actor-Critic with Multiple Gating Mechanisms, A3C-MGM)。该算法的主要改进有:1、 在 ADRL 中使用多重门限机制替代循环神经网络, 多重门限机制不同时间步之间的计算不存在依赖 关系,可以使得模型在训练过程中利用现代计算设 备能够并行化计算这一优势,进一步加速模型的训 练过程: 2、多重门限机制通过门单元来记忆不同 时间尺度的状态信息之间的依赖性, 使得模型的训 练效果比使用卷积神经网络和循环神经网络的 ADRL 算法更好。此外,本文还在 A3C-MGM 算法 模型的基础上提出了一种新的跳跃连接方式, 通过 跳跃连接使得数据向更深的网络层传递,从而让网 络模型更加有效地识别状态的特征,进一步提升算 法的稳定性。实验结果表明,在 Atari 2600 游戏中, 由于A3C-MGM 算法比基于循环神经网络的 ADRL 算法模型结构更加简单,训练速度得到了大幅度提 升; A3C-MGM 算法有效提升了 Agent 的性能表现; 并且在采用跳跃连接后,进一步提升了基于多重门 限机制算法模型的训练效果和稳定性。

2 相关工作

2.1 强化学习

强化学习是一种交互式学习,Agent 与环境直 接进行交互,利用环境的反馈信息进行自我学习。 强化学习问题可以利用马尔科夫决策过程(Markov Decision Process, MDP)来进行建模。MDP问题可 以定义为一个四元组 (S, A, ρ, f) 。

(1) S 表示环境的状态空间的集合, $s_t \in S$ 表示在时间步t, Agent 所处的状态。

(2) A 表示动作空间集合, $a_t \in A$ 表示在时间 步t, Agent 所选择的动作。

(3) ρ : *S*×*A*→□ 表示奖赏函数, $r(s_t, a_t)$ 表示在时间步*t*, Agent 在状态 s_t 下根据给定的策略采取动作 a_t 所获得的立即奖赏。

(4) $f: S \times A \times S \rightarrow [0,1]$ 表示状态转移函数, $f(s_t, a_t, s_{t+1})$ 表示 Agent 在状态 s_t 根据给定的策略采 取动作 a_t 时转移到状态 s_{t+1} 的概率。

标准的强化学习设定是:通过给定离散时间步 *t*, Agent 在状态 *s_i* 根据一个给定的策略 π 选择动作 *a_i*, 获得从时间步 *t* 开始的累积折扣的未来奖赏, 即 在 状 态 *s_i*, Agent 所 获 得 的 期 望 回 报 *R_i* = $\sum_{i=0}^{\infty} \gamma^{i} r_{t+i}$,其中 $\gamma \in [0,1]$ 表示折扣因子。Agent 的最终目标是最大化在状态 *s_i* 所获得的期望回报 *R_i*, 即获取一个最优的策略。定义状态-动作对的 值 *Q^{*}*(*s_i*, *a_i*)为 Agent 在状态 *s_i* 根据给定的策略 π 选 择动作 *a_i* 所获得的期望回报。相应的计算公式如式 (1) 所示:

$$Q^{\pi}(s,a) = \mathbf{E}[R_t \mid s_t = s, a_t = a]$$
(1)

值 $V^{\pi}(s_i)$ 是 Agent 在状态 s_i 根据给定的策略 π 所获得的期望回报,其计算公式如式(2)所示:

$$V^{\pi}(s) = \mathbb{E}[R_t \mid s_t = s]$$
⁽²⁾

最优的Q值是对于给定的状态s和动作a,策略 π 可以获得最大的Q值,如式(3)所示:

$$Q^*(s,a) = \max Q^{\pi}(s,a) \tag{3}$$

对于大规模状态空间,通过学习一个参数化的 状态-动作对的值函数 *Q*(*s*,*a*;*θ*) 来训练 Agent,其中 *θ* 为状态-动作对的值函数的参数。

强化学习方法可以分为基于模型的强化学习 方法和模型无关的强化学习方法。模型无关的强化 学习方法又可以分为动作值拟合方法和策略梯度 方法。动作值拟合方法有异策略的Q学习算法、同 策略的Sarsa算法等;策略梯度方法直接通过在策 略梯度的方向上更新参数来改进策略^[18-20],主要有 行动者-评论家^[21](Actor-Critic, AC)算法等。

AC 算法通过一个独立的存储结构来表明策略

与值函数是独立的,算法结构图如图 1 所示。AC 算法分为两个部分:

(1)行动者部分,即策略,用来在当前状态 根据策略 π 采取一个动作,使环境迁移到下一个状态;

(2) 评论家部分,即值函数,评论家部分采 用 TD 误差来评论当前行动者所采取的动作的好 坏。

TD 误差表示为当前状态的 1 步回报或者 *n*步 回报与当前状态的值函数之间的差值, TD 误差如 式(4) 所示:

$$\delta_{t} = \sum_{i=0}^{n-1} \gamma^{i} r_{t+i} + \gamma^{n} V(s_{t+n}) - V(s_{t})$$
(4)

其中 δ_i 表示 TD 误差, n=1时表示的是1步回报, n=k时表示的是k步回报, r_{t+i} 表示在状态 s_{t+i} 根据 策略 π 采取动作 a_{t+i} 所获得的立即奖赏, $V(S_i)$ 表示 在状态 s_i 的期望回报值。通过 TD 误差来评估当前 正被选择的动作 a_i 的好与坏。如果 TD 误差为正, 则表明未来选择动作 a_i 的趋势应该加强;如果 TD 误差为负,则表明未来选择动作 a_i 的趋势应该减弱。

AC 算法有两个优点: 1、它是一种策略梯度算法,策略是明确的,当动作空间是连续的情况时,在选择动作时不需要为每一次的动作选择在无穷的动作空间中做大量的计算; 2、它通过对策略的直接更新,使 Agent 能够学习到一个确定的随机策略。

2.2 优势行动者-评论家网络

行动者-评论家网络通过把深度神经网络与AC 算法相结合,使得传统的AC算法能够在大规模任 务状态空间和高维度任务状态空间中更加有效。结

合了深度神经网络的 AC 算法不需要对原始数据进 行复杂的预处理,能够使得算法实现端到端^[22] (end-to-end)的学习。行动者-评论家网络主要有 两个部分:一是值网络部分,即 $V(s; \theta_{1})$,其中 θ_{2} 表 示 值 网 络 的 参 数 。 二 是 策 略 网 络 部 分 , 即 $\pi(a \mid s \theta$,其中 θ 表示策略网络的参数。策略网 络用来计算在给定状态 s, 所采取的动作 a, , 值网络 用来评价在给定状态 s. 时策略网络所采取的动作 a. 的好与坏。深度 AC 算法在更新策略网络参数时 对于每一个状态-动作对都采用相同的权重1,即平 等地对待每一个状态动作对。然而状态-动作对之间 的重要性是不同的,有的状态-动作对可以获得高的 回报值,而有的状态-动作对获得的回报值相对较 低,故而平等地对待这些状态-动作对忽略了他们之 间所获得的回报不同这一事实。为了充分利用这一 有效信息,在深度 AC 算法中引入一个优势函数, 用来评价当前状态-动作对的优势, 表示为 $A(s, q \theta, \theta)$, 称为优势行动者-评论家算法。优势 函数的计算公式如式(5)所示:

$$A(s_{t}, a_{t}; \boldsymbol{\theta}, \boldsymbol{\theta}_{v}) = \sum_{i=0}^{n-1} \gamma^{i} r_{t+i} + \gamma^{n} V(s_{t+n}; \boldsymbol{\theta}_{v}) - V(s_{t}; \boldsymbol{\theta}_{v})$$
(5)

其中当n=1时表示的是1步回报优势函数,当n=k时表示的是k步回报优势函数, $\gamma \in [0,1]$ 表示折扣因子,r表示立即奖赏。优势行动者-评论家算法的策略函数和值函数的梯度计算如式(6)和式(7)所示:

$$d\boldsymbol{\theta} = \nabla_{\boldsymbol{\theta}} \log \pi(a_t \mid s_t; \boldsymbol{\theta}) A(s_t, a_t; \boldsymbol{\theta}, \boldsymbol{\theta}_v)$$
(6)

$$d\theta_{v} = \partial (R - V(s_{r}; \theta_{v}))^{2} / \partial \theta_{v}$$
⁽⁷⁾

