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Abstract The widespread deployment and application of distributed big data computing environments, such as
batch processing, streaming computing, and machine learning in cloud, have brought great convenience to users
for efficiently processing massive amounts of data, but the accompanying leakage incidents of privacy data have
intensified. How to protect data privacy in such a big data computing environment deployed in cloud has become
a research hotspot. This paper provides a comprehensive overview of the latest research achievements and
progress of big data privacy protection in this field, mainly including domestic and foreign research work in
recent years. Firstly, we introduce the participating roles and application scenarios in the above-mentioned big
data computing environment. Combining the adversary models of different roles, starting from the three links of
data input, computation, and output involved in the distributed computing process, privacy issues are divided
into three categories: privacy leakage of native individual data during the data input stage, private data being
stolen by attacker during the data computation process, and sensitive information being maliciously inferred by
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untrusted data consumers (namely users, using the big data platform in charge of cloud service provider) during
the data output stage. Secondly, we summarize the corresponding five main research directions based on the
possible privacy leakage risks under conditions such as plaintext, ciphertext, or trusted hardware protection,
including privacy protection based on data separation, privacy protection based on data interference, privacy
protection based on secure multi-party computation, privacy protection based on hardware enhancement, and
privacy protection based on access pattern hiding. For each type of privacy protection scheme, privacy
challenges faced, adversary model to resist, privacy issues solved, mainstream privacy-preserving techniques,
and limitations are sorted out and analyzed. Further, the advantages and disadvantages of existing
privacy-preserving techniques are compared in terms of privacy, utility, and performance. Specifically, to protect
individual privacy in the data input stage, it is currently an effective means to adopt techniques such as data
separation, data anonymization, or local differential privacy. Besides, to ensure the confidentiality and privacy of
data involved in the computing process, it is currently the mainstreaming privacy-preserving solution that using
methods based on SMC, hardware enhancement, and access pattern hiding, including main techniques such as
homomorphic encryption, Intel SGX, oblivious RAM (ORAM) and oblivious shuffle. Moreover, it should be
noted that privacy leakage may occur during the data output stage. Attackers can use some background
knowledge to analyze the output of big data computing, obtain sensitive information that can be traced back to a
specific individual, and then steal the privacy of the original input data. In order to resist such attackers, it is
effective to adopt data anonymization and differential privacy techniques. Finally, the future research trends of

privacy protection in big data computing environment are prospected at the end of this paper.

Key words big data privacy protection; data separation; data interference; secure multi-party computation;
hardware enhancement; access pattern hiding
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Background

Big data security and privacy issues have become hot
topics in recent years. The continuous threats of private data
theft have brought more and more serious impacts, especially
from insiders and outsiders in cloud. From the perspective of
government supervision, many laws and agreements regulating
the collection and use of private data have been proposed.
However, it is not enough to restrict the leakage of sensitive
information from a legislative perspective. In the face of
diverse scenarios and privacy challenges, it is necessary to
adopt private data protection schemes from a technological
standpoint.

With the development of privacy-preserving techniques,
privacy-preserving data collection, processing and transmission
in big data computing environment have achieved extensive
attention and research from academia and industry, especially,
how to effectively protect data privacy while ensuring the
utility and efficiency of data processing. In the industry, some
companies chose local differential privacy to implement their
operating system (e.g. Apple iOS) and software (e.g. Google
Chrome web browser). In academia, researchers from domestic
and foreign have developed various privacy-preserving
techniques to address privacy issues about personal data. Data
anonymization methods attempt to protect personal identifiable
attributes. However, some research work has shown that
anonymized datasets can be de-anonymized. Based on this,

differential privacy technique randomly perturbs raw data
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and highly dependable embedded system.

before publishing or adds noise to data computational process
before sharing the result to the data consumer. Besides, data
encryption is one primary technique that allows conducting
computations on encrypted data. To enable privacy preserving
computation, there are a range of security primitives, including
homomaorphic encryption, secure multi-party computation, Intel
SGX for hardware-isolated computation, and oblivious
computing against access pattern attacks.

This paper focuses on the privacy-preserving techniques in
big data computing environment. According to the process of
data computation, privacy issues in big data computing
environment are divided into three categories, including
privacy leakage of raw data during the data collection process,
computational privacy stolen by untrusted attackers during the
computational process, and output privacy inferred by
untrusted data consumers with the help of background and
output. According to different privacy requirements and privacy
preserving techniques, existing research works on privacy
protection are divided into five research directions, including
privacy-preserving schemes based on data separation, data
interference, cryptographic protocols, hardware enhancement,
as well as access pattern hiding. The advantages and
disadvantages of main privacy preserving techniques are
compared and the future research directions are discussed.
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