其中 R 表示在状态 s_i 根据策略 π 采取动作 a_i 所获 得的回报值, θ 、 θ_i 分别表示策略函数和值函数的 参数。策略函数和值函数参数通过随机梯度下降方 法来进行更新,如式(8)和式(9)所示:

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta d\boldsymbol{\theta} \tag{8}$$

$$\boldsymbol{\theta}_{v} = \boldsymbol{\theta}_{v} - \eta d\boldsymbol{\theta}_{v} \tag{9}$$

其中 η 表示学习率, $d\theta$ 、 $d\theta_{y}$ 计算方式如式(6) 和式(7)所示。

2.3 门限机制

循环神经网络相比于卷积神经网络,能够处理 序列状态之间在不同时间尺度存在依赖关系的任 务,是由于循环神经网络中的循环连接允许网络每 一层访问先前的状态信息。LSTM 网络是应用门限 机制最为成功的神经网络之一^[23-24]。LSTM 网络通 过输入门、输出门、遗忘门以及记忆单元来控制信 息在网络中的流通以达到记忆以前任务状态信息 的目的。LSTM 单元的遗忘门的计算方式如式(10) 所示:

$$\boldsymbol{f}_{t}^{j} = \boldsymbol{\sigma} (\boldsymbol{W}_{f} \boldsymbol{x}_{t} + \boldsymbol{U}_{f} \boldsymbol{h}_{t-1} + \boldsymbol{V}_{f} \boldsymbol{c}_{t-1})^{j}$$
(10)

其中 *j*表示第 *j*个 LSTM 单元, σ 表示 sigmoid 非 线性函数, f_i^j 表示 *t* 时间步第 *j* 个 LSTM 单元的遗 忘门的输出, $W_f \ U_f \ V_f$ 表示的是 LSTM 单元 遗忘门的参数, x_i 表示 *t* 时间步的输入数据, h_{i-1} 表 示 *t*-1时间步 LSTM 单元的输出值, c_{i-1} 表示 *t*-1时 间步 LSTM 单元的记忆单元的输出值。输入门的计 算公式如式 (11) 所示:

$$\boldsymbol{i}_{t}^{j} = \boldsymbol{\sigma}(\boldsymbol{W}_{i}\boldsymbol{x}_{t} + \boldsymbol{U}_{i}\boldsymbol{h}_{t-1} + \boldsymbol{V}_{i}\boldsymbol{c}_{t-1})^{j}$$
(11)

其中 i_i^j 表示t时间步第j个 LSTM 单元的输入门的输出, W_i 、 U_i 、 V_i 表示 LSTM 单元输入门的参数。新的记忆上下文计算公式如式(12)所示:

$$\tilde{\boldsymbol{c}}_{t}^{j} = \tanh(\boldsymbol{W}_{c}\boldsymbol{x}_{t} + \boldsymbol{U}_{c}\boldsymbol{h}_{t-1})^{j}$$
(12)

其中 \tilde{c}_{t}^{j} 表示新的记忆上下文, W_{c} 、 U_{c} 表示记忆上下文的参数,tanh表示双曲正切非线性函数。根据输入门的输出 i_{t}^{j} 、遗忘门的输出 f_{t}^{j} 、记忆上下文 \tilde{c}_{t}^{j} 以及上一个时间步的记忆单元的内容 c_{t}^{j} 可以计算更新记忆单元的内容 c_{t}^{j} ,计算公式如式(13)所示:

$$\boldsymbol{c}_{t}^{j} = \boldsymbol{f}_{t}^{j} \boldsymbol{c}_{t-1}^{j} + \boldsymbol{i}_{t}^{j} \boldsymbol{\tilde{c}}_{t}^{j}$$
(13)

由 $x_t^j \sim h_{t-1}^j$ 和 c_t^j 可以得到 LSTM 单元的输出门的计 算公式如式 (14) 所示:

$$\boldsymbol{o}_{t}^{j} = \boldsymbol{\sigma} (\boldsymbol{W}_{o} \boldsymbol{x}_{t} + \boldsymbol{U}_{o} \boldsymbol{h}_{t-1} + \boldsymbol{V}_{o} \boldsymbol{c}_{t})^{j}$$
(14)

由式(13)和式(14)可以得出 LSTM 单元最终的 输出 **h**¹,计算公式如式(15)所示:

$$\boldsymbol{h}_{t}^{j} = \boldsymbol{o}_{t}^{j} \tanh(\boldsymbol{c}_{t}^{j}) \tag{15}$$

完整的 LSTM 单元计算过程图如图 2 所示。

3 基于多重门限机制的异步优势行动

者-评论家算法

本节将主要阐述多重门限机制和跳跃连接以 及 A3C-MGM 模型的具体构架和模型参数的训练 方法。其中,3.1 节介绍多重门限机制,3.2 节介绍 跳跃连接方式,3.3 节介绍 A3C-MGM 各网络部分 的构成以及处理数据的过程,3.4 节介绍 A3C-MGM 模型的参数更新方式。

3.1 多重门限机制

LSTM 网络通过复杂的门限机制来控制信息在 网络中的流通,并且当前时刻的 LSTM 单元的信息 会作为下一个时刻的 LSTM 单元的输入,允许访问 以前的状态信息,达到记忆状态信息的效果。虽然 LSTM 网络通过这样的门处理机制在状态之间存在 依赖关系的任务中可以获得比普通前馈网络更好 的效果,但其计算依赖于上一个时间步的输出,故 而其训练过程无法像前馈网络一样利用并行化计 算来加速训练。

现代计算设备大多支持并行化计算,为了充分 利用并行化计算技术加速深度神经网络的训练, Oord 等人^[25]依据 LSTM 网络的门限控制思想提出 了一种 LSTM 风格的前馈门限机制的神经网络,称 为门控 tanh 单元(Gated Tanh Unit, GTU)。计算公 式如式(16)所示:

$$h_{\mu}(\boldsymbol{X}) = \tanh(\boldsymbol{X} \ast \boldsymbol{W} + \boldsymbol{b}) \otimes \sigma(\boldsymbol{X} \ast \boldsymbol{V} + \boldsymbol{c})$$
(16)

其中 $W \in \square^{m \times n}$ 、 $b \in \square^n$ 、 $V \in \square^{m \times n}$ 、 $c \in \square^n$ 是网络参数; $X \in \square^{n \times m}$ 表示 h_i 的输入,是上一层的输出; σ 表示 sigmoid 非线性函数, tanh 表示双曲正切非 线性函数, \otimes 表示矩阵间对应元素相乘。GTU 的 计算不需要依赖于上一时间步网络的输出,可以通过并行化计算加速网络模型的训练过程。Dauphin 等人^[26]提出了一种称为门控线性单元(Gated Linear Unit, GLU)的门控机制,计算如式(17)所示:

$$h_{\mu}(\boldsymbol{X}) = (\boldsymbol{X} \ast \boldsymbol{W} + \boldsymbol{b}) \otimes \sigma(\boldsymbol{X} \ast \boldsymbol{V} + \boldsymbol{c})$$
(17)

其中各字符含义与式(16)中的字符含义相同。通 过这种门限线性单元,Facebook的研究人员 Dauphin 等人^[26]首次在神经机器翻译任务中证明了 非循环神经网络的性能胜过循环神经网络。

GLU 门控单元中使用了 sigmoid 函数作为门激 活函数,但是 sigmoid 函数把所有数据映射到一个 0到1之间的数值,使得激活后的数据都在0到1 之间, sigmoid 函数映射区域比较窄, 函数曲线变 化平缓,映射后的数据比较集中,使得数据差异变 小了。tanh 函数可以把输入数据映射到-1到1之间, 数据映射到了一个更宽的数据范围, 使得数据差异 更加明显;但是 tanh 函数的梯度容易达到饱和,即 梯度为 0。sigmoid 函数的梯度的非饱和区域要比 tanh 函数的梯度的非饱和区域宽很多,如图3所示。 为了利用并行化技术加速模型训练,并把 GTU 单 元和 GLU 单元的门限控制思想的优点相结合。本 文提出一种新的门控机制单元,利用多重门限机制 来控制信息在网络中的流通,达到记忆信息的效 果,称为多重门限机制(Multiple Gating Mechanisms, MGM)。计算公式如式(18)所示:

$$h_{l}(\boldsymbol{X}) = (\boldsymbol{X} * \boldsymbol{W} + \boldsymbol{b}) \otimes (\tanh(\boldsymbol{X} * \boldsymbol{V} + \boldsymbol{c}) + \sigma(\boldsymbol{X} * \boldsymbol{V} + \boldsymbol{c})) \quad (18)$$

其中各字符含义与式(16)中的字符含义相同。

上述门控机制的优缺点可通过对其计算公式 进行求梯度来进行分析,分别对式(16)、(17)和 (18)求导得到式(19)、(20)和(21),如下所 示:

 $\nabla [\tanh(X) \otimes \sigma(X)] = \tanh'(X) \nabla X \otimes \sigma(X) +$

$$\sigma'(X) \nabla X \otimes \tanh(X)$$
 (19)

 $\nabla [X \otimes \sigma(X)] = X \otimes \sigma'(X) \nabla X + \nabla X \otimes \sigma(X) \quad (20)$ $\nabla [X \otimes (\sigma(X) + \tanh(X))] =$

$$\nabla X \otimes (\sigma(X) + \tanh(X)) +$$

$$X \otimes (\sigma'(X) + \tanh'(X)) \nabla X$$
 (21)

其中 X 表示的是经过网络层处理但未被激活函数 激活的数据,含义与式(16)、(17)和(18)中的 含义不同。式(19)是 GTU 的梯度计算公式,由 于对于激活函数 $\sigma(X)$ 和 tanh(X)的梯度存在缩放

因子 $\sigma'(X)$ 和 tanh'(X),随着网络层数的堆叠,缩 放因子的影响将进一步放大,从而造成严重的梯度 消失问题。式(20)是 GLU 的梯度计算公式,第 二项对于梯度不存在缩放因子,故而梯度可以沿着 这条路径传播的更远,有效缓解了随着网络层数的 堆叠造成的梯度消失问题。式(21)是 MGM 的梯 度计算公式,第一项对于梯度不存在缩放因子,梯 度可以沿着这条路径传播的更远;并且 $(\sigma'(X) + \tanh'(X))$ 大于1的部分对于梯度具有放大 作用,可以缓解梯度在反向传播过程中被缩放的问 题; $(\sigma(X) + \tanh(X))$ 函数梯度的非饱和区域比 tanh 函数梯度的非饱和区域要宽很多; $\sigma(X)$ 把数 据映射到一个很窄的范围,并且 sigmoid 函数变化 平缓,数据间的差异容易被深度神经网络缩小,从 而导致对于数据的有效识别能力变差,而 (σ(X) + tanh(X)) 函数通过把数据映射到-1 到 2 之 间,映射的数据范围更宽,且函数曲线更陡峭,比 仅用 sigmoid 函数的门限机制更能获取正确的数 据。图3展示了各函数的数据和梯度变化曲线,从 中可以看出 MGM 函数保留了 sigmoid 函数和 tanh 函数的平滑性,并且增大了数据映射和梯度的范 围。

图 3 门限机制的函数曲线与梯度曲线

3.2 跳跃连接

残差网络[27]和高速通道网络[28]通过在不同的 网络层之间建立捷径连接,成功地扩展了网络的深 度。残差网络通过残差连接构建层与层之间的捷径 连接,使得深层神经网络(几十层,甚至几百层的 神经网络)可以被有效地训练。此外, 文献[29-32] 表明,对于大量的视觉任务而言,在 CNN 中通过 跳跃连接来利用多级特征是有效的。虽然基于多重 门限机制的异步优势行动者-评论家算法能够以相 对少的时间获得更好的性能,但是其稳定性表现得 并不好,本文第四部分展示了各模型实验结果。为 此,本文提出了一种新的跳跃连接方式。残差网络 主要通过残差连接使得网络的层数能够被设计的 更深(残差连接主要用于几十层甚至几百层的神经 网络),与残差网络不同的是,该跳跃连接方式主 要是通过特征重用来提升深度神经网络模型的稳 定性和训练效果。通过把状态数据向更深的网络层 传递,使得网络能够进一步探索状态的新特征,达 到更准确地识别当前状态信息的效果,做出更优的 决策,从而提升模型的训练效果和稳定性。令X,表 示第1层卷积神经网络的输入,Y,表示第1层的输 出,则该跳跃连接方式如式(22)和(23)所示:

$$X_{l} = concat(Y_{l-3}, Y_{l-1})$$

$$(22)$$

$$Y_{i} = function(X_{i})$$
(23)

其中 concat(A, B) 表示将 A 和 B 的数据沿着最后一个维度进行连接,组成一个新的数据; function(X_i) 表示输入数据 X_i 通过非线性函数变换得到输出 Y_i 。 跳跃连接方式的示意图如图 4 所示:

图 4 跳跃连接。其中矩形框表示的是不同的网络层,曲线 箭头表示的是跳跃连接;图中的虚线圆圈区域中,跳跃连接 的输入和输出是分离的,即下一个跳跃连接所传递的数据仅 仅是上一个网络层的输出,并不传递前面的网络层所传递的 跳越连接数据。*X*₁,*Y*₁分别表示第*l*层的输入和输出,*l*-3,

l-2, *l*-1和*l*表示的是不同的网络层

在普通的多重门限机制模型中,每一层的输入 仅来自于上一层的输出。如果网络的当前层无法有 效地识别输入数据中的有效特征信息,这些特征信 息就会被该网络层过滤掉,整个网络模型都将无法 识别这一部分的有效特征,导致 Agent 的错误识别, 做出错误的决策,使得 Agent 的性能表现波动较大。 而引入跳跃连接之后,可以通过把输入数据向前传 递的更远,使网络模型能够更准确地提取当前状态 的特征信息,从而让 Agent 做出更准确的决策,有 效缓解了 Agent 性能不稳定的问题。

3.3 神经网络模型构建

本文提出的基于多重门限机制的异步优势行 动者-评论家算法(A3C-MGM)具有以下特点:1、 网络结构简单,能够处理状态之间存在依赖关系的 任务;2、全连接层和卷积层均采用 MGM 机制;3、 可以利用并行化计算加速模型训练。A3C-MGM 模 型由 CNN、MGM、全连接层组成,如图 5 所示。 接下来以Atari 2600 游戏为例,具体分析A3C-MGM 模型各模块的作用以及处理数据的过程。

Atari 2600 游戏原始视频帧大小为 210×160×3,210 表示视频帧的像素高度,160 表 示视频帧的像素宽度,3表示3通道的彩色(RGB) 图像。由于在视频图像中并不是所有的像素点都是 有价值的,例如游戏视频图像中显示得分的区域和 一些无价值的边界区域。若原始游戏视频图像不经 过预处理就直接输入到图5所示的神经网络中,这 些无价值的像素区域将会耗费额外的计算资源和 存储资源,并且还有可能会使模型的训练效果变 差。因此有必要对原始游戏视频帧做一些简单的预 处理。首先将原始的大小为210×160 像素的 RGB 游戏图像通过一次降采样方法转换成大小为 160×160像素的 RGB 游戏图像。然后,再次通过 降采样方法把大小为160×160 像素的 RGB 游戏图 像转换成大小为84×84 像素的 RGB 游戏图像。使 用两次降采样操作主要原因是: 对图像进行降采样 操作,当操作后的图像相对于原来图像太小时容易 丢失原来图像中的部分有价值的信息。因此,本文 采用两次降采样操作来把原始游戏视频图像裁减 成大小为84×84像素的 RGB 游戏图像。由于 84×84 像素的 RGB 图像可以表示成 84×84×3 的形 式,84×84 像素的灰度图像可以表示成84×84×1的 形式, RGB 图像的数据量是灰度图像的 3 倍, 所以 RGB 图像所耗费的存储资源和计算资源都将会比 灰度图像多。由于计算机对于识别灰度图像和 RGB 图像并无差别,不像人类眼睛能够有效识别 RGB 图像中的信息却无法有效识别灰度图像中的信息; 并且当 RGB 图像转换成灰度图像时并不会丢失图 像中有价值的信息。所以将经过两次降采样操作后 的游戏视频图像转换为灰度图像,可以进一步减少 训练模型过程中所消耗的存储资源与计算资源。

A3C-MGM 将 1 幅大小为 210×160×3 的原始 游戏视频图像经过预处理之后输入到网络模型中, 决策阶段的网络模型输入规模可以表示成 1×84×84×1,评估阶段的网络模型的输入规模可 以表示成 20×84×84×1 (A3C-MGM 采用的最大时 间步为 20,由于会遇到情节结束状态,所以最大时 间步在这种情况下将会小于 20)。相比于原始的大 小为 1×210 16的输入规模和大小为 20、21×0 1×的输入规模,大幅度减少了计算策 略函数和值函数以及更新网络参数所需的存储资 源和计算资源,进一步加速了 Agent 的训练。对于 20×84×84×1大小的输入序列,由于 LSTM 网络的 计算依赖于序列中上一个数据的计算结果,故而基 于 LSTM 网络的 ADRL 算法无法利用并行化计算一 次性计算这 20个数据。而 A3C-MGM 的计算并不 依赖于上一个时间步,其通过 MGM 来控制信息在 网络中的流通,达到记忆信息的效果,因此可以通 过并行化计算,一次计算 20个数据,大幅度减少 了 ADRL 模型的训练时间。

图 5 A3C-MGM 网络模型。模型采用三层多重门限卷积神经网络、一层全连接网络、一层全连接策略网络和一层全连接值 网络;且多重门限卷积层之后的全连接层也采用多重门限机制。⊕表示矩阵之间对应元素相加,⊗表示矩阵之间对应元素 相乘,σ表示 sigmoid 非线性函数, tanh 表示双曲正切非线性函数。虚线部分展示了跳跃连接在门限机制网络模型中的连接 方式。输入为一幅或者一组经过预处理的游戏视频图像

本文的A3C-MGM 网络模型采用 3 层多重门限 卷积层、1 层全连接层、1 层策略网络和 1 层值网 络。通过上述预处理操作后的游戏视频数据作为第 一层多重门限卷积层的两个卷积神经网络的输入, 其中两个卷积神经网络均采用 32 个大小为8×8的 卷积核,步长大小为 4。输入数据经过第一个卷积 神经网络处理后产生 32 幅大小为 20×20 的特征 图,通过使用 sigmoid 函数和 tanh 函数进行非线性 变换,再把非线性变换后的数值对应元素相加;第 二个卷积神经网络同样产生 32 幅大小为 20×20 的 特征图,且不使用激活函数来进行非线性变换。两 个卷积神经网络所产生的输出对应元素之间相乘, 作为下一层的输入。第二层多重门限卷积神经网络 和第三层多重门限卷积神经网络与第一层多重门 限卷积神经网络具有相同的结构。第二层使用 64 个大小为4×4的卷积核,步长大小为 2,输出 64 幅大小为9×9的特征图,作为第三层的输入。第三 层使用 64 个大小为3×3的卷积核,步长大小为 1, 输出 64 幅大小为7×7的特征图。

第三层多重门限卷积神经网络层输出的特征 图,经过扁平化操作处理后,作为一个包含 256 个 神经元的全连接层的输入。该全连接层采用和卷积 层同样的多重门限机制,输入数据分别作为两层同 样的全连接层输入,其中一层的输出经过多重门限 机制操作后,与另一层的输出对应元素相乘,作为 策略网络层和值网络层的输入。策略网络是一个全 连接层,其神经元数量与所处理的游戏的动作空间 大小相同;值网络是一个仅包含一个神经元的全连 接层。策略网络输出是动作对应的动作值,经过 Softmax 回归操作处理后,用来选择游戏动作;值 网络的输出是状态值,用来计算优势。

3.4 模型参数更新方法

基于多重门限机制的模型主要包含一个策略 函数网络 $\pi(a_i | s_i \theta)$ 和一个值函数估计网络 $V(s_i; \theta_v),$ 是一个平滑的网络模型,模型中的各部 分都是可微分的,即模型中的可训练参数都存在关 于自身的梯度。本文采用一种自适应矩估计^[33] (Adaptive Moment Estimation, Adam)的随机梯度 下降方法来更新网络模型的参数。

策略函数 $\pi(a_i | s_i; \theta)$ 用来在状态 s_i ,根据策略 π 选择一个动作 a_i ;值函数 $V(s_i; \theta_i)$ 计算状态 s_i 的状态值,状态值用来计算状态 s_i 的优势。A3C-MGM 采用了异步方法来更新参数,并且当 Agent 与环境 交互后并不立即利用梯度下降方法更新模型参数, 而是在 Agent 与环境交互 t_{max} 时间步后或者当一个 情节结束时更新一次模型参数。策略函数网络和值 函数网络的参数均使用梯度下降方法进行更新,梯 度计算公式如式 (24)和式 (25)所示:

$$d\boldsymbol{\theta} = \sum_{i=t}^{t_{\text{max}}} \nabla_{\boldsymbol{\theta}'} \log \pi(a_i \mid s_i; \boldsymbol{\theta}') (R_i - V(s_i; \boldsymbol{\theta}'_v)) \qquad (24)$$

$$d\theta_{v} = \sum_{i=t}^{t_{\text{max}}} \frac{\partial (R_{i} - V(s_{i}; \theta_{v}))^{2}}{\partial \theta_{v}}$$
(25)

其中 t_{max} 表示固定的时间步间隔或者遇到情节结束 情况时所经历的时间步步数; R_i 表示在状态 s_i 采取 动作 a_i 获得的期望回报; θ 和 θ_v 分别表示共享的策 略函数网络和共享的值函数网络的参数; θ' 和 θ'_v 分 别表示当前策略函数网络和值函数网络的参数。

式(24)和(25)中利用参数 θ '和 θ'_{ν} 的梯度来 更新参数 θ 和 θ_{ν} 的原因是 A3C-MGM 利用多线程 技术加速模型训练过程中,每个线程拥有自己的网 络模型,参数为 θ '和 θ'_{ν} ,此外还有一个所有线程共 享的网络模型,参数为 θ 和 θ_{ν} 。每个线程网络模型 的当前参数 θ '和 θ'_{ν} 都是从共享网络模型中获取,即 $\theta' \leftarrow \theta$ 和 $\theta'_{\nu} \leftarrow \theta_{\nu}$ 。每个线程并不更新自己的网络 模型参数,而是更新所有线程共享的网络模型的参 数。利用 Adam 梯度下降方法更新整个网络模型参 数的详细过程如下:

$$\boldsymbol{g}_{t} = \nabla_{\boldsymbol{\bar{\theta}}_{t}'} \left(\sum_{i=t}^{t_{\text{max}}} \log \pi(a_{i} \mid s_{i}; \boldsymbol{\theta}_{t}') (\boldsymbol{R}_{i} - V(s_{i}; \boldsymbol{\theta}_{v,t}')) + \sum_{i=t}^{t_{\text{max}}} (\boldsymbol{R}_{i} - V(s_{i}; \boldsymbol{\theta}_{v,t}'))^{2} + H(\pi(s_{t}; \boldsymbol{\theta}_{t}'))) \right)$$
(26)

其中 H 表示熵, $\bar{\theta}'_{t}$ 表示当前线程整个网络模型的参数, g_{t} 表示总损失函数对于整个网络模型参数的梯度。

$$\boldsymbol{m}_{t} = \boldsymbol{\beta}_{1} \boldsymbol{m}_{t-1} + (1 - \boldsymbol{\beta}_{1}) \boldsymbol{g}_{t}$$
(27)

$$\boldsymbol{v}_{t} = \beta_{2} \boldsymbol{v}_{t-1} + (1 - \beta_{2}) \boldsymbol{g}_{t}^{2}$$
(28)

其中 m_i 表示关于梯度的一次矩估计, v_i 表示关于 梯度的二次矩估计,初始值都为0; $\beta_1, \beta_2 \in [0,1)$, 其值初始化为一个接近于1的值。

$$\hat{\boldsymbol{m}}_{t} = \frac{\boldsymbol{m}_{t}}{1 - \beta_{1}^{t}} \tag{29}$$

$$\hat{\boldsymbol{v}}_t = \frac{\boldsymbol{v}_t}{1 - \boldsymbol{\beta}_2^t} \tag{30}$$

其中*前*, 和*v*, 分别表示*m*, 和*v*, 的偏差校正计算值。

$$\overline{\theta}_{i+1} = \overline{\theta}_i - \frac{\eta}{\sqrt{\hat{v}_i} + \varepsilon} \hat{\boldsymbol{m}}_i$$
(31)

其中 $\bar{\theta}$,表示整个共享网络模型的参数, ε 表示一个小的正常数,用来防止分母为0情况出现, η 表示学习率。

4 实验

本节先介绍实验所使用的平台和实验过程中 所使用的参数设置,随后在部分战略性 Atari 2600 游戏中评估了 A3C-FF、A3C-LSTM、A3C-GLU、 A3C-Tanh、A3C-MGM 和 MGM-skip 模型的训练时 间和训练效果。A3C-FF 表示仅使用前馈神经网络 (Feedforward, FF),A3C-LSTM 表示使用 LSTM 网络,A3C-GLU表示使用了 GLU 门单元的前馈神 经网络,A3C-Tanh 表示使用了 tanh 函数替代 sigmoid 函数的 GLU 门控机制。MGM-skip 表示使 用了跳跃连接的 MGM 前馈神经网络模型,为了保 证跨层传递的数据维度一致,本文在 MGM-skip 模 型的不同网络层中采用相同的特征图数量。同时为 了使跳跃连接得到充分利用,本文采用了4层卷积 层来构建网络模型,其它设置与A3C-MGM 相同。 最后结合实验结果分析各模型在训练时间和训练 效果方面的优势与不足。

4.1 实验环境与参数设置

本文使用 OpenAI Gym¹开源平台中的 Atari 2600 游戏环境作为实验环境。OpenAI Gym 是一个 开源的工具包,其提供了各式各样的 Atari 2600 游 戏接口,游戏类型涵盖了策略类、体育竞技类和桌 游类游戏等。Mnih 等人^[17]的研究表明,在Atari 2600 大部分游戏中A3C-FF和A3C-LSTM在训练时间以 及训练效果上都明显优于基于经验重放机制的 DRL 算法, 如 DQN、DDQN 等。Dauphin 等人^[26] 的研究表明 GLU 门限机制要优于 GTU 门限机制。 因此本文实验的重点是比较 A3C 算法的不同深度 神经网络模型与本文提出的 A3C-MGM 之间的性 能差异。本文选取了五个单 Agent 的 Atari 2600 游 戏: Battle Zone、Tutankham、Space Invaders、Time Pilot 和 Pong, 分别测试 A3C-FF、A3C-LSTM、 A3C-GLU、A3C-Tanh、A3C-MGM 和 MGM-skip 模型在上述游戏环境中的表现。根据实验结果,对 上述不同模型进行分析比较。为了进一步验证模型 的有效性,本文额外选取了四个 Atari 2600 游戏来 测试各模型的性能。

为了更好地对比不同模型的性能,本文所有模型均使用相同的参数集合和 Adam 梯度下降方法。 Adam 梯度下降方法中的参数设置如下: $\eta = 0.001$ 、 $\beta_1 = 0.9 \times \beta_2 = 0.99 \times \varepsilon = 10^{-3}$ 。上述所有算法的折 扣因子均采用 $\gamma = 0.99$ 。网络参数的异步更新方式 如下:每 20 步(帧)或者情节结束时更新一次共 享网络模型的参数。决策阶段,每次输入1帧经过 预处理的大小为84×84的灰度图像,作为网络模型 的输入;评估阶段,每次输入一定批量经过预处理 的大小为84×84的灰度图像。由于模型每 20 帧或 者情节结束时更新一次网络参数,所以评估阶段的 输入数据批量不是固定的,会出现小于 20 的情况。 实验采用 1,000 个训练阶段(Epoch)作为训练周期, 其中每个阶段 80,000 步,共训练 80,000,000 步。本 文所有实验均使用 8 线程来加速模型训练。

4.2 实验评估与结果分析

文献[34]表明:当强化学习算法与非线性函数 逼近器相结合时,会导致算法的收敛性难以得到保 证;深度强化学习算法正是采用大型深度神经网络 作为非线性函数逼近器来学习值函数或者动作值

函数,因而算法的收敛性无法从理论上得到保证。 然而, Mnih 等人^[6-7]提出了 DQN, 引入了经验重放 缓冲区和单独的目标网络,使得算法的稳定性得到 显著的改善。本文使用异步方法实现与 DON 算法 中的经验重放机制相同的作用,提高算法稳定性并 加快模型的学习。一般的深度强化学习模型的训练 通常都需要很长的时间周期,在深度强化学习中引 入异步方法替代经验重放机制,可以减少存储资源 和计算资源的消耗。A3C-MGM 通过使用 MGM, 增加非饱和区域的宽度,并且把数据映射到一个更 宽的数值范围,能更真实地映射数据间的关系,函 数曲线如图 3 所示。A3C-MGM 通过 MGM 来控制 信息在网络中的流通,达到记忆任务状态之间的依 赖性信息的效果,并且可以使用并行计算加速模型 的训练过程,以更少的时间代价来提升模型训练效 果。MGM-skip 通过跳跃连接使数据可以向更深的 网络层传递,有效提高了网络模型识别数据的能 力,从而改善了模型训练效果和增强了算法稳定 性。

本文首先比较了 A3C-FF、A3C-LSTM、 A3C-GLU、A3C-Tanh、A3C-MGM 和 MGM-skip 模型在训练 Agent 玩 Battle Zone、Tutankham、Space Invaders、Time Pilot、Pong 等游戏中的训练时间。 在 Intel Core i7-6800k CPU 上各模型的训练时间如 表 1 所示。在 NVIDIA TITAN X (PASCAL) GPU 上各模型的训练时间如表 2 所示。

表 1 在单个 Intel Core i7-6800k CPU 上各模型的每步训练 时间和训练总时间

模型	每步训练时间(s)	训练总时间 (h)	
MGM-skip	0.0030	66.7	
A3C-MGM	0.0016	35.6	
A3C-LSTM	0.0050	111.1	
A3C-Tanh	0.0016	35.6	
A3C-GLU	0.0016	35.6	
A3C-FF	0.0010	22.2	

表 2 在 NVIDIA TITAN X (PASCAL) GPU 上各模型的每 步训练时间和训练总时间

模型	每步训练时间(s)	训练总时间 (h)	
MGM-skip	0.0012	26.7	
A3C-MGM	0.0008	17.8	
A3C-LSTM	0.0013	28.9	
A3C-Tanh	0.0008	17.8	

¹ https://github.com/openai/gym

A3C-GLU	0.0008	17.8
A3C-FF	0.0006	13.3

表 1 所示数据展示了各模型在 CPU 上的训练 时间。其中 A3C-FF 的每步训练时间以及训练总时 间最少,A3C-LSTM 的每步训练时间以及训练总时 间最多,A3C-GLU、A3C-Tanh、A3C-MGM 的每 步训练时间以及训练总时间相同。A3C-FF 的每步 训练时间比 A3C-LSTM 少 0.0040 秒,比 A3C-GLU、 A3C-Tanh、A3C-MGM 少 0.0006 秒。虽然 A3C-GLU、 A3C-Tanh、A3C-MGM 少 0.0006 秒。虽然 A3C-GLU、 A3C-LSTM 少 0.0034 秒;训练总时间比 A3C-FF 多 13.4 小时,但比 A3C-LSTM 少 75.5 小时。表 2 数 据展示了各算法模型在 GPU 上的训练时间。GPU 虽然大幅度减少了各模型的训练时间,但是 A3C-LSTM 的训练总时间依然需要 28.9 小时,是 A3C-FF 的 2.17 倍,是 A3C-MGM、A3C-GLU 和 A3C-Tanh 的 1.62 倍。A3C-FF 训练时间最短是由于 其卷积层仅有一个通道,而A3C-MGM、A3C-GLU和A3C-Tanh均有两个卷积通道。A3C-FF训练时间最短,但其训练效果很差。虽然MGM-skip所需的训练时间比A3C-MGM多,但是训练效果更好更稳定。

虽然 LSTM、GLU 和 MGM 都是利用门控机制 来处理状态之间存在依赖关系的任务,但是 LSTM 由于其复杂的门控单元连接以及循环结构,基于 LSTM 的异步深度强化学习算法的训练过程依赖于 上一个时间步的计算结果,无法使用并行化计算进 一步加速训练,导致模型训练时间特别长。而 MGM 和 GLU 通过简单的门单元来控制信息的流通,达 到记忆信息的效果,且不存在循环连接结构。因此 基于 MGM 和 GLU 的异步深度强化学习算法可以 利用并行化计算处理数据,进一步加速模型训练过 程。表 1、表 2 的数据充分展示了新模型在训练时 间上的优势。

图 6 各模型在 Battle Zone 游戏中的训练效果,(a)、(b)和(c)表示各模型在 Battle Zone 游戏中三次独立的训练结果。(d) 表示的是各模型三次训练结果的平均值。平均每情节奖赏表示的是训练过程中每 100 个情节的平均奖赏

本文评估了 A3C-MGM 在训练 Agent 玩 Battle Zone 游戏过程时各阶段平均每情节所获得的奖赏 值,如图6所示。因强化学习是一种交互式学习, 通过与环境交互获得一个反馈信号来训练 Agent。 故而训练数据没有人工标记的标签,不需要单独的 测试数据集来测试模型的最终性能。由于各个模型 的参数初始值都是随机初始化的,不同的参数可能 会影响模型的训练效果。本文在 Battle Zone 游戏环 境中独立进行了三次实验,每次的模型参数都是随 机初始化的,图6中的(a)、(b)和(c)分别是第 一次、第二次和第三次实验结果。图 4 中的纵坐标 平均每情节奖赏表示的是训练过程中每100个情节 所获得的奖赏的平均值。从图 6 中的 (a)、(b) 和 (c)可以看出, 各个模型训练效果的曲线图虽然 出现了不同程度的波动,但是整体趋势一样。因此 不同的参数初始值并不能决定各模型性能的好坏, 仅能在一定程度上影响着模型的性能。图6中的(d) 表示的是三次独立实验各模型训练效果的平均曲 线图。下面结合 Battle Zone 游戏,对不同的模型在 训练时存在性能差异较大的原因进行具体分析。

在 Battle Zone 游戏过程中,由于 Battle Zone 游戏环境的奖赏是稀疏的,需要很多个时间步才能 获得一次奖赏。例如,Battle Zone 中的坦克在寻找 目标过程中,由于并未击毁目标故而无法获得奖 赏,这一过程有时会持续非常多的时间步。而当前 状态的输入信息仅仅是由当前游戏画面的一帧

50 40 平均每情节奖赏 30 20 10 0 200 400 600 800 1000

训练阶段

Tutankham

(A3C-FF)或者单层 LSTM 单元记忆的有限时间 步长内的历史信息(A3C-LSTM)构成时,Agent 很大程度上无法及时地获得这个稀疏的奖赏,从而 无法有效的学习。本文提出的A3C-MGM 模型通过 三层 MGM 卷积机制和一层 MGM 全连接机制来记 忆更长时间步内的信息,有效缓解了当环境奖赏是 稀疏情况时动作回报延时高的问题。并且相比于 LSTM,MGM 可以利用并行化计算加速训练过程, 使得 Agent 能够很快学习到一个更优的策略。

图 6 展示了各算法在训练过程中的平均每情节 奖赏演化曲线,可以看出,A3C-MGM 模型的训练 效果最优,游戏得分可以达到 12,000 分左右。 A3C-Tanh 的稳定性要比 A3C-GLU 好很多,但是其 游戏得分最终不到 10,000 分,要比 A3C-MGM 差 2,000 分以上。而 A3C-FF 和 A3C-LSTM 的表现非 常差,虽然模型表现最稳定,但是在 Battle Zone 游 戏中的得分仅在 3,000 分左右,比 A3C-MGM 差了 9,000 分以上。MGM 把 GLU 门限机制宽的非饱和 梯度区域优势和 tanh 函数宽的数据映射范围优势 相结合,使得 A3C-MGM 的学习效果要比 A3C-GLU 和 A3C-Tanh 要好。在有限的 1,000 个训练阶段中, 由于 A3C-FF 和 A3C-LSTM 均无法及时反馈环境的 稀疏奖赏,其训练效果无法得到明显提升。

图 7 各模型在 Tutankham、Pong、Time Pilot 和 Space Invaders 游戏中的训练效果

图 8 各模型在 Space Invaders 游戏环境中的性能表现。

此外,本文还评估了 A3C-MGM 在训练 Agent 玩 Tutankham、Time Pilot、Space Invaders 和 Pong 这四种游戏时的性能表现,如图 7 所示,纵坐标含 义与图 6 相同。各模型在 Space Invaders 环境中的 表现差异性很小,所以在图 8 中单独展示该环境下 各模型的训练效果。

上述各个模型在 Battle Zone、Tutankham、Space Invaders、Time Pilot 和 Pong 游戏中的表现都存在 不稳定问题。这种现象是由于模型训练过程中的网 络参数通过随机梯度下降方法不断地更新,即使参 数发生很小的变动,也会导致模型输出的动作值发 生改变,从而可能使得下一阶段策略选择动作时发 生很大变化^[6]。从图 6 和图 7 可以看出,在 Battle 纵坐标表示的是平均每情节奖赏值,横坐标表示训练阶段 Zone 和 Tutankham 游戏中,A3C-GLU 的不稳定情况最为严重。这是由于 sigmoid 函数把数据映射到 一个窄的、变化更加平缓的区域,数据间的差异性 会被缩小。当 Agent 在当前游戏视频帧采取一个动 作环境转换到下一个游戏视频帧或者采取较少的 几个动作之后到达了后续的视频帧时,由于时间步 比较少视频帧之间差异性比较小,这个小的差异被 sigmoid 函数进一步缩小,从而使得 Agent 无法做出 对于当前视频帧更加正确的动作选择,导致了低的 游戏得分。多个时间步之后,视频帧之间的差异性 逐渐变大,此时即使 sigmoid 函数对数据差异性有 缩小效果也无法严重影响这个差异,因而 Agent 能 够根据不同的状态信息做出更加正确的动作选择, 从而可以获得高的游戏得分。这两个过程交替进行导致了 A3C-GLU 的严重不稳定问题。

其中 Tutankham 和 Time Pilot 游戏环境的奖赏 相比于 Space Invaders 和 Pong 更加稀疏。前文实验 表明不同的网络模型参数初始值并不能决定模型 性能的好坏,故而在这四种游戏中不再取三次独立 实验的实验结果的平均值。从图 7 可以看出,在 Tutankham 游戏中,A3C-MGM 和 A3C-Tanh 的平 均每情节奖赏明显优于另外三种模型,在第 200 个 训练阶段时开始收敛,在整个训练周期中最终收敛 于 40(游戏得分);在 Time Pilot 游戏中,A3C-MGM 和 A3C-Tanh 的性能表现也比另外三种模型要好。 在 Space Invaders 游戏中,环境奖赏稀疏性比较弱, 各个模型性能表现差异很小。由于 Pong 游戏环境 的奖赏稀疏性比较弱,而且环境的状态是部分可观 测的(即 Agent 无法观测到乒乓球的速度、加速度 等信息,仅能观测到球的位置等信息),A3C-MGM 的性能比 A3C-LSTM 略差。因此 A3C-MGM 模型 在环境奖赏的稀疏性比较弱的情况下,模型表现相 比于另外几种模型,并不能取得明显的优势。所以 A3C-MGM 模型更加适用于环境奖赏是稀疏情况的 一类战略性任务。

然而从上述实验结果中可以看出,A3C-MGM 算法的稳定性比较差。为了使 Agent 在这一类游戏 中的表现更稳定,本文进一步提出了 MGM-skip 模 型。该模型通过跳跃连接方式将数据传递的更远, 使得不同的网络层能够学习到更多的状态特征,从 而有效提升了 Agent 的稳定性。该模型在部分 Atari 2600 游戏环境中的实验结果如图 9 所示。

图 9 MGM-skip 模型与 A3C-MGM 模型的实验结果, 横坐标表示训练阶段

从图 9 中可以看出,在 Battle Zone 游戏中 MGM-skip 比 A3C-MGM 更加稳定,在 Pong 游戏 中 MGM-skip 获得了更好的学习效果,在 Space Invaders 和 Time Pilot 游戏中 MGM-skip 的学习效果 要比 A3C-MGM 更稳定。在 Space Invaders 游戏中, 在 780 个训练阶段之后, MGM-skip 波动幅度比 A3C-MGM 要小很多。在 Tutankham 游戏中,两者 表现几乎一样。在 Asterix、Chopper Command 和 Solaris 游戏中,分别在 800、800 和 700 个训练阶段后,MGM-skip 均比 A3C-MGM 学习效果要好,并且更加稳定。在 Asterix 游戏中,A3C-MGM 在前 800 个训练阶段中学习效果逐步上升,在 800 个训练阶段之后,学习效果开始下降;而 MGM-skip 在 整个学习过程中学习效果逐步上升,并且在一个较小的范围内波动。在 Chopper Command 游戏中,A3C-MGM 随着训练阶段的增加,不稳定性尤为明显,在 800 个训练阶段后,A3C-MGM 的波动范围 特别大,而 MGM-skip 的表现更为稳定。在 Solaris 游戏中,虽然 MGM-skip 在整个学习过程中出现学 习效果下降的表现,但是依然要好于 A3C-MGM 的 学习效果。在 Name This Game 游戏中,MGM-skip 的学习效果在 200 个训练阶段后就明显优于

A3C-MGM,并且整个训练过程中都很稳定。因为 游戏环境的本身固有的差异性(奖赏反馈机制以及 反馈的奖赏数值均不同),导致了算法模型在有些 环境中表现的很稳定,而在有些环境中表现的不稳 定。但是在上述游戏环境中,MGM-skip 表现的均 比 A3C-MGM 稳定。

为了进一步验证上述各个模型在 Atari 2600 游戏中的性能表现,本文额外选取了四个 Atari 2600 游戏来测试各模型的性能表现,实验结果如表 3 所示。表 3 中的数据展示了 MGM-skip 在 Atari 2600 游戏中的学习效果,在保证训练效果的前提下, MGM-skip 相比于 A3C-MGM 模型可以更稳定地获得更高的游戏得分。

游戏环境模型	Asterix	Chopper Command	Name This Game	Solaris
MGM-skip	3046±240	2852±391	6200±37	3438±72
A3C-MGM	2435±322	2442±698	5998±48	3396±72
A3C-GLU	1949±252	2029 ±623	5487±296	3191 ±94
A3C-Tanh	1413±759	2421 ±528	5995±46	3290±286
A3C-FF	2021±259	914±72	5940±40	3066±108
A3C-LSTM	1826±142	938±39	2034±106	2657±72

表 3 各模型在部分 Atari 2600 游戏中的平均每情节奖赏(平均每情节奖赏值取整数)

从图 7 中训练效果曲线图可以看出, 仅有 Pong 游戏在训练阶段相同时 A3C-MGM 的性能没有 A3C-LSTM 的性能好, 但是 A3C-LSTM 耗费的训 练时间更多, 且 Pong 游戏环境奖赏的稀疏性比其 它几个环境的奖赏稀疏性弱。为了比较在相同时间 内 A3C-MGM 和 A3C-LSTM 在 Pong 游戏环境中的 性能表现, 各个模型在 Intel Core i7-6800k CPU 上 和 NVIDIA TITAN X (PASCAL) GPU 上分别训练 20 小时和 12 小时,训练效果如图 10 所示。从图 10 中的 (a) 可以看出, 在 CPU 上训练 20 小时 A3C-MGM 可以获得最优的训练效果, 平均每情节 奖赏为 12。图 10 中的 (b) 表明, 在 GPU 上训练 12 小时 A3C-LSTM 是最优的,平均每情节奖赏为 14: A3C-MGM 是次优的,平均每情节奖赏是 12.5。 在环境稀疏性比较弱和环境状态部分可观测的 Pong 游戏中,A3C-MGM 相比于 A3C-LSTM 无法 获得最好的训练效果。但是在 CPU 上,A3C-MGM 相比于 A3C-LSTM 依然有时间优势。在 Pong 游戏 中,虽然 A3C-MGM 在 GPU 上表现比 A3C-LSTM 差,但在 CPU 和 GPU 上 A3C-MGM 的表现要比 A3C-FF、A3C-GLU和 A3C-Tanh 更优。而 MGM-skip 可以获得比 A3C-MGM 更好的学习效果,如图 11 所示。

图 10 在 Pong 游戏中,各模型在 CPU 和 GPU 上分别训练 20 小时和 12 小时的训练效果。图中横坐标单位是小时 (h)。(a): 在 Intel Core i7-6800k CPU 上的训练效果; (b):在 NVIDIA TITAN X (PASCAL) GPU 上的训练效果

图 11 在 Pong 游戏中, MGM-skip 与 A3C-MGM 在 CPU 和 GPU 上分别训练 20 小时和 12 小时的训练效果。横坐标单位是 小时(h)。(a):在 Intel Core i7-6800k CPU 上的训练效果;(b):在 NVIDIA TITAN X (PASCAL) GPU 上的训练效果

5 结束语

现代计算设备大多都具有并行计算的能力。虽 然基于前馈网络的异步深度强化学习可以利用多 线程技术以及并行计算加速模型训练,但是由于其 网络结构自身固有的原因,无法记忆不同时间尺度 状态之间的依赖信息。而循环神经网络,如LSTM, 可以有效的解决这一问题,但是由于其计算依赖于 上一个时间步的输出信息,所以无法利用并行化计 算加速模型训练。为了能够利用并行化计算处理状 态之间存在依赖关系的任务,本文提出了一种基于 多重门限机制的异步优势行动者-评论家算法 (A3C-MGM)和基于跳跃连接的多重门限机制算 法(MGM-skip)。通过在前馈神经网络中引入多重 门限机制来记忆不同时间尺度的任务状态之间的 依赖信息,但是不存在循环结构,使得模型能够利 用并行计算加速训练过程。本文通过五个Atari 2600 游戏,其中包含三个稀疏环境奖赏的游戏和两个环 境奖赏稀疏性较弱的游戏,验证了 A3C-MGM 和 MGM-skip 在稀疏环境奖赏游戏中的有效性。并且 额外选取了四个 Atari 2600 游戏,进一步测试了新 模型的性能。实验结果表明新模型在训练过程中所 获得的平均每情节奖赏总体上优于另外几种模型, 且该优势在 Battle Zone 游戏和 Tutankham 游戏中表 现得尤为明显。本文所用的方法在不同的游戏环境 中采用的是同一套参数设定,同一个模型和同一种 算法,因此本文提出的基于多重门限机制的异步优 势行动者-评论家算法具有较强的泛化能力。 然而,基于多重门限机制的模型在上述类型游 戏上的表现稳定性并不是特别好,并且距离专业人 类玩家水平还有很大的差距。未来的研究重点是提 高基于多重门限机制的模型的稳定性,以及利用人 类玩家已有数据提高 Agent 在这类游戏上的性能表 现。深度强化学习算法通过结合人类玩家的数据来 协助指导 Agent 的训练,使得 Agent 能够利用这些 数据获得更好的学习效果,以及更加真实的学习效 果,以便未来深度强化学习算法能够更好地应用到 真实场景中。

参 考 文 献

- Yu Kai, Jia Lei, Chen Yu-Qiang, Xu Wei. Deep learning: yesterday, today, and tomorrow. Journal of Computer Research and Development, 2013, 50(9): 1799-1804 (in Chinese) (余凯, 贾磊, 陈雨强, 徐伟. 深度学习的昨天、今天和明天. 计算机研究与发展, 2013, 50(9): 1799-1804)
- [2] Sutton R S, Barto A G. Reinforcement learning: an introduction. Cambridge, USA: MIT press, 1998.
- [3] Gao Yang, Zhou Ru-Yi, Wang Hao, Cao Zhi-Xin. Study on an average reward reinforcement learning algorithm. Chinese Journal of Computers, 2007, 30(8): 1372-1378 (in Chinese)
 (高阳,周如益, 王皓,曹志新. 平均奖赏强化学习算法研究. 计算机学报, 2007, 30(8): 1372-1378)
- [4] Fu Qi-Ming, Liu Quan, Wang Hui, Xiao Fei, YU Jun, Li Jiao. A novel off-policy Q(λ) algorithm based on linear function approximation. Chinese Journal of Computers, 2014, 37(3): 677-686 (in Chinese)

(傅启明, 刘全, 王辉, 肖飞, 于俊, 李娇. 一种基于线性函数逼近 的离策略 Q(λ)算法. 计算机学报, 2014, 37(3): 677-686)

- [5] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without human knowledge. Nature, 2017, 550(7676): 354-359.
- [6] Mnih V, Kavokcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M. Playing atari with deep reinforcement learning//Proceedings of the Workshops at the 26th Neural Information Processing Systems 2013. Lake Tahoe, USA, 2013.
- [7] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529-533
- [8] Watkins C J C H. Learning from delayed rewards [Ph. D. Thesis]. King's College, Cambridge, England, 1989.
- [9] Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double Q-learning//Proceedings of the Association for the Advance

of Artificial Intelligence. Phoenix, USA, 2016: 2094-2100.

- [10] Schaul T, Quan J, Antonoglou I, et al. Prioritized experience replay//Proceedings of the International Conference on Learning Representations. San Juan, Puerto Rico, 2016.
- [11] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735-1780.
- [13] Narasimhan K, Kulkarni T D, Barzilay R. Language understanding for text-based games using deep reinforcement learning//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal, 2015: 1-11.
- [14] Hausknecht M, Stone P. Deep recurrent Q-learning for partially observable MDPs//Proceedings of the Association for the Advance of Artificial Intelligence Fall Symposium Series. Arlington, USA, 2015: 29-37.
- [15] Rummery G A, Niranjan M. On-line Q-learning using connectionist systems. Cambridge, UK: Cambridge University Engineering Department, Technical Report: CUED/F-INFENG/TR 166, 1994.
- [16] Sutton R S. Generalization in reinforcement learning: successful examples using sparse coarse coding//Proceedings of the Advances in Neural Information Processing Systems. Denver, USA, 1995: 1038-1044.
- [17] Mnih V, Badia A P, Mirza M, et al. Asynchronous methods for deep reinforcement learning/Proceedings of the International Conference on Machine Learning. New York City, USA, 2016: 1928-1937.
- [18] Kakade S. A natural policy gradient//Proceedings of the Advances in Neural Information Processing Systems. Vancouver, Canada, 2001: 1531-1538.
- [19] Silver D, Lever G, Heess N, et al. Deterministic policy gradient algorithms//Proceedings of the International Conference on Machine Learning. Beijing, China, 2014: 387-395.
- [20] Sutton R S, Mcallester D, Singh S, et al. Policy gradient methods for reinforcement learning with function approximation//Proceedings of the Advances in Neural Information Processing Systems. Denver, USA, 1999: 1057-1063.
- [21] Konda V R, Tsitsiklis J N. Actor-critic algorithms//Proceedings of the Advances in Neural Information Processing Systems. Denver, USA, 1999: 1008-1014.
- [22] Levine S, Finn C, Darrell T, et al. End-to-end training of deep visuomotor policies. Journal of Machine Learning Research, 2016,

17(39): 1-40.

- [23] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling//Proceedings of the Workshops at the 27th Neural Information Processing Systems 2014. Montreal, Canada, 2014.
- [24] Xu K, Ba J, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention//Proceedings of the International Conference on Machine Learning. Lille, France, 2015: 2048-2057.
- [25] Van Oord A, Kalchbrenner N, Kavukcuoglu K. Pixel recurrent neural networks//Proceedings of the International Conference on Machine Learning. New York City, USA, 2016: 1747-1756.
- [26] Dauphin Y N, Fan A, Auli M, et al. Language modeling with gated convolutional networks//Proceedings of the International Conference on Machine Learning. Sydney, Australia, 2017: 933-941.
- [27] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
- [28] Srivastava R K, Greff K, Schmidhuber J. Training very deep networks//Proceedings of the Advances in Neural Information Processing Systems. Montreal, Canada, 2015: 2377-2385.

[29] Hariharan B, Arbel áz P, Girshick R, et al. XU Jin, born in 1992, Master student. His main research interests include deep reinforcement learning.

LIU Quan, born in 1969, Ph.D., professor,

Ph.D. supervisor. His main research interests include intelligence information processing, automated reasoning and machine learning.

Background

Deep reinforcement learning based on experience replay includes deep Q-network, double deep Q-network, deep recurrent Q-network, etc. These methods have achieved unprecedented progress in challenging domains, such as Atari 2600 games, robot control and text recognition. However, experience replay has the following drawbacks: it uses more computation and memory per real interaction; and it requires off-policy learning algorithms such as Q-learning that can update from data generated by an old policy. In order to overcome these drawbacks, asynchronous deep reinforcement learning (ADRL) uses asynchronous methods instead of experience replay. ADRL surpasses the state-of-the-art Hypercolumns for object segmentation and fine-grained localization//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 447-456.

- [30] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 3431-3440.
- [31] Sermanet P, Kavukcuoglu K, Chintala S, et al. Pedestrian detection with unsupervised multi-stage feature learning//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 3626-3633.
- [32] Yang S, Ramanan D. Multi-scale recognition with DAG-CNNs//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1215-1223.
- [33] Kingma D, Ba J. Adam: a method for stochastic optimization//Proceedings of the International Conference on Learning Representations. San Diego, USA, 2015.
- [34] Busoniu L, Babuska R, De Schutter B, et al. Reinforcement learning and dynamic programming using function approximators. State of Florida, USA: CRC press, 2010.

ZHANG Zong-Zhang, born in 1985, Ph.D., associate professor. His research interests include POMDPs, reinforcement learning and multi-agent systems.

LIANG Bin, born in 1993; Master student. His main research interests include sentiment analysis, natural language processing, and deep learning.

ZHOU Qian, born in 1992, Master student. Her main research interest is reinforcement learning.

algorithms, e.g., A3C-FF and A3C-LSTM, on the Atari 2600 games, with only half of computation time on a single multi-core CPU. However, the ADRL based on recurrent neural network (RNN) still needs a lot of training time, because the RNN is unable to be parallelized. To make deep neural networks have the memory and parallelization ability, we propose a novel asynchronous deep reinforcement learning model based on multiple gating mechanisms. Experimentally, our results demonstrate that our new model surpasses the performance of A3C-FF, A3C-LSTM and A3C-GLU on five strategic tasks with sparse rewards among Atari 2600 games.

This paper is partially supported by National Natural

Science Foundation of China (61272055, 61303108, 61373094, 61472262, 61502323, 61502329), High School Natural Foundation of Jiangsu (13KJB520020, 16KJB520041), Natural Science Foundation of Jiangsu (BK2012616), Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University (93K172014K04),

Suzhou Industrial application of basic research program part (SYG201422, SYG201308). These projects aim to enrich the reinforcement-learning theory and develop efficient approximate algorithms to expand the power and applicability of reinforcement learning on large scale problems.